
Secure Manipulation of Linked Data

Sabrina Kirrane1,2, Ahmed Abdelrahman1, Alessandra Mileo1

, and Stefan Decker1

1 Digital Enterprise Research Institute
National University of Ireland, Galway

http://www.deri.ie

{firstname.lastname}@deri.ie
2 Storm Technology, Ireland

http://www.storm.ie

Abstract. When it comes to publishing data on the web, the level of
access control required (if any) is highly dependent on the type of content
exposed. Up until now RDF data publishers have focused on exposing
and linking public data. With the advent of SPARQL 1.1, the linked
data infrastructure can be used, not only as a means of publishing open
data but also, as a general mechanism for managing distributed graph
data. However, such a decentralised architecture brings with it a number
of additional challenges with respect to both data security and integrity.
In this paper, we propose a general authorisation framework that can be
used to deliver dynamic query results based on user credentials and to
cater for the secure manipulation of linked data. Specifically we describe
how graph patterns, propagation rules, conflict resolution policies and in-
tegrity constraints can together be used to specify and enforce consistent
access control policies.

1 Introduction

In the early days, the Web was primarily used as a medium for sharing and
linking static information. However it wasn’t until challenges with respect to
data confidentiality, authenticity and integrity were addressed that electronic
business became common place. It is not surprising that the Semantic Web
is following a similar evolution. With the advent of SPARQL 1.1, an update
language for RDF graphs, it is possible for the Semantic Web to evolve from a
medium for publishing and linking data to a dynamic read/write distributed data
source, that can support the next generation of electronic business applications.
However, in order to make the move from simply exposing to maintaining linked
data we must first provide solutions for data security and integrity.

To date researchers have focused primarily on the specification of access con-
trol policies for RDF stores based on RDF patterns [13, 8, 4, 1, 6] or the spec-
ification and enforcement of access control ontologies over linked data [3, 14].
Although some of these authors touch upon reasoning over access control poli-
cies, they do not propose a general authorisation framework which can support

http://www.deri.ie
http://www.storm.ie

reasoning based on a combination of propagation rules, conflict resolution poli-
cies and integrity constraints.

In previous work, we provided a summary of access control requirements
that are needed to cater for Discretionary Access Control (DAC) over RDF data
[11]. In this paper, we demonstrate how authorisations together with stratified
Datalog rules can be used to enforce DAC over the RDF data model. The contri-
butions of the paper can be summarised as follows: We (i) demonstrate how the
hierarchical Flexible Authorisation Framework [9] can be adapted to work with
graph data; (ii) provide a formal definition of an RDF instantiation of the frame-
work, which we refer to as the ”Graph based Flexible Authorisation Framework”
or G-FAF; (iii) describe how together pattern matching and propagation rules
can be used to ease the maintenance of access control policies for linked data
sources; and (iv) show how conflict resolution policies and integrity constraints
can ensure access control policy integrity.

The remainder of the paper is structured as follows: Section 2, examines
alternative approaches for the enforcement and administration of access con-
trol over RDF data. Section 3, provides an overview of DAC requirements in
the context of the RDF data model and describes the Flexible Authorisation
Framework, which has been successfully applied to both the relational and the
xml data models. Section 4, demonstrates how the authorisation framework can
be extended to cater for the RDF graph data model. Section 5, details how
graph patterns, propagation rules, integrity constraints and conflict resolution
policies can be used to specify and enforce access control over the RDF data
model. Whereas Section 6, discusses how the extended framework can be used
to enforce access control over linked data sources and details the results of our
performance evaluation. Finally Section 7, summarises the contributions and
outlines directions for future work.

2 Related Work

Initially Semantic Web researchers focused on the modelling and the enforcement
of access control over RDF stores. A number of authors have proposed access
control policies based on RDF patterns that can be mapped to one or more RDF
triples [13, 8, 4, 1]. Reddivari et al. [13] define a set of actions required to manage
an RDF store and demonstrate how query based access control can be used to
permit or prohibit access based on these actions. The authors propose default
and conflict preferences that can simply be set to either permit or deny. Jain
and Farkas [8] propose a data level security model which can be used to protect
both explicit and inferred triples. They provide formal definitions for a number
of RDF security objects and define an algorithm which generates security labels,
based on a security policy and a conflict resolution strategy. Limited details of
the implementation are supplied and no evaluation is performed. Whereas Abel
et al. [1] propose the evaluation of access control policies at both the query
and the data layers. Access conditions that are not dependent on RDF data are
evaluated by a policy engine. Whereas access conditions that are dependent on

RDF data are injected into the query. Such an approach requires the substitution
of variables to ensure uniqueness however in doing so they are able to leverage
the highly optimized query evaluation features of the RDF store. The authors
adopt a denial by default conflict resolution strategy.

