
BlockConfess: Towards an Architecture for
Blockchain Constraints and Forensics

Sabrina Kirrane
Institute for Information Systems & New Media

Vienna University of Economics and Business
Vienna, Austria

sabrina.kirrane@wu.ac.at

Claudio Di Ciccio
Department of Computer Science

Sapienza University of Rome
Rome, Italy

claudio.diciccio@uniroma1.it

Abstract—Although Blockchain is still an emerging technol-
ogy it has the potential to serve as a general purpose informa-
tion technology platform. Already, smart contract / chaincode
platforms, such as Ethereum and Hyperledger Fabric, provide
support for the execution of arbitrary computations. However,
the suitability of these platforms for specifying and enforcing
data and service usage constraints (e.g., usage policies, regu-
latory obligations, societal norms) and providing guarantees
with respect to conformance has yet to be determined. In
order to address this gap, in this position paper we argue
that symbolic artificial intelligence techniques in the form
of semantic technology based policy languages and business
process conformance tools and techniques, can together be
used to provide guarantees with respect to the behaviour of
autonomous smart contract / chaincode applications.

I. INTRODUCTION

Blockchain technology has the potential to disrupt service
provision in both public and private sector organisations
alike [28]. Already there are an array of different blockchain
platform offerings: Bitcoin1 is typically used for financial
transactions; Permacoin2 and Filecoin3 enable untrusted
parties to store each other’s data; Ethereum4 and Hyperledger
Fabric5 can support both the storage of data (i.e., state)
and the execution of code (i.e., functions for expressing
arbitrary computations), commonly referred to as smart con-
tracts/chaincode (henceforth referred to simply as executable
code). The latter, in particular, are especially suitable as a
prospective general purpose Information and Communication
Technology (ICT) architecture [39].

However, considering that this technology is still in
its infancy, the suitability of blockchain executable code
platforms for specifying and enforcing usage constraints (e.g.,
usage policies, regulatory obligations, and business rules)
necessary to cater for the next generation of ICT applications,
and for providing guarantees that both individual executable
code applications and the blockchain system as a whole is
acting in accordance with said constraints, has yet to be
determined.

1https://bitcoin.org/en/
2https://github.com/input-output-hk/Scorex/wiki
3https://filecoin.io/
4https://www.ethereum.org/
5 https://www.hyperledger.org/projects/fabric

In this context, there are two bodies of work which could
potentially be adapted/extended to meet this need. When
it comes from constraint specification and reasoning, the
Semantic Web community have been actively working on
using symbolic artificial intelligence techniques to allow
for policy specification and enforcement (cf., [4, 20, 32]).
Whereas from a compliance and conformance perspective the
Business Process Management community have proposed
techniques and tools for comparing and analysing traces
generated by business process instances (cf., [6, 24]). Thus,
in this position paper we discuss how said constraint
specification and conformance checking techniques could
together be used to support a-priori constraint enforcement
and a-posteriori blockchain executable code verification.

Summarising our contributions, we: (i) propose a constraint
and forensics framework that could be used to guide the
development and enhancement of blockchain executable code
platforms to support constraint specification, enforcement,
and automatic conformance checking; and (ii) discuss how
existing policy languages, business process management,
and semantic encoding techniques could be combined and
enhanced to enable blockchain technology to be used as a
general purpose ICT platform.

The remainder of the paper is structured as follows: Sec-
tion II presents the digital marketplace motivating scenario
and the respective use case requirements used to guide our
work. Section III provides the necessary background and
related work on constraint specification, compliance check-
ing, and techniques for ensuring software interoperability
and reuse. Following on from this, Section IV sketches
our blockchain constraints and forensics framework and
Section V highlights open research questions in relation
to semantic knowledge representation, compliance and con-
formance checking, and interoperability and reuse. Finally,
we present our conclusions and plans for future work in
Section VI.

