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Abstract

The explosion of digital content and the heterogeneity of enterprise content sources have pushed
existing data integration solutions to their boundaries. An alternative solution is to use the
Resource Description Framework (RDF) together with the existing web infrastructure, commonly
known as the Linked Data Web (LDW), as a means to integrate both public and private data.
With the advent of SPARQL 1.1, it is possible not only to execute queries over the LDW, but
also to use the SPARQL query language to maintain distributed graph data. However, such a
decentralised architecture brings with it a number of additional challenges with respect to both
data security and integrity. In this thesis, we focus on the problem of access control for the
LDW. We are particularly interested in lifting both the data and the access control policies from
existing line of business applications and enforcing and maintaining access control over linked
data, irrespective of how it is published.
We start by proposing a lifting strategy, which can be used to extract both data and access

control policies from relational databases. The access permissions are represented using an exten-
sion of the RDF model known as annotated RDF (aRDF), which allows contextual information
to be associated with RDF data. By using aRDF domain operations it is possible to combine
different annotations for the same triple and to infer new annotations based on RDF Schema
(RDFS) inference rules. We demonstrate how the proposed modelling, together with a set of
inference rules, can be used to provide support for commonly used access control models, such
as Role-Based Access Control, Attribute Based Access Control and View Based Access Control.
With regards to the enforcement and administration of access control over RDF, we focus

specifically on Discretionary Access Control (DAC). Given DAC allows users to delegate their
permissions to others, it is particularly suitable for managing access control over distributed
data. Although a number of authors demonstrate how they can used Semantic Web technology
to represent DAC policies, the authors do not examine DAC from a data model perspective. In
order to fill this gap, we provide a summary of access control requirements for the RDF data
model, based on the different characteristics of the RDF data model compared to relational and
tree data models. In order to support access control policy specification at the triple, resource,
graph and schema level, authorisations are specified using graph patterns. In addition, we
demonstrate how our proposed flexible graph based authorisation framework, which we call G-
FAF, can be used to cater for the specification, administration and enforcement of DAC policies
over linked data.
Given the proposed access control framework enforces access control at the query layer, when

access to the requested RDF data is partially restricted, it is necessary to rewrite the query so
that it behaves in the same manner as a query executed over a filtered dataset. Therefore, we
propose a query rewriting strategy for both the SPARQL 1.1 query and update languages, that
can be used to partially restrict access to unauthorised data. In addition, we demonstrate how
a set of criteria, which was originally used to verify relational access control policies, can be
adapted to ensure the correctness of access control over RDF via query rewriting.

v



Declaration

I declare that this thesis is composed by myself, that the work contained herein is my own except
where explicitly stated otherwise in the text, and that this work has not been submitted for any
other degree or professional qualification except as specified.

Sabrina Kirrane

January 29, 2015

vi



Published Work

The work presented in this thesis has been published in the following conference proceedings:

Sabrina Kirrane, Alessandra Mileo, Stefan Decker
Secure Manipulation of Linked Data
The 12th International Semantic Web Conference, ISWC 2013.
Full Paper Research Track

Sabrina Kirrane, Alessandra Mileo, Stefan Decker
Applying DAC principles to the RDF graph data model
The 28th IFIP TC-11 International Information Security and Privacy Conference, SEC 2013.
Full Paper Research Track

Sabrina Kirrane, Nuno Lopes, Alessandra Mileo, Stefan Decker
Protect Your RDF Data!
The 2nd Joint International Semantic Technology Conference, JIST 2012.
Full Paper Research Track

Nuno Lopes, Sabrina Kirrane, Antoine Zimmermann, Axel Polleres, Alessandra Mileo
A Logic Programming approach for Access Control over RDF
The 28th International Conference on Logic Programming, ICLP 2012.
Technical Communication (Joint work with Nuno Lopes)

Sabrina Kirrane
DC Proposal: Knowledge Based Access Control Policy Specification and Enforcement
The 10th International Semantic Web Conference, ISWC 2011.
Doctorial Consortium Paper

vii



Contents

1 Introduction 1
1.1 Background and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 9
2.1 The RDF Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Concepts and Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Querying and Updating RDF Data using SPARQL . . . . . . . . . . . . . . . . . 14
2.2.1 SPARQL Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 SPARQL Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Reasoning over RDF Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 The ρdfsubset of RDFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.2 Beyond RDFS Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4 Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Linked Data Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Publishing Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Consuming Linked Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 State of the Art 32
3.1 Access Control Models and Standards . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Access Control Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 Relevant Standardisation Efforts . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Policy Languages and Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.1 Ontology Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Rule Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Combined Ontology and Rule Based Approaches . . . . . . . . . . . . . . 47

3.3 Access Control for RDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 Specification of Access Control for RDF . . . . . . . . . . . . . . . . . . . 49
3.3.2 Reasoning over RDF Access Control Policies . . . . . . . . . . . . . . . . 51
3.3.3 Partial Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Access Control Requirements for Linked Data . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



3.4.3 Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Using Annotated RDFS for Access Control over Integrated RDF Data 71
4.1 aRDFS Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 The aRDFS Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.2 Inference Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.3 AnQL: Annotated Query Language . . . . . . . . . . . . . . . . . . . . . . 73
4.1.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Access Control Annotation Domain . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.1 Entities and Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.3 Prolog Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Representing Traditional Access Control Models . . . . . . . . . . . . . . . . . . 80
4.3.1 Access Control Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.3.2 Traditional Access Control Models . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Support for Existing Access Control Models . . . . . . . . . . . . . . . . . 82
4.3.4 Simplifying Administration using Rules . . . . . . . . . . . . . . . . . . . 82