Gabillon and Letouzey [6] highlight the possible administration burden as-
sociated with the maintenance of access control policies that are based on triple
patterns. They propose the logical distribution of RDF data into SPARQL views
and the subsequent specification of access control policies based on existing RDF
graphs or predefined views. They describe a query based enforcement framework
whereby each user defines a security policy for the RDF graphs/views that they
own. The authors acknowledge the need for conflict resolution however, they do
not propose a conflict resolution strategy.

More recently the focus has shifted to the specification and enforcement of
access control policies over web resources. Costabello et al. [3] and Sacco et al.
[14] both propose access control ontologies and enforcement frameworks that rely
on SPARQL ASK queries to determine if the requester possesses the attributes
necessary to access the requested resource. Costabello et al. [3] use context data
supplied by the requester to limit the scope of the SPARQL query to autho-
rised named graphs. The authors propose the disjunctive evaluation of policies
thus circumventing the need for a conflict resolution mechanism. Whereas Sacco
et al. [14] provide a filtered view of a data providers FOAF profile based on
a matching between the data providers privacy preferences and the requesters
attributes. Policies can be specified for an entire graph, one or more triples or
individual subjects, predicates and objects. The authors do not propose any
conflict resolution strategy.

In our early work, we demonstrated how annotated RDF can be used to limit
access to triples and to derive access rights for inferred triples using annotated
RDFS inference rules [12]. In this paper, we allow for the specification of au-
thorisations based on quad patterns, thus catering multiple levels of granularity
(i.e. one or more graphs, triples, classes or properties). Moreover, we provide a
general mechanism for the administration and enforcement of access control poli-
cies using a combination of propagation rules, integrity constraints and conflict
resolution policies.

3 Preliminaries

In previous work [11], we examined how DAC principles, that have been success-
fully applied to relational and XML data, can be applied to the RDF data model.
In this paper, we introduce the hierarchical Flexible Authorisation Framework
[9], henceforth referred to as H-FAF, and demonstrate how it can be extended
to cater for DAC over the RDF graph data model, which we intuitively name
G-FAF. We start by providing a summary of DAC requirements for the RDF
data model, before providing the necessary background information about the
H-FAF data system and authorisation architecture.

3.1 Discretionary Access Control for RDF Data

In DAC access to resources is constrained by a central access control policy how-
ever, users are allowed to override the central policy by passing their access rights
on to others [16], known in the literature as delegation. DAC principles that have
been successfully integrated into a number of operating systems, databases and
information systems developed by well known software vendors (e.g. Oracle, Mi-
crosoft, SAP, IBM). However, our decision to base our work on the DAC model
was threefold: it has been adopted by several relational DBMS vendors; its inher-
ent flexibility makes it particularly suitable for distributed data; and its potential
for handling context based authorisations in the future. Based on our analysis,
of DAC for both the relational and XML data models [11], an authorisation
framework needs to be able to cater the following requirements:

– In order to ensure the expressivity and the maintainability of access control
policies it should be feasible to specify authorisations at multiple levels of
granularity, from both a data (i.e. nodes, arcs, triples, collection of triples
and name graphs) and a schema (i.e. classes and properties) perspective.

– Like the relational and XML data models RDF access rights should be tightly
coupled with the operations performed on the data model. However, as graph
update operations can only be applied to triples and graph management
operations are only appropriate for graphs, integrity constraints are needed
to ensure the consistency of the access control policies.

– In both the relational and hierarchical data models authorisations can be
derived based on the schema. When it comes to the RDF data model similar
derivations are highly desirable as they simplify authorisation maintenance.

– In DAC access to resources is constrained by a central access control policy
however, users are permitted to pass their own access rights on to others [16],
known formally as delegation.

– As conflicts can occur as a result of inconsistent explicit, derived and dele-
gated policies conflict resolution strategies are required to ensure a conclu-
sion can always be reached. Samarati [15] highlights the need for a flexible
conflict resolution mechanism which can support different conflict resolution
strategies depending on the situation.

3.2 H-FAF Data System and Authorisation Framework

The H-FAF is an authorisation framework that can be used to restrict access
to different classes of data objects (e.g. files, relations, objects, images), with
different access control requirements. The authors provide a general definition for
a data system and devise a modular architecture which together with declarative
rules can be used to ease access control policy administration, by exploiting the
hierarchical structure of the data system components.

Data System Components. An authorisation framework describes the items
to be protected (data items), to whom access is granted (users, groups, roles

collectively known as authorisation subjects) and the operations that need
to be protected (access rights). Together these components are known as a
data system formally defined by Jajodia and Samarati [9] as follows:

Definition 1 (Data System). A Data System (DS) is a 5-tuple
〈OTH,UGH,RH,A,Rel〉 where: OTH is an object-type hierarchy ; UGH is a
user-group hierarchy ; RH is a role-hierarchy ; A is a set of access rights and Rel
is a set of n-ary relationships over the different elements of DS.