II. MOTIVATING USE CASE SCENARIO

Although Blockchain executable code platforms have the
capability to support use cases across a variety of domains
(e.g., finance, supply chain, logistics, and healthcare) [39],
the suitability of blockchain platforms for the specification of



data and service constraints (e.g., usage policies, regulatory
obligations, societal norms) needed to realise such use
cases, remains an open research question. Additionally,
considering the technology is still in its infancy, from a
trust perspective there is a pressing need for blockchain
executable code behaviour forensics, which is necessary
to identify executable code non-conformity, faults, and
malicious behaviour. Finally, from a general applicability
perspective the proposed approach should be reuseable across
a variety of different Blockchain executable code platforms.

The work is guided by requirements arising from a
blockchain based digital marketplace, such as that envisaged
in [37]. Here blockchain executable code could be used not
only to publish and consume data, but also to perform transac-
tions in digital data markets without human intervention. For
such digital data markets to be plausible, it is crucial that data
publishers can specify who gets access to the data under what
conditions, and data consumers can specify their requirements
in a manner that allows the marketplace to find the most
relevant detests. Given the variety of policies needed (e.g.,
usage conditions, requests requirements, privacy policies,
regulatory conditions, offers, agreements), the marketplace
use case it particularly suitable for guiding our analysis. Here,
constraints could be used to mediate between buyers and
sellers (based on pre-specified requirements), for instance
allowing for the exchange and storage of machine readable
requests, offers, agreements, possibly involving negotiation
of terms and conditions. Whereas, forensic techniques are
needed to ensure that the market is working as expected.

Our hypothesis is that blockchain executable code con-
straints, in the form of usage policies, regulatory obligations,
business rules, and societal norms, together with executable
code behavioural forensics, will allow companies to develop
innovative services on top of blockchain executable code
platforms. Starting from this hypothesis, we devise three
primary research questions:

i) Which semantic knowledge representation techniques
are needed to describe data and service constraints, as
well as relevant metadata, in a manner that supports
automatic enforcement via the executable code?

ii) How can existing business process conformance tools
and techniques be modified/adjusted to automatically
detect unexpected executable code behaviour (i.e., non
conformity, faults, malicious behaviour) in a distributed
setting?

iii) How do we ensure that both the proposed constraints
and forensic tools and techniques are designed in a
manner that supports interoperability and reusability
across various blockchain platforms?

The above research questions translate into four concrete
objectives:

i) Analyse the expressivity of existing blockchain exe-
cutable code in terms of constraint specification and
enforcement, by performing preliminary forensics over

existing smart contracts / chaincode (i.e. preliminary
data), using an attacker approach;

ii) Build upon existing policy languages with formal
semantics, propose representations that are suitable
for specifying executable code data and service usage
constraints, and a framework for policy-based reasoning
over a variety of constraints, paying particular attention
to balancing expressivity and scalability;

iii) Adapt/extend existing platform analysis and process
conformance tools and techniques, such that they can
be used for automatic executable code monitoring and
forensics; and

iv) Develop a blockchain data and query execution market-
place prototype in order to demonstrate the effectiveness
of the proposed constraint-aware executable code moni-
toring and forensics from a robustness perspective (i.e.,
correctness, safety, performance and scalability).

III. BACKGROUND & RELATED WORK

In this section, we present the necessary background
and related work on constraint specification, behavioural
forensics, interoperability, and reusability, that together are
needed in order to support constraint enforcement and
automated compliance and conformance checking.

A. Constraint specification and enforcement

From a constraint specification and enforcement perspec-
tive, there has been work on extending blockchain technology
to keep track of both data and access transactions [40], and
other work which demonstrates how blockchain can be used
to record access policies and rights transfer in an auditable
manner [25]. Both Idelberger et al. [17] and Governatori
et al. [15] argue that declarative logic based languages are
more suitable for representing legal contracts as code than
the procedural languages that are commonly used to develop
blockchain applications. More specifically, Idelberger et al.
[17] demonstrate the effectiveness of logic based contracts
from a constraint lifecycle perspective, while Governatori
et al. [15] assess the legal and technical challenges associated
with using blockchain smart contracts as legally binding
agreements.