4.4 Framework, Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . 85
4.4.1 Access Control Enforcement Framework . . . . . . . . . . . . . . . . . . . 86
4.4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6 Summary and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Applying Discretionary Access Control to Distributed RDF Data 93
5.1 DAC Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.1 Applying DAC to the Relational Model . . . . . . . . . . . . . . . . . . . 94
5.1.2 Applying DAC to the Tree Model . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Applying DAC to the RDF Model . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2.1 Graph and Schema Based Authorisations . . . . . . . . . . . . . . . . . . 96
5.2.2 Derivation of Authorisations . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.3 Delegation of Access Rights . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2.4 Conflict Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 From a Hierarchical to a Graph Data System . . . . . . . . . . . . . . . . . . . . 102
5.3.1 H-FAF Data System and Authorisation Architecture . . . . . . . . . . . . 102
5.3.2 Individual Data System Components . . . . . . . . . . . . . . . . . . . . . 103
5.3.3 Extending the Original Data System Definition . . . . . . . . . . . . . . . 104

5.4 G-FAF Authorisation Enforcement and Administration . . . . . . . . . . . . . . . 104
5.4.1 Specifying Authorisations using Quad Patterns . . . . . . . . . . . . . . . 105
5.4.2 Propagation Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.3 Conflict Resolution Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.4.4 Integrity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Application and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.5.1 Applying the G-FAF Framework to Linked Data . . . . . . . . . . . . . . 108
5.5.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ix



5.7 Summary and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Enforcing Access Control via Query Rewriting 115
6.1 Access Control Correctness Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.1.1 Correctness Criteria for Relational Databases . . . . . . . . . . . . . . . . 116
6.1.2 Correctness Criteria for the SPARQL Query Language . . . . . . . . . . . 117
6.1.3 Correctness Criteria for the SPARQL Update Language . . . . . . . . . . 118

6.2 Access Control for SPARQL 1.1 Queries . . . . . . . . . . . . . . . . . . . . . . . 120
6.2.1 SPARQL 1.1 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2.2 Query Rewriting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Access Control for SPARQL 1.1 Updates . . . . . . . . . . . . . . . . . . . . . . . 126
6.3.1 SPARQL 1.1 Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.3.2 Update Query Rewriting Algorithm . . . . . . . . . . . . . . . . . . . . . 134

6.4 Evaluation of the Proposed Query Rewriting Strategies . . . . . . . . . . . . . . 136
6.4.1 Evaluation Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.2 Verification of SPARQL 1.1 Queries . . . . . . . . . . . . . . . . . . . . . 137
6.4.3 Verification of SPARQL 1.1 Updates . . . . . . . . . . . . . . . . . . . . . 137
6.4.4 Comparison of Query Rewriting and Filtering . . . . . . . . . . . . . . . . 139

6.5 Access Control for the LDW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5.1 Securely Publishing Linked Data . . . . . . . . . . . . . . . . . . . . . . . 142
6.5.2 Securely Consuming Linked Data . . . . . . . . . . . . . . . . . . . . . . . 142
6.5.3 The Linked Data Authorisation Architecture . . . . . . . . . . . . . . . . 143

6.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7 Summary and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Conclusions 148
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Critical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3.1 High Level Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3.2 Detailed Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Bibliography 166

List of Definitions 178

List of Examples 180

List of Figures 181

List of Queries 182

List of Rules 183

List of Tables 184

Acronyms 186

x



Chapter 1

Introduction

Data on the web and within the Enterprise is continuously increasing and despite advances in
Information Technology, it is still difficult for individuals and organisations to find relevant in-
formation in a timely manner. This problem is further magnified when related information is
segregated in different information systems. Integrating the information contained in such sys-
tems is necessary to support day-to-day analytics. For instance, the integration of both internal
and external data pertaining to customers and competitors could give a company market advan-
tage. Likewise, external information about the individual compounds used in a candidate drug
may allow pharmaceutical companies to identify potential issues early in the drug development
process. Although, it is possible to develop point-to-point integration solutions between informa-
tion systems, such an approach is neither flexible nor scalable. An alternative solution is to use a
graph model, such as the Resource Description Framework (RDF), which underpins the Linked
Data Web (LDW), to represent and link information, in a manner which can be interrupted by
both humans and machines.
The fundamental building block of the RDF data model is an RDF triple, which is used

to represent a statement in the form of a subject-predicate-object expression, describing the
relationship between two pieces of information. For example, the following triple is used to state
that there is an entity who’s name is Joe Bloggs:
<http :// example .org/JBloggs > <http :// xmlns .com/foaf /0.1/ name > "Joe Bloggs "

The Internationalised Resource Identifier (IRI) http://example.org/JBloggs is used to uniquely
identify Joe Bloggs. The predicate http://xmlns.com/foaf/0.1/name, which is defined in the
Friend of a Friend (FOAF) vocabulary, is used to state that the entity identified by the IRI
http://example.org/JBloggs has a name Joe Bloggs. In addition to the name predicate, the
FOAF vocabulary contains a range of predicates that can be used to describe people and their
relationships with other people. FOAF is just one of a range of vocabularies, formally know as
an ontologies, that can be used to describe information in a machine readable manner. Together
RDF, IRIs and ontologies are used to represent information in a manner which can easily be
integrated and extended.
Using RDF to represent information it is possible for an enterprise to perform large scale

integration, search and analysis of both enterprise data and publicly accessible data. At the
same time, using the existing LDW infrastructure it is possible for an enterprise to share data
represented as RDF externally.