Authorisation Framework. In addition to the formal data system definition
Jajodia and Samarati [9] propose a number of distinct components that together
provide support for access control enforcement and administration:

– Authorisations are rules that dictate the access rights that authorisation
subjects are allowed/prohibited to perform on data items.

– Propagation Rules enable the derivation of implicit authorisations from ex-
plicit authorisations and the hierarchical structure of data system compo-
nents.

– Conflict Resolution Policies are rules that provide flexible support for dif-
ferent conflict resolution strategies.

– Integrity Constraints are rules that enforce restrictions on authorisation
specification thus decreasing the potential for runtime errors.

Rules are expressed in stratified Datalog with negation and are constructed from
a combination of explicit authorisations, historical authorisations and both the
hierarchical structure of and the relationship between the different data system

components.

4 From a Hierarchical to a Graph Data System

As both the hierarchical structure of and the relationship between the data

system components can be recorded as RDF in this paper we adapt and extend
the original data system and rule definitions to work with the RDF data model.
As per the original framework we chose a declarative approach as it has been
proven to work well and is based on familiar concepts. We start by describing the
individual G-FAF data system components in the context of RDF and extend the
original formal definition of a data system to cater for graph data structures.
Although we are dealing with graph data the authorisations and the rules can
also be expressed using stratified Datalog with negation. Throughout the paper,
we use examples from the Berlin SPARQL Benchmark (BSBM) Dataset 3, as it
is a well known dataset which is sufficiently complex to represent a real world
use case. Prefixes are used as a shorthand notation for each vocabulary (e.g. rdf,
rdfs, bsbm) and variables are represented using a ? prefix. The following default
prefix is used to increase readability:
(http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromVendor1).

3 Berlin SPARQL Benchmark (BSBM) - Dataset Specification, http://wifo5-
03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/Dataset/.

4.1 Individual Data System Components

In G-FAF data items, access rights and authorisation subjects are rep-
resented as one or more graphs that may or may not be disjoint.

Data Items. In the Semantic Web information is represented as RDF triples
that are used to make statements about resources in the form of subject-predicate-
object expressions. An RDF graph is a finite set of RDF triples. Named graphs
are used to collectively refer to a number of RDF statements. Although there
are several RDF representation formats in this paper we use nquads.

Definition 2 (RDF Quad). An RDF Quad is formally defined as a 4-tuple
〈S, P,O,G〉 ∈ UB × U × UBL × U 4, where S is called the subject, P the
predicate, O the object and G the named graph. U, B and L, are in turn used to
represent URIs, blank nodes and literals respectively.

Example 1 (RDF Quad). The following quad states that there exists a triple in
the Graph2013 dataset stating that Vendor1 is a vendor.
:Vendor1 rdf:type bsbm:Vendor :Graph2013 2

Access Rights. Like databases and file systems access can be restricted based
on the operations that a user attempts to execute on the data items [11]. In
the case of RDF these operations take the form of: graph query operations
(SELECT, CONSTRUCT, ASK and DESCRIBE); graph update operations (INSERT,
DELETE, DELETE/INSERT); and a number of operations specifically for graph
management (DROP, COPY, MOVE and ADD). Three additional access rights are
required to facilitate access control administration, namely: GRANT, REVOKE and
FULL ACCESS. The GRANT privilege allows users to grant access to others based
on their own privileges. Whereas the REVOKE privilege allows users to revoke the
access rights they have granted to others. FULL ACCESS is a super access right
that subsumes all other access rights. We model the operations as one or more
RDF graphs and use vocabularies such as RDFS to define a partial order over
the operations. Although it is possible to infer implicit access rights based on
the partial order, we do not provide specific details in this paper.

Authorisation Subjects. Subject is an umbrella term used to collectively
refer to different user credentials. We propose the verification of access based on
credential matching, as such we make no distinction between a user playing a
role as opposed to belonging to a group. Therefore, we merge both the user-group
and role hierarchies and refer to them simply as authorisation subjects. Such
a merge does not impact the specification or enforcement of authorisations and
in fact affords a greater degree of flexibility with respect to the inclusion of
additional types of user credentials. As RDF is a web based distributed data
model we extend the subject definition, to include user attributes. Combined

4 For conciseness, we represent the union of sets simply by concatenating their names.

Authorisation Framework

Propagation
Policies

Conflict
Resolution

Rules

Integrity
Constraints

(Sub, Acc, RGP)

Grant/Deny
Authorisations

History Data

Fig. 1. Authorisation Framework

users, groups, roles and attributes can be represented as one or more RDF graphs
possibly disjoint.

4.2 Extending the Original Data System Definition

We formally extend the original definition of a data system to consider compo-
nents that are represented as graphs as opposed to hierarchies. As the relation-
ship between data items, access rights and authorisation subjects can
also be represented as RDF it is is not necessary to define a set of relations
over the different elements of the data system. Although in this paper we focus
specifically on RDF the extended data system definition is more general than
the original and therefore it can be applied to both hierarchical and graph data
models.