Beyond the blockchain domain, there is a mature body
of work on general policy languages, with formal semantics
that can be used to establish the correctness and safety of the
encoded policies. For instance, Rei [20] and Protune [4] use
ontologies to represent concepts, the relationships between
these concepts and the evidence needed to prove their
truth, and rules to represent policies. When it comes to
standardisation initiatives, the Open Digital Rights Language
(ODRL) [32] was published as a recommendation by the
World Wide Web Consortium (W3C) in 2018. Although
ODRL was primarily intended to define rights to or to limit
access to digital resources (cf. [33]), it has demonstrated
its potential as a general policy language, for instance for
expressing: access policies [36]; requests, data offers and
agreements [35]; and basic regulatory policies [10].



B. Compliance and conformance checking

From a behavioural forensics perspective, Magazzeni et al.
[26] identify a set of questions that can be used to guide
the development of automated validation and verification
techniques. In particular, they focus on how to guarantee a
correspondence between the actual runs of executable code
and the intended, to-be behavior. A number of approaches
have been proposed since that also proceed in that direction.
When it comes to logic-based approaches, Chen et al. [8]
propose a language-independent approach to smart contract
verification, however both an investigation into the general
applicability and the development of automated verification
tools based on the proposed approach are left to future work.
Wang et al. [38] put forward an approach that can be used to
check whether a contract correctly implements the underlying
workflow policy expressed as a finite state machine. Harz
and Knottenbelt [16] provide a survey of existing tools and
techniques used for smart contract verification. The authors
conclude the article by identifying the need for further work
encoding the formal semantics of smart contract such that it
is possible to develop automated verification tools.

In addition to works that focus specifically on smart
contract verification, existing work focusing on platform
analytics and process conformance checking provide interest-
ing starting points for advancing this field of research. For
instance, the analytical approach proposed by Ali-Gombe
et al. [1] could be adapted to cater for constraint-based
process discovery over blockchain transactions, to identify
patterns of malicious behaviours, faults, and execution
nonconformity of processes carried out on-chain. In addition,
there is a mature body of work on process conformance
checking that provides techniques and methods for comparing
and analysing observed instances [6]. Of particular relevance
in that sense is the continuous auditing framework, which
applies data mining and process mining together with human
expertise, to the task of transaction verification [18]. As a
basis for those techniques to be applied, Di Ciccio et al.
[11] illustrate mechanisms that can be used to track process
executions via transactions recorded on the blockchain.

C. Interoperabiliy and reusability

From an interoperabiliy and reusability perspective, Lam-
parelli et al. [22] highlight the need for interoperability
from both a platform and an application perspective. The
authors propose a smart contract description language that
can be used to describe smart contract interfaces for both
permissioned and permissionless blockchains. While, Falazi
et al. [14] propose a mechanism that can be used to combine
smart contracts in the form of a process that is needed in
order to complete a task. Liu et al. [23] in turn propose
several design patterns, which they classify as creational,
structural, inter-behavioral and intra-behavioral.

More broadly, syntactic and semantic annotation and
completion techniques are commonly used to help developers
to implement reusable code, however they are typically tied

Constraint enforcement

and conformance checking

Constraint and forensics

enabled blockchain protocols

@

@

Pre-
deployment?

1 0

SentinelWrapperEnforcer

PolicyExecutable code

Forensic analyst Developer

@

Figure 1: BlockConfess constraint and forensics framework.

to the development context and specific to a certain language.
For instance, the Java Modeling Language (JML) can be
used to describe Java functions [7], while others propose
mechanisms to automatically create function definitions based
on metadata supplied by the developer [31]. In terms of
semantic modelling the PROV ontology [29] is a well known
vocabulary used to represent provenance information. Other
work employing a semantic based approach focuses specifi-
cally on semantically declaring and describing functions and
the metadata of their implementations [9].

In this paper, we discuss how such approaches could be
combined in order to develop and enhance the technical
foundations of blockchain executable code platforms to
support constraint specification, enforcement, and automatic
conformance checking.