1



1.1. BACKGROUND AND PROBLEM STATEMENT

1.1 Background and Problem Statement
Although the technology underpinning the LDW has been in existence for a number of years, up
until now data publishers have primarily focused on exposing and linking public data. With the
advent of RDF update languages, such as SPARQL 1.1, the LDW has the potential to evolve
from a medium for publishing and linking public data, to a dynamic read/write distributed data
source. Such an infrastructure will be capable of supporting not only data integration of public
and private data, but also the next generation of electronic business applications. However, in
order to make the move from simply linking public data to using the Linked Data infrastructure as
a global dataspace, we must first provide solutions for data security and integrity. The Semantic
Web layer cake is a diagram which is used to depict the relationship between the technologies
that are needed to realise the vision of the LDW. Trust an important component at the top
of the Semantic Web layer cake. Here trust is an all encompassing term used also to relate to
security and privacy policy enforcement.
In this thesis, we focus specifically on access control for the LDW. When it comes to ac-

cess control, initially Semantic Web researchers focused on access control policy specification
and enforcement using Semantic Technology. The term policy in this context, is used to refer
to the access control model (which is the blueprint for restricting access to resources) and the
policy language (which defines both the syntax and the semantics of the authorisations). Well
known policy languages such as KAoS (Bradshaw et al., 1997), Rei (Kagal and Finin, 2003) and
PROTUNE (Bonatti and Olmedilla, 2007) demonstrate how ontologies can be used to specify
access control policies and how the corresponding enforcement frameworks can be used to re-
strict access to information systems, based on the defined policies. Several researchers focus
on the specification and enforcement of access control policies over RDF data. Qin and Atluri
(2003), Javanmardi et al. (2006b), Ryutov et al. (2009), and Amini and Jalili (2010) propose
access control models for RDF graphs, that allow for policy propagation and inference based
on semantic relations. Other researchers propose strategies for querying data residing in RDF
stores securely (Abel et al., 2007; Chen and Stuckenschmidt, 2010; Flouris et al., 2010; Gabillon
and Letouzey, 2010).
More recently the focus shifted to the specification and enforcement of access control over

Linked Data. With, both Costabello et al. (2012a) and Sacco et al. (2011) proposing access
control ontologies and enforcement frameworks that can be used to enforce access control over
Linked Data. Although any of the solutions presented above could potentially be used to enforce
access control over the Linked Data, to date no formal recommendation exists for access control
for the LDW. As such, there is a need for (i) an investigation into the suitability of existing
access control mechanisms to grant/deny access to RDF data; and (ii) an access control model
and framework, which can be used to represent, enforce and administer, traditional and emerging
access control models over distributed RDF data published as Linked Data.

1.2 Hypothesis
Interest in the LDW is growing, thanks to both the increased supply of machine readable infor-
mation by data publishers and the demand for this information by data consumers. According
to Heath and Bizer (2011), the LDW consists of information from a number of diverse domains
(media, government, libraries, education, life sciences, retail and social), along with a number of

2



1.2. HYPOTHESIS

cross domain datasets (for example, DBpedia1, Freebase2 and OpenCyc3). Like the early days of
the web of documents, to date much of the focus has been on publishing and consuming public
data, where access control is not a consideration. However, in order to support data analytics
over public and private data and also to support the next generation of ebusiness applications,
suitable forms of access control need to be put in place. With a view to determining the high
level requirements for access control for the LDW, we examine how data is currently published
(from the bottom up) and also how data is consumed (from the top down).

From a bottom up perspective, RDF data is primarily: (i) embedded in HTML pages or rep-
resented in static documents, that are served by regular web servers; (ii) persisted in RDF
stores and exposed via web interfaces; or (iii) automatically generated from information, which
is persisted in existing information systems.

RDF Documents. RDF data can be represented in RDF documents, using standard RDF syn-
tax. Once the web server is configured to serve the relevant document type (for example,
.rdf, .n3 and .ttl), uploading an RDF document and serving it from a web server is
relatively straightforward. Alternatively, RDF can be embedded in HTML documents.
Using this approach it is not necessary to maintain two separate documents. However,
for complex web documents care needs to be taken that the RDFa markup produces the
desired output. Tools such as distillers and parsers can be used to parse HTML files and
extract the RDF data.

Although it would be possible to use existing access control mechanisms that grant access
to web documents or sets of documents, such an approach may result in an undesirable
amount of duplication. An alternative would be to exploit existing RDF classification
schemes, in order to cater for access control at multiple levels of granularity.

RDB2RDF. The relational data model, which came into being in 1970 (Codd, 1970), is still the
predominant data storage mechanism for information systems almost half a century later.
It is not surprising that considerable research has been conducted into the exposure of
relational data as RDF, using Relational Database to RDF (RDB2RDF) mappings and a
number of standards, that have been developed to provide guidance to developers (Arenas
et al., 2012; Das et al., 2012).

When RDF data is published via RDB2RDF interfaces, it may also be necessary to extract
the access rights, that were placed on the original relational data. One suggestion would be
to use/extend the RDB2RDF technology, so that the permissions/prohibitions that were
originally placed on the relational data, can be lifted and enforced over the corresponding
RDF data.

SPARQL Endpoints. SPARQL is a query language for RDF, which is recommended by the
World Wide Web Consortium (W3C). SPARQL 1.1 can be used to both query (Gearon
et al., 2013) and update (Harris and Seaborne, 2013) RDF data. Although, to date, much
of the focus has been on querying RDF data. The SPARQL protocol for RDF is a related
W3C recommendation, which provides guidelines for the interaction between SPARQL
query clients and engines, via existing web infrastructure.

Given that SPARQL can be used, not only as a means to query RDF data, but also as a
means to maintain RDF datasets, it should be possible to enforce access control over the
different SPARQL query and update operations.