Definition 3 (Graph Data System). A Graph Data System (GDS) is defined
as a 3-tuple 〈DIG,ASG,ARG〉 where: DIG represents one or more data graphs,
that may be disjoint; ASG denotes one or more subject graphs; and ARG stands
for graphs of access rights used to restrict access to the data items in DIG.

5 G-FAF Authorisation Enforcement and Administration

Given an arbitary but fixed Graph Data System, we describe the individual
G-FAF components (Fig. 1) and demonstrate how together these components
can be used to deliver dynamic query results based on user credentials and to
cater for the secure manipulation of RDF graph data (Section. 6). We extend
the original framework to include the Data component, which is necessary to
infer new access control policies based on a combination of RDF data and rules.
Although in this paper, we do not examine the role of the History component,
it is worth noting that historical information is important for accountability and
also to cater for contextual access control policies that rely on historical data.

5.1 Authorisations

An RDF Quad Pattern is an RDF quad with optionally a variable V in the
subject, predicate, object and/or graph position. A Quad Pattern is a flexible
mechanism which can be used to grant/restrict access to an RDF quad, a col-
lection of RDF quads (multiple quads that share a common subject), a named
graph (arbitrary views of the data), specific classes or properties.

Example 2 (RDF Quad Pattern). A single quad pattern containing variables
in both the subject (?S) and graph (?G) positions is used to match products
spanning multiple graphs.
?S rdf:type bsbm:Product ?G. 2

More expressive authorisations can be achieved using an RDF Graph Pattern,
which is composed of multiple quad patterns.

Example 3 (RDF Graph Pattern). A graph pattern with variables in both the
subject (?S) and graph (?G) positions is used to match all products for Pro-
ducer1 from multiple graphs.
?S rdf:type bsbm:Product ?G1.
?S bsbm:producer bsbm-inst:Producer1 ?G2. 2

In order to cater for certain conflict resolution strategies and for the delega-
tion of access rights we extend the original authorisation definition to include
Type and By attributes. The Type attribute is necessary to differentiate between
explicit and inferred authorisations, whereas the By attribute is used to denote
the person who created the authorisation. By default the Type attribute is set
to E for explicit and the By attribute defaults to a reserved literal OWNER.

Definition 4 (Authorisation). An authorisation is represented as a 6-tuple
〈Sub,Acc, Sign,RGP, Type,By〉. Sub represents the authorisation subject. Acc
is used to denote access rights. Sign indicates if the user is granted or denied
access. RGP symbolises the RDF Graph Pattern. Type is used to indicate if the
authorisation is explicit (E) or implicit (I) and By represents the person who
created the authorisation.

Example 4 (Authorisation). Using the following authorisation a bsbm:admin can
grant all bsbm:partners UPDATE access to all triples in the :Graph2008 graph.
〈 bsbm:Partner, UPDATE, +, 〈 ?S, ?P, ?O, :Graph2008〉, E, bsbm:Admin 〉 2

5.2 Propagation Policies

Propagation policies can be used to simplify authorisation administration by
allowing for the derivation of implicit authorisations from explicit ones. For
example, we can derive new authorisations based on the logical organisation
of authorisation subjects, access rights and data items [10] or the RDF
Schema vocabulary [11]. We provide a formal definition for a propagation rule
which can be used as a blueprint for both general and specific derivation rules

(Def. 5). In addition, we present a propagation algorithm (Alg. 1) which can be
used to either evaluate the propagation policy at query time or alternatively to
materialise implicit authorisations when authorisations are added or removed.

Definition 5 (Propagation Policy). A Propagation Policy is a a rule of the
following format: 〈?Suby, ?Accy, ?Signy, 〈RGPy〉, ?Typey, ?Byy〉 ←

〈?Subx, ?Accx, ?Signx, 〈RGPx〉, ?Typex, ?Byx〉 , [〈RGP1〉 ∧...∧〈RGPx〉∧...∧〈RGPy〉∧...∧〈RGPn〉]

The premise is composed of an Authorisation and an RDF Graph Pattern. If the
Authorisation exists in the list of Authorisations and the RDF Quad Pattern
exists in the Data then we can infer the conclusion.

Example 5 (Subject Hierarchy Inheritance). Using the following rule the access
rights assigned to employees can be derived for all managers.
〈 bsbm:Mgr, ?Acc, ?Sign, 〈?S, ?P, ?O, ?G〉, I, ?By〉 ←
〈 bsbm:Emp, ?Acc, ?Sign, 〈?S, ?P, ?O, ?G〉, ?Type, ?By〉 ,
[〈 bsbm:Mgr, rdf:type, bsbm:Emp, ?G〉 ∧ 〈?S, ?P, ?O, ?G〉] 2