IV. APPROACH

Figure 1 sketches our conceptual constraint and forensics
framework. Both policies and executable code are capable
of expressing constraints. The former are declarative specifi-
cations of behaviour, whereas the latter is an implementation
mode. We assume two stages for constraint verification,
depending on the run-time phase: (ex-ante) enforcement and
(ex-post) conformance checking. In addition, we identify two
categories of system-administrators (that are not specific to
any particular use case): developers, who are responsible
for developing executable code and wish to verify that the
executable code respects given policies; and forensic analysts,
who are interested in identifying behaviours that could
denote security breaches, malicious activities, or potential
vulnerabilities.

A. Constraint enforcement and conformance checking

The constraint enforcement and conformance checking
component accepts as input constraints in the form of
executable code and policies. Executable code applications
encode business rules, namely the behavioural constraints that
the code must respect, and policies denote desired properties
and characteristics offered by the blockchain application



under development or already operating. From a forensics
perspective we are interested in scenarios where the focus
is not on the verification of single instances of executable
code, but rather ensembles thereof.
Enforcers are needed to tackle the problem of a-priori

constraint enforcement. If the code has not yet been
deployed, the policies need to be turned into encoded
statements asserting properties of the code at hand, in
a manner that restricts its behaviour thereby enabling
automated compliance. We thus name those encoded
statements enforcers.

Wrappers also deal with a-priori constraint enforcement,
although they are used when executable code is already
deployed. Wrappers act as a façade, intercepting and
re-routing the messages and transactions, such that de-
ployed applications can also benefit from the envisaged
conformance checking.

Sentinels focus on a-posteriori verification of blockchain
executable code based on their recorded transactions.
Therefore, they query (ex-post) or capture (at runtime)
the transaction flow into and out of the executable code
under analysis. Hence the name, sentinels.

B. Constraint and forensics enabled blockchain protocols

The constraint and forensics enabled blockchain protocols
component denotes changes required to the fabric of existing
blockchain infrastructures, such that it is possible to use
output produced by enforcers, wrappers, and sentinels to
provide a point-in-time overview of individual executable
code applications, a subset of executable code applications
within the network, or the network as a whole. Here, semantic
knowledge representation techniques are needed in order to
encode constraints and events in an interoperable manner, and
forensic techniques are needed in order to collect and syn-
thesise constraints and events, and to develop conformance
checking algorithms that will work in a distributed setting. In
particular, we envisage a forensics protocol used by peers that
are responsible for monitoring and conformance checking,
similar to the existing proof-of-work protocol, although at
the higher layer of abstraction of executable code.

V. DISCUSSION

When it comes to the realisation of the proposed
blockchain based constraints and forensics framework there
are several open research questions with respect to: the
suitability of existing policy languages for specifying ex-
ecutable code constraints in a machine readable manner;
the effectiveness of existing business process management
conformance checking techniques in terms of this still
emerging technology; and ensuring the interoperability and
reusability of the various tools and technologies.

A. Constraint specification and enforcement

From a constraints perspective, there is a need for a policy
language that can be adapted/extended such that it is possible
to express a variety of policies (e.g., usage conditions,

requests requirements, privacy policies, regulatory conditions,
offers, agreements). Here, general policy languages such
as Rei [20] and Protune [4], coming from the semantic
Web research community, are particularly interesting due
to both generality and formal underpinnings. Rei polices
are based on deontic logic, thus it is possible to model
not only permissions and prohibitions, but also obligations
and dispensations. The Rei policy language leverages the
W3C Web Ontology Language [27] for policy specification,
and N3 rules for policy enforcement [19]. Protune policies
are specified using rules and meta rules that constrain the
behaviour of web agents and the usage of web resources.
One of the primary goals of the language is to support
the exchange of information between negotiating peers
[3]. However, neither Rei nor Protune managed to achieve
widespread adoption. In contrast, the W3C Open Digital
Rights Language (ODRL) [32] recommendation has been
gaining traction in recent years. Primary building blocks
include the ODRL Information Model6 and the ODRL
Vocabulary & Expression7 specifications. The profile based
extension mechanism is particularly interesting as it allows
for the language to be adapted for different use cases (e.g.,
access control, usage control, legal policies). One of the
major limitations of the language is the fact that there is no
underpinning formal semantics.