1DBpedia,http://dbpedia.org/About
2Freebase, https://www.freebase.com/
3OpenCyc, http://www.cyc.com/platform/opencyc

3



1.2. HYPOTHESIS

From a top down perspective: (i) Linked Data can be explored using Linked Data browsers
or queried using Linked Data search engines; and (ii) increasingly organisations are developing
domain specific applications on top of Linked Data. A list of current Linked Data browsers and
search engines, as well as several domain specific applications can be found on the linkeddata.org4

website.

Browsers & Search Engines. Using Linked Data browsers, such as Tabular5, Marbles6 and
Sig.ma7, it is possible to explore the LDW as a whole and to navigate between differ-
ent datasets, using IRI references. Like the web of documents, search engines, such as
Sindice8, Swoogle9, Watson10, enable users to execute queries over Linked Data. In addi-
tion SPARQL 1.1 supports federated search over multiple SPARQL endpoints.

Irrespective of whether the consumer is browsing or querying the LDW, they should only
be able to access data which is either publicly accessible or data they have been authorised
to access.

Domain Specific Applications. In recent years, numerous domain specific applications have
been developed on top of Linked Data. Well known examples include the Talis Aspire
university reading list application11, the British Broadcasting Corporation (BBC) pro-
grammes website12 and the Seevl music recommendation service13.

Given the potential diversity of these domain specific applications, it is necessary to exam-
ine both traditional and emerging access control models, in order to determine the most
effective means of protecting distributed RDF data.

The main hypothesis of this thesis can be summarised as follows:

Access control for the Linked Data Web can be achieved by (i) a repre-
sentation format which can be used to express access control policies that
are lifted from relational databases or associated directly with RDF data;
(ii) a set of rules that simplify access control specification and mainte-
nance; and (iii) an enforcement strategy which allows for the retrieval of
partial query results.

Starting from the above hypothesis, we devise a number of discrete research questions:

(1) When relational data is exposed as RDF, how can we ensure the original access control
policies are applied to the RDF data?

(2) Beyond triple level access control, what rules are necessary to (a) support existing access
control models and (b) simplify access control specification and maintenance?

(3) What adjustments need to be made to SPARQL queries, to ensure that only authorised data
is returned?

4linkeddata.org, http://linkeddata.org/tools
5Tabular,http://dig.csail.mit.edu/2005/ajar/ajaw/About.html
6Marbles, http://wiki.dbpedia.org/Marbles?v=71e
7Sig.ma,http://blog.sindice.com/2009/07/22/sigma-live-views-on-the-web-of-data/
8Sindice, http://www.sindice.com/
9Swoogle, http://swoogle.umbc.edu/

10Watson,http://watson.kmi.open.ac.uk/WatsonWUI/
11Talis Aspire, http://campus.talisaspire.com/
12BBC Programmes, http://www.bbc.co.uk/programmes
13Seevl, https://developer.seevl.fm/
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(4) What components are required to support the specification, enforcement and administration
of access control for the LDW?

1.3 Contributions
The work presented in this thesis have been published in a number of international conferences.
The initial research proposal, DC Proposal: Knowledge Based Access Control Policy Spec-

ification and Enforcement (Kirrane, 2011), was presented at the International Semantic Web
Conference (ISWC 2011) Doctoral Consortium. The proposal identified the need for: a repre-
sentation format capable of supporting one or more access control models; a policy language with
underlying formal semantics capable of handling reasoning over access control policies; and an
enforcement framework that can be used to administer and enforce both access control policies
and inference rules.
Guided by the requirements identified in the research proposal, our early work focused on

lifting both data and access control policies from existing systems. The inaugural paper A Logic
Programming approach for Access Control over RDF (Lopes et al., 2012), which was presented
at the 28th International Conference on Logic Programming (ICLP 2012), focuses specifically on
an enterprise data integration use case and presents a formal access control model with built-in
support for RDFS reasoning. The work relies on an extension of RDF, known as Annotated
RDF, that allows domain specific meta-information (access rights in our case) to be attached
to RDF triples. Domain operations are used to infer new annotations for triples derived using
RDFS inference rules. Although such an approach works well when both the data and the
access control policies are lifted from existing data sources, over large datasets it would not be
feasible to manage permissions at a triple level. To tackle this issue, additional propagation rules
are needed in order to simplify both the specification of new policies and the administration of
existing policies. A follow up paper Protect Your RDF Data (Kirrane et al., 2013b), which
was presented at the 2nd Joint International Semantic Technology Conference (JIST 2012),
demonstrates how together annotations and rules can be used to represent a number of existing
access control models. The paper builds on previous work by proposing a set of custom inference
rules that can be used to reason over hierarchies of access control subjects, resources and access
rights and by providing a high level overview of the components necessary for data integration
and access control enforcement.
Having demonstrated how existing access control models can be represented and enforced, our

focus turned to investigating the access control challenges encountered when data is represented
as a graph. Applying DAC principles to the RDF graph data model (Kirrane et al., 2013c),
which was presented at the 28th IFIP TC-11 International Information Security and Privacy
Conference (SEC 2013), examines how Discretionary Access Control (DAC) principles, that have
been successfully applied to the relational and the XML data models, can be applied to the RDF
data model. A summary of access control requirements for graph data structures is provided;
a list of access rights based on SPARQL query operations is proposed; a layered approach to
authorisation derivation based on the graph structure and RDFSchema is recommended; and a
number of rules that cater for the derivation of access rights based on class, property and instance
relations are identified. A follow up paper, Secure Manipulation of Linked Data (Kirrane et al.,
2013a), which was presented at the 12th International Semantic Web Conference (ISWC 2013),
enhances the original triple level access control, by proposing a policy layer on top of the RDF
query layer. The paper extends the original formalism to cater for authorisations based on quad
patterns (where the fourth element is used to match the named graph); access rights based on
SPARQL query operations; and demonstrates how generic propagation rules, conflict resolution
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policies and integrity constraints can together be used to ease maintenance and ensure data
integrity.
We are currently working on a paper entitled On the Correctness Criteria for Query Based