Example 6 (Class to Instance Propagation). The following rules propagates the
access rights assigned to a bsbm:Product class to all instances of the class.
〈?Sub, ?Acc, ?Sign, 〈?Z, ?Y, ?A, ?Gx〉, I, ?By〉 ←
〈?Sub, ?Acc, ?Sign, 〈 bsbm:Product, rdf:type, rdf:Class, ?Gy〉, ?Type, ?By〉 ,
[〈?Z, rdf:type, bsbm:Product, ?Gz〉 ∧ 〈?Z, ?Y, ?A, ?Gx〉]

〈?Sub, ?Acc, ?Sign, 〈?Z, ?Y, ?A, ?Gx〉, I, ?By〉 ←
〈?Sub, ?Acc, ?Sign, 〈 bsbm:Product, rdf:type, rdf:Class, ?Gy〉, ?Type, ?By〉 ,
[〈?Z, rdf:type, bsbm:Product, ?Gz〉 ∧ 〈?A, ?Y, ?Z, ?Gx〉] 2

5.3 Conflict Resolution Rules

Rather than propose a conflict resolution strategy we provide a formal defini-
tion for a conflict resolution rule (Def. 6) that can be used to determine access
given several different conflict resolution strategies. For example conflict reso-
lution policies based on the structure of the graph data system components;
the sensitivity of the data requested; or contextual conditions pertaining to the
requester. In order to cater for type matching the Authorisation RDF Graph
Pattern is replaced with an Extended RDF Graph Pattern which includes the
reserved words CON and VAR, that are used to match all constants and variables
respectively. As multiple conflict resolution rules may be applicable, each rule
should be assigned a priority and rules should be evaluated based on priority
until the conflict has been resolved. The default rule which matches everything
is assigned the lowest priority thus ensuring a conclusion can always be drawn.

Definition 6 (Conflict Resolution Rule). A Conflict Resolution Rule is a
rule of the following format:
〈?Subx, ?Accx, ?Signx, 〈ERGPx〉, ?Typex, ?Byx〉 ←

〈?Subx, ?Accx, ?Signx, 〈ERGPx〉, ?Typex, ?Byx〉> 〈?Suby, ?Accy, ?Signy, 〈ERGPy〉, ?Typey, ?Byy〉

where > indicates the authorisation to the left of the > symbol takes precedence

Data: Authorisations, PropPolicy, RDFData
Result: Authorisations
forall the pol in PropPolicy do

if Authorisations CONTAINS pol.premise.authorisation then
if RDFData CONTAINS pol.premise.graphPattern then

Authorisations += pol.conclusion.authorisation
end

end

end
return Authorisations

Algorithm 1: Applying the Propagation Rules

over the authorisation to the right; ?Sub, ?Acc, ?Type and ?By match authori-
sation subjects, access rights, type and by attributes, represented as constants or
variables, and ERGP denotes an Extended RDF Graph Pattern.

Example 7 (Most Specific takes precedence). The following rule states that au-
thorisations assigned to specific subject, predicate and objects in a graph override
authorisations assigned to the whole graph.
〈?Subx, ?Accx, ?Signx, 〈CON, CON, CON, CON〉, ?Typex, ?Byx〉 ←
〈?Subx, ?Accx, ?Signx, 〈CON, CON, CON, CON〉, ?Typex, ?Byx〉 >
〈?Suby, ?Accy, ?Signy, 〈VAR, VAR, VAR, CON〉, ?Typey, ?Byy〉 2

Example 8 (Explicit overrules Implicit). Using the following rule it is possible
to state that explicit authorisations override implicit authorisations.
〈?Subx, ?Accx, ?Signx, 〈?Sx, ?Px, ?Ox, ?Gx〉, E, ?Byx〉 ←
〈?Subx, ?Accx, ?Signx, 〈?Sx, ?Px, ?Ox, ?Gx〉, E, ?Byx〉 >
〈?Suby, ?Accy, ?Signy, 〈?Sy, ?Py, ?Oy, ?Gy〉, I, ?Byy〉 2

5.4 Integrity Constraints

Integrity constraints are used to restrict authorisation creation based on the
existing relationships between SPARQL operations and RDF data items. For
example, INSERT and DELETE can only be applied to an RDF quad whereas
DROP, CREATE, COPY, MOVE and ADD can only be associated with a named graph.
As per conflict resolution rules the integrity constraints use the Extended RDF
Graph Pattern which includes the reserved words CON and VAR that are used to
match all constants and variables respectively. We provide a formal definition of
an integrity constraint (Def. 7) and demonstrate how general rules can be used
to constrain the specification of the INSERT (Ex. 9) and the CREATE (Ex. 10)
access rights.

Definition 7 (Integrity Constraint). An Integrity Constraint is a rule of
the following format:
error ← [¬] 〈?Sub, ?Acc, ?Sign, 〈ERGPx〉, ?Type, ?By〉

where square brackets [] are used to denote the optional classical negation prefix

Authorisation
Framework

Request

Results

AC
Policies

Authorisation
Interface

(Sub, Acc, RGP)

Grant /Deny

Query /
Update

Results

Query /
Update

Results

R
esu

lts

Requester

Query /
Update

Results

Q
u

ery

Fig. 2. Authorisation Architecture

(¬); ?Sub, ?Acc, ?Type and ?By match authorisation subjects, access rights, type
and by attributes, represented as constants or variables and ERGP denotes an
Extended RDF Graph Pattern.