When it comes to our automated digital marketplace
scenario, it would be good to leverage the OWL based
policies provided for by Rei, the negotiation capabilities of
Protune, and the flexible profile based extension mechanism
proposed by the ODRL community group. However, their
combination is not a trivial task due to different or missing
underlying formalisms. Additionally, their suitability for
expressing the policies needed for an autonomous data
marketplace and their adaption to a blockchain setting are
open research questions. Also, it is unclear if these policy
languages can deal the volume, velocity, variety, and veracity
of data we are faced with today, thus we need to be mindful
of the need to balance expressiveness and computational
complexity.

B. Compliance and conformance checking

From a platform analysis and business process confor-
mance checking perspective, it may be possible to adapt ex-
isting business process management tools and techniques [6]
so that they can be used for automatic executable code
monitoring and forensics in a distributed setting. Confor-
mance checking compares the behaviour of a normative
model to the one evidenced by execution traces. Constraints
and policies can be interpreted as a normative model to be
checked against blockchain data. However, the extraction,
transformation, and loading of data from the blockchain is
a non-trivial task [11]. Preliminary results to that end are
presented by the recent approaches of Mühlberger et al. [30]

6https://www.w3.org/TR/odrl-model/
7https://w3c.github.io/poe/vocab/



and Klinkmüller et al. [21]. However, we see the checking
of constraints on mixed on-chain and off-chain data as an
avenue for future investigations. We envision that novel
solutions could benefit from the advancements on ontology-
based data access approaches such as that of Calvanese et al.
[5] and from novel object-centric specification languages for
processes (e.g., OCBC [2]) to represent the stateful nature
of transactional objects handled by executable code. On top
of that, semantic technologies could be leveraged to query
and reason on the retrieved information for conformance
checking [12]. The cross-validation of information retrieved
from the blockchain and the real-world is another open
investigation [13]. Furthermore, given that compliance and
conformance checking tools are usually designed for in-house
business process execution, it remains to be seen if they are
effective and what adaptations are needed when it comes to
executable code conformance checking.

C. Interoperabilily and reusability

By employing semantic technologies to encode constraints
specified in the form of polices, annotations associated
with executable code, and provenance events stored in the
blockchain ledger, it will be possible to support not only
interoperabilily and reusability across blockchain platforms,
but also traceabiliy between events in a manner that facilitates
automatic compliance checking. In addition to the ODRL
vocabulary mention earlier, there are a number of existing
vocabularies that can be adapted/extended to satisfy our
needs. When it comes to encoding provenance information
related to constraints, processes, logs, etc... the W3C PROV
Ontology8 is an obvious choice. As for temporal expressions
the W3C Spatial Data on the Web Working Group has
recently proposed the OWL-Time Ontology9 as a candi-
date recommendation. Additionally, there are a number of
approaches for representing and reasoning over events, such
as the Event Ontology10 and the Content Ontology Design
Pattern [34], which would be particularly useful when it
comes to encoding and reasoning over processes. In order to
make executable code interface declarations more accessible,
the approach adopted by De Meester et al. [9] could be
used to describe both the function and the metadata of their
implementations.

When it comes to interoperabilily and reusability one of
the primary challenges will be implementing the changes
required into the fabric of existing blockchain infrastructures,
such that it is possible for executable code applications to
share and reason over service offerings, usage policies, and
event logs. Another level of complexity is added by the fact
that the proposed tools and techniques need to work in a
variety of different Blockchain executable code platforms.

8https://www.w3.org/TR/prov-overview/
9https://www.w3.org/TR/owl-time/
10http://motools.sourceforge.net/event/event.html

VI. CONCLUSION

In this position paper, we argue that executable code con-
straints, in the form of usage policies, regulatory obligations,
business rules, and societal norms, together with executable
code behavioural forensics are needed in order to unleash the
potential of blockchain technology as a general purpose ICT
architecture. We proposed a blockchain based constraints and
forensics framework, comprising three different constraint
enforcement and conformance checking subcomponents, and
identified the need for changes to the fabric of existing
blockchain infrastructures in order to support automated
enforcement, compliance and conformance checking. When
it comes to the instantiation of the proposed framework
we discussed how semantic knowledge representation to-
gether with business process management compliance and
conformance checking techniques could be used to specify
constraints, interface declarations, and event logs, such that it
is possible to support automatic compliance and conformance
checking. Future work includes the conceptualisation of the
ideas presented herein in the form of a blockchain data
marketplace, and the corresponding proof of concept, which
will be used to validate the effectiveness of the proposed
constraint and forensics enabled blockchain protocols from a
robustness perspective (i.e., correctness, safety, performance
and scalability).