Access Control over RDF. This final paper proposes a query rewriting strategy, for complex
SPARQL queries (graph patterns, filters, aggregates and subqueries), which ensures that in light
of a given access control policy, as much data as possible is returned, without changing the
semantics of the query. We adapt a set of correctness criteria, from relational databases, to
allow for a comparison between our query rewriting strategy and an alternative data filtering
approach. We demonstrate how a form of model checking (albeit not in the traditional sense)
can be used to verify the correctness of the proposed query rewriting strategy. Finally we present
an access control architecture for Linked Data, which we call LinDAA.

1.4 Research Impact
The access control framework and the query rewriting strategy can be used to securely integrate
public and private data, using existing web infrastructure. Additionally, using the proposed
access control strategy, it will be possible to use SPARQL 1.1 not only to query, but also to
securely maintain Linked Data. The authorisation format and various inference rules, presented
in this thesis, can be used to simplify access control specification and maintenance.
On a broader scale, the access control requirements we identify, correlate and categorise in the

state of the art, serve not only as a means to compare existing access control strategies for RDF,
but also as a roadmap for future research on access control for the LDW. Our analysis of the
Discretionary Access Control (DAC) model and the corresponding proposal for applying DAC
to distributed graph data, will provide a baseline for additional research into DAC over Linked
Data. The proposed correctness criteria and model checking evaluation strategy can be used by
other researchers to evaluate their access control strategies. Finally, over evaluation using the
Berlin SPARQL Benchmark (BSBM) datasets can be used by others to benchmark their access
control proposals.

1.5 Thesis Outline
Chapter 2 (Background) describes the necessary background information with respect to the

syntax and the semantics of the RDF. We present an overview of SPARQL 1.1 and demon-
strate how it can be used to both query and maintain RDF data. We introduce a fragment
of RDFS, known as ρdf, which can be used to reason over RDF data. ρdf covers the essen-
tial features of RDFS and avoids vocabularies and axiomatic information, that only serve
to reason about the structure of the language itself and not the data it describes. Following
on from this, we highlight some of the limitations of RDFS and briefly discuss the Web
Ontology Language (OWL). Finally we introduce the LDW and discuss how existing web
technologies can be used to publish and consume Linked Data.

Chapter 3 (State of the Art) presents relevant access control models, standards and policy lan-
guages, and examines the different strategies for access control over RDF data that have
been proposed to date. We provide a description of a number of access control models/stan-
dards and discuss how they have been applied to, or enhanced using, semantic technologies.
Given that reasoning simplifies access control policy specification and maintenance, a logic
based underlying formalisation is crucial for automated reasoning over access control poli-
cies. In the state of the art, we focus specifically on policy languages that use ontologies,
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rules or a combination of both to represent policies. In order to demonstrate the potential
of the different approaches we provide a detailed description of several well known policy
languages and frameworks. Following on from this, we examine the different access control
strategies that have been proposed for RDF data, paying particular attention to the var-
ious reasoning and query rewriting proposals. Finally, we present a set of access control
requirements for the LDW and categorise the various access control strategies accordingly.

Chapter 4 (Using Annotated RDFS for Access Control over Integrated RDF Data)
investigates if triple based access control can be used to represent existing access
control policies that are lifted from relational databases (Research Question 1 ). We
demonstrate how XSPARQL, a transformation and query language for XML, RDB and
RDF, can be used to extract both data and permissions from existing relational databases.
We discuss how an extension of the RDF data model that associates contextual data
with each triple, known formally as Annotated RDF, can be used to represent access
control policies at a triple level, and to infer new policies for triples deduced using RDFS
inference rules. In this chapter, we also investigate what rules are necessary to support a
number of well known access control models, namely Role Based Access Control (RBAC),
View-based Access Control (VBAC) and Attribute Based Access Control (ABAC)
(Research Question 2a). A set of rules that allow for the propagation of permissions,
based on the RDF data model and the subject, access right and resource hierarchies, are
presented. In addition, a general RDF data integration and access control enforcement
framework is proposed.

Chapter 5 (Applying Discretionary Access Control to Distributed RDF Data) builds on the
previous chapter, by examining what rules are necessary to provide support for Discre-
tionary Access Control (DAC) over RDF graph data (Research Question 2a). We
examine how the graph data model differs from the relational and the tree data models,
discuss how DAC can be applied to graph-based data and describe the implication such
structural differences have on access control in general. A set of rules that cater for the
derivation of access rights based on schema based relations (class, property and instance)
are presented and a conflict resolution strategy is proposed. In this chapter, we also in-
vestigate what rules are necessary to simplify access control specification and maintenance
(Research Question 2b). We demonstrate how the hierarchical Flexible Authorisation
Framework, proposed by Jajodia et al. (2001), can be extended to provide DAC over graph
data. We provide a formal definition for authorisations, propagation rules, conflict resolu-
tion policies and integrity constraints, within the context of RDF. In addition, we describe
how together these components can simultaneously provide access control over interlinked
RDF graphs. Finally we discuss how the extended framework can be used to enforce access
control over SPARQL endpoints and detail the results of our performance evaluation.