Example 9 (INSERT Constraint). Using an integrity constraint we can ensure
that the INSERT access right is only applied to RDF quads.
error ← ¬〈?Sub, INSERT, ?Sign, 〈CON, CON, CON, CON〉, ?Type, ?By〉 2

Example 10 (CREATE Constraint). The following integrity constraint ensures
that the CREATE graph management access right is only associated with named
graphs.
error ← ¬〈?Sub, CREATE, ?Sign, 〈VAR, VAR, VAR, CON〉, ?Type, ?By〉 2

6 Application and Evaluation

RDF data is mostly exposed on the web via sparql endpoints. Although the
architecture we propose will work with any query language in this paper we
describe how it can be used in conjunction with SPARQL to enforce and ad-
minister access control over RDF. First, we discuss how the framework can be
used to enforce and administer access control over linked data sources. Next, we
examine the performance of our Java implementation of the framework.

6.1 Applying the Framework to linked data

The Authorisation Architecture in Fig. 2 depicts how G-FAF can be used for
the enforcement and administration of access control policies over linked data
sources. We do not focus on authentication in this paper, and thus we assume
that the credentials supplied by the requester have been successfully authen-
ticated via alternative means, for example WebId and self-signed certificates,
working transparently over HTTPS.

Enforcement of Authorisations. In addition to the usual sparql query the
requester must submit their credentials, which are verified by an external au-
thentication system. The Authorisation Interface maps the sparql query to an
Authorisation Request of the form 〈Sub,Acc,RGP 〉 (a subset of Def. 4) and

Data: AuthRequest, AuthHashMap, ConflictPolicy
Result: grant/deny
key = AuthRequest.sub + AuthRequest.acc
authHashSet = getAuthHashSet(key, AuthHashMap)
quadHashMap = createQuadHashMap(authHashSet)
dominantAuth = quadHashMap.Auth
while quadHashMap CONTAINS AuthRequest.RGP do

authMatches += quadHashMap.Auth
end
if authMatches CONTAINS true and authMatches CONTAINS false then

dominantAuth = resolveConflict(authMatches, ConflictPolicy)
end
return dominantAuth.Sign

Algorithm 2: Authorisation Enforcement Algorithm

submits it to the Authorisation Framework (Fig. 2). The authorisation algo-
rithm (Alg. 2) checks if the Authorisation Request can be derived using the
Authorisations and the Conflict Resolution Policies. If the algorithm manages
to successfully derive the authorisation, access to the requested data is granted
otherwise the request is denied. If access is granted the Authorisation Interface
passes the sparql query to the Query Engine, which in turn processes the query
in the normal way. Finally, the query results are returned to the Requester via
the Authorisation Interface. In the current implementation the subject must
be granted access to each triple in order to be permitted to execute the query.
In future work we plan to investigate the data integrity implications of granting
access to subsets of the graph pattern through query rewriting. For example, if
a user requests the names of all employees who earn more than 50,000, and that
user is denied access to salary data, all employees would be returned leading
them to believe that this is the answer to their query.

Administration of Authorisations. We propose an ownership model, whereby
the data producer is granted FULL ACCESS to the data items they create. When
a user issues a graph update or graph management query, access is verified us-
ing the authorisation algorithm (Alg. 2). If authorisation succeeds the sparql
query is passed to the Query Engine. For INSERT, ADD or COPY operations, if
the query succeeds the administration algorithm (Alg. 3) ensures it adheres to
the integrity constraints prior to creating a new authorisation. For DELETE, DROP
or MOVE operations, if the query succeeds the administration algorithm (Alg. 3)
simply deletes relevant authorisations from the access control policy. In both
instances the update of both the RDF graph and the authorisation table should
be wrapped in a transaction to ensure that either both or neither succeed.

Delegation of Access Rights. In order to cater for delegation of access con-
trol, a number of administration modules are required. For example the ability
to list your own access rights, grant/revoke access rights to others and view the
access rights you have delegated. Based on the ownership model data producers
are granted FULL ACCESS to the data items they create and have the ability to

Data: AuthRequest, AuthHashMap, IntegrityPolicy, PropRules
Result: true/false
newAuth = AuthRequest + sign.Grant + type.E + by.Owner
if AuthRequest.Acc==INSERT or AuthRequest.Acc==ADD or
AuthRequest.Acc==COPY then

if checkIntegrity(AuthRequest, IntegrityPolicy) = true then

AuthHashMap += newAuth
AuthHashMap = applyPropRules(AuthHashMap, PropRules)
return true

end

end
else if AuthRequest.Acc==DELETE or AuthRequest.Acc==DROP or
AuthRequest.Acc==MOVE then