Acknowledgements: This work was partly supported by the
Austrian Science Fund (FWF) and netIdee SCIENCE under
grant V 759, the COMET centre ABC – Austrian Blockchain
Center, and the Italian MIUR under grant “Dipartimenti
di eccellenza 2018-2022” of the Department of Computer
Science at Sapienza University of Rome. We would like to
thank Ruben Verborgh and Anastasia Dimou for their support
in shaping some of the ideas presented in this paper.

REFERENCES

[1] A. I. Ali-Gombe, B. Saltaformaggio, D. Xu, G. G.
Richard III, et al. Toward a more dependable hybrid
analysis of android malware using aspect-oriented
programming. Computers & security, 73, 2018.

[2] A. Artale, D. Calvanese, M. Montali, and W. M. P.
van der Aalst. Enriching data models with behavioral
constraints. In Ontology Makes Sense, volume 316
of Frontiers in Artificial Intelligence and Applications,
2019.

[3] P. Bonatti, J. De Coi, D. Olmedilla, and L. Sauro.
Protune: A rule-based provisional trust negotiation
framework. 2010.

[4] P. A. Bonatti and D. Olmedilla. Rule-based policy
representation and reasoning for the semantic web. In
Reasoning Web Summer School, 2007.

[5] D. Calvanese, T. E. Kalayci, M. Montali, and S. Tinella.
Ontology-based data access for extracting event logs
from legacy data: The onprom tool and methodology.
In BIS, 2017.



[6] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich.
Conformance Checking: Relating Processes and Models.
Springer, 2018.

[7] P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Be-
yond assertions: Advanced specification and verification
with JML and esc/java2. 4111, 2005.

[8] X. Chen, D. Park, and G. Roşu. A language-independent
approach to smart contract verification. In ISoLA (4),
2018.

[9] B. De Meester, T. Seymoens, A. Dimou, and R. Ver-
borgh. Implementation-independent function reuse.
Future Generation Computer Systems, 2019.

[10] M. De Vos, S. Kirrane, J. Padget, and K. Satoh. ODRL
policy modelling and compliance checking. In In Rules
and Reasoning, 2019.

[11] C. Di Ciccio, A. Cecconi, J. Mendling, D. Felix,
D. Haas, D. Lilek, F. Riel, A. Rumpl, and P. Uhlig.
Blockchain-based traceability of inter-organisational
business processes. In BMSD, 2018.

[12] C. Di Ciccio, F. J. Ekaputra, A. Cecconi, A. Ekelhart,
and E. Kiesling. Finding non-compliances with declar-
ative process constraints through semantic technologies.
In CAiSE Forum, 2019.

[13] C. Di Ciccio, G. Meroni, and P. Plebani. Business
process monitoring on blockchains: Potentials and
challenges. In BPMDS/EMMSAD@CAiSE, 2020.

[14] G. Falazi, M. Hahn, U. Breitenbücher, F. Leymann,
and V. Yussupov. Process-based composition of permis-
sioned and permissionless blockchain smart contracts.
In EDOC, 2019.

[15] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret,
G. Sartor, and X. Xu. On legal contracts, imperative
and declarative smart contracts, and blockchain systems.
Artificial Intelligence and Law, 26(4), 2018.

[16] D. Harz and W. Knottenbelt. Towards safer smart
contracts: A survey of languages and verification
methods. arXiv preprint arXiv:1809.09805, 2018.

[17] F. Idelberger, G. Governatori, R. Riveret, and G. Sartor.
Evaluation of logic-based smart contracts for blockchain
systems. In RuleML, 2016.