Chapter 6 (Enforcing Access Control via Query Rewriting) investigates the security implica-
tions associated with granting partial access to RDF data, via SPARQL query rewriting
(Research Question 3 ). In particular, we focus on complex SPARQL queries that in-
clude graph patterns, aggregates, subqueries, property paths and filters. We extend the
enforcement algorithm presented in the previous chapter, to allow for partial results via
query rewriting. We demonstrate how a set of correctness criteria, which was originally
used by Wang et al. (2007), to verify relational access control policies, can be adapted to
ensure the correctness of access control over RDF. We subsequently use the adapted crite-
ria to compare our query rewriting approach against a filtering approach. In addition, we
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propose a benchmark, based on the BSBM dataset, that can be used to compare different
strategies for access control for Linked Data. Finally, we investigate how the proposed ac-
cess control mechanisms can be used to enforce access control over Linked Data (Research
Question 4 ). We introduce our Linked Data Authorisation Architecture, which we call
LinDAA, and discuss how it can be used to enforce access control over SPARQL endpoints,
RDF documents, RDFa and RDB2RDF interfaces.

Chapter 7 (Conclusions) provides a critical assessment of the work presented in this thesis and
proposes a number of directions for future work.
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Chapter 2

Background

This chapter provides the background information on RDF, SPARQL, RDFS and Linked Data.
We start by describing the RDF data model concepts, syntax and semantics. We demonstrate
how SPARQL, the W3C recommended query language for RDF data, can be used to both query
and update RDF data. We subsequently discuss the role played by RDF Schema when it comes
to data modelling and reasoning. In addition, we highlight some of the limitation of RDFS and
briefly introduce OWL. Finally, we discuss how these technologies, and others, can be used to
realise the vision of a Linked Data Web.

2.1 The RDF Data Model
A data model is an abstraction used to represent real world entities, the relationship between
these entities and the operations that can be performed on the data (Ullman, 1988). Data models
can broadly be categorised as relational, tree and graph based. RDF, which is classified as a
graph data model, is designed to capture data semantics and to present distributed data in a
machine readable format.

2.1.1 Concepts and Syntax
Before introducing the core concepts of the RDF data model, it is first necessary to distinguish
between Uniform Resource Locators (URLs), Uniform Resource Identifiers (URIs) and Interna-
tionalised Resource Identifiers (IRIs). As depicted in Figure 2.1, URLs are used to to identify
web resources, URIs are used to give a unique web identifier to something that exists, and IRIs
extend URIs by allowing for such web identifiers to be composed of Unicode characters.
The RDF 1.1 specification, which defines the core RDF concepts, is part of a suite of documents

published as recommendations by the W3C (Cyganiak et al., 2014). IRIs and literals are used
to represent information, which can be either physical or abstract in nature.

• IRIs are used to uniquely identify web resources. The RDF 1.0 specification (Klyne et al.,
2004), which pre-dates the release of the IRI protocol, uses RDF URIs as opposed to IRIs.
However unlike normal URIs, RDF URIs support Unicode characters.

• Literals are used to represent value data types, such as numbers, booleans and strings.
Literals are composed of either two or three elements. A lexical form, a datatype IRI and
in the case of a languageString datatype an optional language tag. A simple literal is
a literal with neither a language tag nor a datatype IRI. By default simple literals are
mapped to the ’http://www.w3.org/2001/XMLSchema#string’ datatype.
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Figure 2.1: Distinction between URLs, URIs and IRIs (Gandon, 2014)

RDF statements, formally known as RDF triples, are composed of subject-predicate-object ex-
pressions. Each triple asserts a binary relationship between two pieces of information. Whereas,
blank nodes are used to make statements about unknown resources. Blank nodes are essen-
tially existentially qualified variables, that are used to indicate that a resource exists, without
providing explicit details about the resource.
The RDF data model was designed to facilitate data sharing and reuse. RDF vocabularies

(otherwise known as ontologies) are collections of RDF triples that can be used to describe both
schema and instance data. The RDF vocabulary is used to encode basic information pertaining
to RDF, such as RDF type. Whereas, FOAF1 is a well known vocabulary that is used to de-
scribe people and social relationship on the Web. Vocabularies are often placed in a common
namespaces. For convenience prefixes are used as a shorthand notation for namespaces. In the
examples presented in this thesis, we use the standard rdf and foaf prefixes:
rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
foaf: <http :// xmlns.com/foaf /0.1/ >.

In addition we refer to a sample enterprise vocabulary, which is assigned the following prefix:
entx: <http :// urq.deri.org/ enterprisex />.

Although RDF data can be encoded using a number of distinct representation formats (for
example Notation3 (N3)2, RDF/XML3 or JSON-LD4) in this thesis we use N3 to represent
triples and TriG5, an extension of N3, which uses curly brackets to group triples into graphs
identifiable by IRIs, to represent named graphs. In practice the triple and the named graph are
stored as quads.

An RDF triple is formally defined as follows:

Definition 2.1 (RDF triple)
An RDF triple is represented as a tuple 〈S, P,O〉 ∈ (I ∪B ∪ L)×I× (I ∪B ∪ L), where S is
called the subject, P the predicate, and O the object and I, B and L, are used to represent
IRIs, blank nodes and literals respectively.