AuthHashMap -= newAuth
return true

end
return false

Algorithm 3: Authorisation Administration Algorithm

Table 1. Dataset and Authorisations description

DS1 DS2 DS3 DS4 DS5

quads 250223 500258 1000109 2000164 4000936
scale factor 830 1689 3402 6830 13780
file size (MB) 24.5 49 98 195 391

QS1 QS2 QS3 QS4 QS5

authorisations 60000 120000 240000 480000 960000
file size (MB) 6.5 13 26 53 105

GRANT and REVOKE access to/from others. As neither the grant nor the revoke
algorithms are dependent on the data model traditional revocation approaches
such as cascading [5, 7] and non-cascading [2] can be used in conjunction with
the proposed framework.

6.2 Performance Evaluation

For the evaluation of G-FAF we created three separate experiments to: (i) exam-
ine the overhead associated with access control over different data sets; (ii) de-
duce the impact given an increasing number of authorisations; and (iii) determine
the performance increase for a number of propagation rules (the most expensive
administration operation). The benchmark system has an Intel(R) Xeon(R) CPU
8 core 2.13GHz processor, 64 GB of memory and runs Debian 6.0.3. The authori-
sation framework was written in Java and the evaluation was performed over an
in memory store using Jena ARQ. Both the datasets (Table. 1) and the queries
were generated from the Berlin SPARQL Benchmark (BSBM) dataset. Two sep-
arate query sets were created: (i) QSS which contained 10 SELECT queries; and

Table 2. Queries over increasing datasets

DS1 DS2 DS3 DS4 DS5

QSS query time (ms)
∅ 345 657 1432 2604 5005
∃ 429 700 1164 2549 5149

QSU query time (ms)
∅ 8 8 9 8 9
∃ 9 9 9 9 9

Table 3. Queries over increasing authorisations

AS1 AS2 AS3 AS4 AS5

QSS query time (ms) 5056 4801 4861 4892 4869
QSU query time (ms) 9 8 9 8 9

(ii) QSU which contained 5 INSERT and 5 DELETE queries. In both instances
the queries composed of a combination of one, two and three triple patterns.
Access was granted or restricted to all quads (?S ?P ?O ?G); a particular graph
(?S ?P ?O G1); all quads of type offer (?S rdf:type bsbm:Offer ?G); all classes
(?S rdf:type rdf:Class); and all properties (?S rdf:type rdf:Property). Users were
either assigned (select; select & insert; select, insert & delete) or denied (delete;
insert & delete; select, insert & delete;) access to single quad patterns. The in-
tegrity constraints presented in Examples 9 and 10 were added, to ensure that
INSERT and DELETE operations were only applied to RDF quads. The conflict
resolution rules presented in Examples 7 and 8 along with an additional denial
takes precedence rule, were executed in the event of a conflict. The datasets,
queries and the conflict resolution, integrity and propagation rules used in the
experiments can be found at http://gfaf.sabrinakirrane.com/. All calcula-
tions presented were based on an average of 20 response times excluding the two
slowest and fastest times.

In order to evaluate the enforcement algorithm we ran both the select (QSS)
and the update (QSU) query sets, without access control (∅), with access con-
trol for users who were granted access (∃), over an authorisation set containing
588,000 grant and 402,001 deny authorisations. As expected the results indicate
that select query execution times are not impacted when the dataset is increased
(Table 2). However, little or no increase in performance times over increasing
authorisations (Table 3 and Fig. 3a) was unexpected. Such behavior can be at-
tributed to the fact that all authorisations are indexed by a combined subject

access right key and subsequently by graph pattern (seeAlg. 2). For the
evaluation of the propagation rules we examined the impact associated with three
schema based derivations from: classes to all instances of that class; properties
to all instances of that property; and an instance to property values associated
with that instance. Again we ran the experiment over increasing datasets and
authorisations (Table 4). Based on the results we can see that reasoning behaves
linearly when the number of authorisations are increased (Fig. 3b), whereas there
is little or no impact when the dataset was increased.

http://gfaf.sabrinakirrane.com/

Table 4. Propagation rules performance

DS1 DS2 DS3 DS4 DS5

AS5 query time (ms) 98531 104894 107017 106823 106248

AS1 AS2 AS3 AS4 AS5

DS5 query time (ms) 6248 12733 24257 51339 112887

0 100 200 300 400
0

2,000

4,000

Dataset size in MB

T
im

e
in

m
il
li
se
c
o
n
d
s

∅
∃

(a) Select query performance

0 20 40 60 80 100

0

50,000

100,000

Authorisations size in MB

T
im

e
in

m
il
li
se
c
o
n
d
s

(b) Rules over increasing authorisations

Fig. 3. Query and Propagation times

7 Conclusions and Future Work

With the introduction of RDF update languages, such as SPARQL 1.1, it is now
feasible to both query and manage distributed and linked RDF data. However
like web applications and web services, SPARQL endpoints need to protect the
security of the data source and the privacy and the integrity of the data therein.
In this paper, we discussed how the hierarchical Flexible Authorisation Frame-
work, proposed by Jajodia and Samarati [9], can be adapted to cater for secure
manipulation of RDF graph data. We provided a formal definition of authori-
sations, propagation rules, conflict resolution policies and integrity constraints,
within the context of RDF, and describe how together these components can
simultaneously provide access control over interlinked RDF graphs. The results
of our initial performance evaluation are very promising, as in general they show
only a negligible increase in query processing time and a linear increase in deriva-
tion times over increasing authorisations.