[18] M. Jans and M. Hosseinpour. How active learning and
process mining can act as continuous auditing catalyst.
Int. J. Account. Inf. Syst., 32, 2019.

[19] L. Kagal and T. Berners-lee. Rein : Where policies meet
rules in the semantic web. Technical report, Laboratory,
Massachusetts Institute of Technology, 2005.

[20] L. Kagal, T. Finin, and A. Joshi. A policy language for
a pervasive computing environment. In Proceedings
POLICY 2003. IEEE 4th International Workshop on
Policies for Distributed Systems and Networks, 2003.

[21] C. Klinkmüller, A. Ponomarev, A. B. Tran, I. Weber,
and W. van der Aalst. Mining blockchain processes:
Extracting process mining data from blockchain appli-
cations. In BPM (Blockchain and CEE Forum), 2019.

[22] A. Lamparelli, G. Falazi, U. Breitenbücher, F. Daniel,

and F. Leymann. Smart contract locator (scl) and smart
contract description language (scdl). In ICSOC, 2019.

[23] Y. Liu, Q. Lu, X. Xu, L. Zhu, and H. Yao. Applying
design patterns in smart contracts. In ICBC, 2018.

[24] L. T. Ly, F. M. Maggi, M. Montali, S. Rinderle-Ma,
and W. M. P. van der Aalst. Compliance monitoring
in business processes: Functionalities, application, and
tool-support. Inf. Syst., 54, 2015.

[25] D. D. F. Maesa, P. Mori, and L. Ricci. A blockchain
based approach for the definition of auditable access
control systems. volume 84, 2019.

[26] D. Magazzeni, P. McBurney, and W. Nash. Validation
and verification of smart contracts: A research agenda.
Computer, 50(9), 2017.

[27] D. L. McGuinness and F. van Harmelen. OWL Web
Ontology Language Overview. Technical report, W3C,
February 2004.

[28] J. Mendling, I. Weber, W. V. D. Aalst, J. V. Brocke,
et al. Blockchains for business process management -
challenges and opportunities. ACM Trans. Manage. Inf.
Syst., 9(1), 2018.

[29] P. Missier, K. Belhajjame, and J. Cheney. The W3C
PROV family of specifications for modelling prove-
nance metadata. In EDBT, 2013.

[30] R. Mühlberger, S. Bachhofner, C. Di Ciccio, L. García-
Bañuelos, and O. López-Pintado. Extracting event logs
for process mining from data stored on the blockchain.
In BPM Workshops, 2019.

[31] K. I. Murray and J. P. Bigham. Beyond autocomplete:
Automatic function definition. In VL/HCC, 2011.

[32] ODRL Community Group. ODRL Information Model
2.2. Technical report, W3C, June 2018.

[33] O. Panasiuk, S. Steyskal, G. Havur, A. Fensel, and
S. Kirrane. Modeling and reasoning over data licenses.
In ESWC (Satellite Events), 2018.

[34] M. Rinne, E. Blomqvist, R. Keskisärkkä, and E. Nuutila.
Event processing in RDF. In WOP, 2013.

[35] S. Steyskal and S. Kirrane. If you can’t enforce it,
contract it: Enforceability in policy-driven (linked) data
markets. In Semantics (posters & demos), 2015.

[36] S. Steyskal and A. Polleres. Defining expressive access
policies for linked data using the odrl ontology 2.0. In
SEMANTICS, 2014.

[37] H. Subramanian. Decentralized blockchain-based elec-
tronic marketplaces. Commun. ACM, 61(1), 2018.

[38] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig,
C. Born, I. Naseer, and K. Ferles. Formal verification
of workflow policies for smart contracts in azure
blockchain. In VSTTE, 2019.

[39] X. Xu, I. Weber, and M. Staples. Architecture for
Blockchain Applications. Springer, 2019. ISBN 978-3-
030-03034-6.

[40] G. Zyskind, O. Nathan, et al. Decentralizing privacy:
Using blockchain to protect personal data. In IEEE
Security and Privacy Workshops, 2015.