1FOAF Vocabulary Specification, http://xmlns.com/foaf/spec/.
2Notation3, http://www.w3.org/TeamSubmission/n3/
3RDF/XML, http://www.w3.org/TR/rdf-syntax-grammar/
4JSON-LD, http://www.w3.org/TR/json-ld/
5http://www.w3.org/2010/01/Turtle/Trig/
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entx:JBloggs

foaf:Person

rdf:type

foaf:lastName

foaf:givenName

“Bloggs”

“Joe”

Figure 2.2: Triples represented as an RDF graph

Example 2.1 demonstrates how the rdf and foaf vocabularies can be used to indicate that Joe
Bloggs is a person. Most RDF tools allow rdf:type and a to be used interchangeably.

Example 2.1 (RDF triple)
The following triple states that the JoeBloggs is a person:
entx: JoeBloggs rdf:type foaf: Person .

An RDF graph is a finite set of RDF triples, with subjects and objects represented as nodes and
predicates represented as edges. A ground graph is a graph which does not contain blank nodes.
An RDF graph is defined as follows:

Definition 2.2 (RDF graph)
Following the definition of an RDF triple, an RDF graph G consists of a set of triples. The
universe of G, universe(G), is the set of elements in (I ∪B ∪ L) that occur in the triples
of G and the vocabulary of G, voc(G), is universe(G) ∩ (I ∪ L). We say that G is ground
if and only if the universe(G) = voc(G), i.e. G does not contain blank nodes.

Example 2.2 demonstrates how RDF can be used to represent additional information pertaining
to Joe Bloggs. Whereas, Figure 2.2 demonstrates how these triples converge to form a graph,
with IRIs represented as ovals and literals represented as rectangles.

Example 2.2 (RDF graph)
The following triples state that the JoeBloggs is a person whose first name is Joe and
lastname is Bloggs:
entx: JBloggs rdf:type foaf: Person .
entx: JBloggs foaf: givenName "Joe ".
entx: JBloggs foaf: lastName " Bloggs ".

Example 2.3 demonstrates how data pertaining to multiple employees can be stored in a single
named graph. While, Example 2.4 demonstrates how the same information can be stored in two
separate graphs. In Figure 2.3 we see that regardless of how the data is physically represented,
RDF can logically be represented as a single graph.
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entx:JBloggs

foaf:Person

rdf:type

foaf:lastName

foaf:givenName

entx:MRyan
foaf:lastName

foaf:givenName

rdf:type

“Bloggs”

“Joe”

“Ryan”

“May”

Figure 2.3: Named graph(s) represented as an RDF graph

Example 2.3 (Single named graph)
The following named graph is used to represent personal information pertaining to both
JoeBloggs and MayRyan in a single named graph.
entx: EmployeeDetails {
entx: JBloggs rdf:type foaf: Person .
entx: JBloggs foaf: givenName "Joe ".
entx: JBloggs foaf: lastName " Bloggs ".
entx:MRyan rdf:type foaf: Person .
entx:MRyan foaf: givenName "May ".
entx:MRyan foaf: lastName "Ryan ".
}

Example 2.4 (Multiple named graphs)
The following named graphs are used to represent personal information pertaining to Joe
Bloggs and May Ryan in two separate named graphs.
entx: EmployeeJBloggs {
entx: JBloggs rdf:type foaf: Person .
entx: JBloggs foaf: givenName "Joe ".
entx: JBloggs foaf: lastName " Bloggs ".
}
entx: EmployeeMRyan {
entx:MRyan rdf:type foaf: Person .
entx:MRyan foaf: givenName "May ".
entx:MRyan foaf: lastName "Ryan ".
}

A collection of RDF graphs, which can include a default graph and one or more named graphs
is known as an RDF dataset, formally defined as follows:

Definition 2.3 (RDF dataset)
Given an RDF graph, an RDF dataset DS consists of a set of graphs, with exactly one de-
fault graph possibly empty; and one or more named graphs, consisting of a pair <name,
RDF Graph>, where name ∈ (I ∪B).

12



2.1. THE RDF DATA MODEL

2.1.2 Semantics
A model-theoretic semantics for RDF forms part of a separate document entitled RDF 1.1
Semantics (Hayes and Patel-Schneider, 2014). Model theory refers to a world and the conditions
a world must satisfy in order to assign appropriate meaning for all expressions in a language. A
particular world is called an interpretation. In the case of RDF an interpretation is a mapping
from IRIs and literals into sets, and the specification of constraints with respect to both the sets
and the mapping. A simple interpretation does not distinguish between different types of IRIs.
A simple interpretation and truth for RDF graphs is defined as follows:

Definition 2.4 (Simple interpretation)
A simple interpretation I over a vocabulary V is a tuple I = 〈IRes, IProp, IExt, IType, ILit〉,
where I and L are used to represent IRIs and literals respectively, can be represented as fol-
lows:

1. IRes is a non empty set of resources (called the domain or universe of I).

2. IProp is a set of properties (not necessarily disjoint from IRes).

3. IExt : IProp→ 2<IRes,IRes>, a mapping that assigns IRes pairs to each IProp.

4. IType : (I ∪ L) ∩ V → IRes ∪ IProp, a mapping that maps IRIs and literals to
elements in IRes or IProp.

5. ILit ⊆ IRes the set of all literal values.

A simple interpretation of a ground RDF graph, called a simple model, is treated as a function
from expressions (literals, IRIs, triples and graphs) to elements of the universe and truth values.
If each expression evaluates to true then the interpretation of the graph evaluates to true. A
simple model is defined as follows:

Definition 2.5 (Simple model)
An interpretation I is a model of a ground graph G, denoted I a model of G, if for all
elements E in G:

1. If E is a literal then I(E) = ILit(E).

2. If E is a IRI then I(E) = IType(E).

3. If E is a triple (s,p,o), if I(p) ∈ IProp and <I(s),I(o)> ∈ IExt(I(p)) then I(E) =
true, otherwise I(E) = false.

4. If E is an RDF graph, if I(E’) = false for some triple E’ in E then I(E) = false,
otherwise I(E) = true.
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A simple model of the graph represented in Figure 2.2 is presented in Example 2.5.