To date we have focused on the application of access control to simple
graph pattern queries. In future work we will look into handling more expres-
sive queries, for example those that include filters, subqueries, aggregates etc,
and investigate integrity issues with respect to query rewriting. We also plan
to extend the integrity constraints to ensure the integrity of both the rules and
conflict resolution policies.

Acknowledgements. This work is supported in part by the Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2), the Irish Research Council
for Science, Engineering and Technology Enterprise Partnership Scheme and

Storm Technology Ltd. We would like to thank Aidan Hogan and Nuno Lopes
for their valuable comments on the paper.

References

1. Fabian Abel, JL De Coi, Nicola Henze, and AW Koesling. Enabling advanced and
context-dependent access control in RDF stores. The Semantic Web, 2007.

2. Elisa Bertino, Pierangela Samarati, and Sushil Jajodia. Authorizations in rela-
tional database management systems. Proceedings of the 1st ACM conference on
Computer and communications security - CCS ’93, pages 130–139, 1993.

3. Luca Costabello, Serena Villata, and Nicolas Delaforge. Linked data access goes
mobile: Context-aware authorization for graph stores. In LDOW - 5th WWW
Workshop on Linked Data on the Web, 2012.

4. S Dietzold and S Auer. Access control on RDF triple stores from a semantic wiki
perspective. ESWC Workshop on Scripting for the Semantic Web, 2006.

5. Ronald Fagin. On an authorization mechanism. ACM Transactions on Database
Systems (TODS), 3(3):310–319, 1978.

6. Alban Gabillon and Leo Letouzey. A View Based Access Control Model for
SPARQL. 2010 Fourth International Conference on Network and System Secu-
rity, pages 105–112, September .

7. PP Griffiths and BW Wade. An authorization mechanism for a relational database
system. ACM Transactions on Database Systems, 1:242–255, 1976.

8. Amit Jain and Csilla Farkas. Secure resource description framework: an access
control model. ACM SACMAT, 2006.

9. Sushil Jajodia and P Samarati. Flexible support for multiple access control policies.
ACM Trans. Database Syst., 1(212), 2001.

10. Sabrina Kirrane, Nuno Lopes, Alessandra Mileo, and Stefan Decker. Protect Your
RDF Data! In In Proceedings of the 2nd Joint International Semantic Technology
Conference, 2012.

11. Sabrina Kirrane, Alessandra Mileo, and Stefan Decker. Applying DAC principles
to the RDF graph data model. In 28th IFIP TC-11 International Information
Security and Privacy Conference, 2013.

12. Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel Polleres, and Alessan-
dra Mileo. A Logic Programming approach for Access Control over RDF. In Tech-
nical Communications of ICLP’12, volume 17, pages 381–392. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2012.

13. Pavan Reddivari, Tim Finin, and Anupam Joshi. Policy-Based Access Control for
an RDF Store. In Proceedings of the IJCAI-07 Workshop on Semantic Web for
Collaborative Knowledge Acquisition, January 2007.

14. Owen Sacco, Alexandre Passant, and Stefan Decker. An Access Control Framework
for the Web of Data. 10th International Conference on Trust, Security and Privacy
in Computing and Communications, 2011.

15. Pierangela Samarati. Access control: Policies, models, and mechanisms. Founda-
tions of Security Analysis and Design, 2001.

16. RS Sandhu and P Samarati. Access control: principle and practice. Communica-
tions Magazine, IEEE, 1994.

	Secure Manipulation of Linked Data
	Introduction
	Related Work
	Preliminaries
	Discretionary Access Control for RDF Data
	H-FAF Data System and Authorisation Framework
	Data System Components.
	Authorisation Framework.

	From a Hierarchical to a Graph Data System
	Individual Data System Components
	Data Items.
	Access Rights.
	Authorisation Subjects.

	Extending the Original Data System Definition

	G-FAF Authorisation Enforcement and Administration
	Authorisations
	Propagation Policies
	Conflict Resolution Rules
	Integrity Constraints

	Application and Evaluation
	Applying the Framework to linked data
	Enforcement of Authorisations.
	Administration of Authorisations.
	Delegation of Access Rights.

	Performance Evaluation

	Conclusions and Future Work