Example 2.5 (Simple model)
Considering the graph from Figure 2.2, the corresponding vocabulary V consists of all of
the nodes and edges of the graph. A simple interpretation I for this vocabulary would be as
follows:

IRes = {α, β, "Joe", "Bloggs", x, y, z}

IProp = {x, y, z}

IExt = {x 〈α, β〉, y 〈α, "Joe"〉, z 〈α, "Bloggs"〉}

IType = { entx:JoeBloggs → α,
foaf:Person → β ,
rdf:type → x,
foaf:givenName → y,
foaf:lastName → z }

ILit = { "Joe", "Bloggs" }

As interpretation I verifies that all three triples of the graph are true, the graph as a whole
is true.

〈entx:JoeBloggs, foaf:Person〉 = 〈α, β〉 ∈ IExt(x) = IExt(rdf:type)

〈entx:JoeBloggs, "Joe"〉 = 〈α, "Joe"〉 ∈ IExt(y) = IExt(foaf:givenName)

〈entx:JoeBloggs, "Bloggs"〉 = 〈α, "Bloggs"〉 ∈ IExt(z) = IExt(foaf:lastName)

A semantic extension of a simple interpretation may extend these minimal truth conditions.
However, it cannot modify or negate them. The RDF 1.1 Semantics Specification (Hayes and
Patel-Schneider, 2014) provides a number of additional semantic conditions to cater for blank
nodes and datatype literals. However, as the work presented in this thesis does not deal specif-
ically with blank nodes or datatype literals these extensions are not presented. For additional
details the reader is referred to the RDF 1.1. Semantics Specification (Hayes and Patel-Schneider,
2014).

2.2 Querying and Updating RDF Data using SPARQL
SPARQL, which has been standardised by the W3C, can be used to both query and update
RDF data. SPARQL 1.0 (Seaborne and Prud’hommeaux, 2008) was released as an official W3C
Recommendation in 2008. Its successor SPARQL 1.1 (W3C SPARQL Working Group, 2013),
which extends the original query language, became an official W3C Recommendation in 2013.
SPARQL 1.1 provides support for complex query operations (Gearon et al., 2013) and introduces
the SPARQL update language (Harris and Seaborne, 2013). Although SPARQL 1.1 also includes
enhancements to support service descriptions, federated queries, entailment reasoning and several
results format, in this thesis we focus specifically on the query and update functionality. For
details of these features the reader is referred to the SPARQL 1.1 overview document (W3C
SPARQL Working Group, 2013).
SPARQL queries return solutions based on graph pattern matching. Triple patterns are triples

that can potentially contain variables in the subject, predicate and object positions. Multiple
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1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 entx:MRyan rdf:type foaf: Person .
7 entx:MRyan foaf:name "May Ryan" .
8 entx:MRyan entx: salary 33000 .
9 entx:MRyan foaf:phone "222 -2222" .

10 entx: JSmyth rdf:type foaf: Person .
11 entx: JSmyth foaf:name "John Smyth" .
12 entx: JSmyth entx: salary 33000 .
13 entx: JSmyth foaf:phone "333 -3333" .
14 }

Figure 2.4: Employee named graph

1 entx: OrgStructure {
2 entx:MRyan entx: worksFor entx: JBloggs .
3 entx: JSmyth entx: worksFor entx:MRyan .
4 }

Figure 2.5: Organisation structure named graph

triple patterns, collectively know as a graph pattern, are used to match an RDF subgraph. The
query results presented in this section are based on the data depicted in Figure 2.4 and Figure
2.5. Formally a triple pattern and a graph pattern are defined as follows:

Definition 2.6 (Triple pattern, graph pattern)
An RDF triple pattern is represented as a tuple 〈S, P,O〉 ∈ (I ∪B ∪ L ∪V) × (I ∪V) ×
(I ∪B ∪ L ∪V), where I, B and L, are used to represent IRIs, blank nodes and literals
respectively and V represents a set of variables disjoint from (I ∪B ∪ L).
A graph pattern is a set of triple patterns.

Example 2.6 demonstrates how a triple pattern can be used to match an RDF subgraph.

Example 2.6 (Triple pattern)
A triple pattern containing a variable ?s in the subject position is used to match all triples
of type FOAF Person.
?s rdf:type foaf: Person .

Considering the data presented in Figure 2.4, the bindings for variable ?s are as follows:
?s

entx:MRyan
entx:JSmyth
entx:JBloggs
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Whereas, Example 2.7 demonstrates how a basic graph pattern can be used to match a subgraph.

Example 2.7 (Basic Graph pattern)
A basic graph pattern, containing two triple patterns, is used to return the id, name and
salary of all FOAF Persons.
?id foaf:name ?name.
?id foaf: salary ? salary .

Considering the data presented in Figure 2.4, the bindings for the variables ?id ?name and
?salary, are as follows:
?id ?name ?salary

entx:JSmyth "John Smyth" 33000
entx:MRyan "May Ryan" 33000
entx:JBloggs "Joe Bloggs" 60000

A SPARQL graph pattern is an extension of the basic graph pattern, which can be used to
filter query results, return bindings for partially matched patterns and merge the results of two
different patterns.
A SPARQL graph pattern is composed of:

• Group graph patterns. A set of graph patterns delimited by braces { }.

• ’.’ operators. The dot symbol is used to denote the conjunction of triples in a triple
pattern.

• GRAPH expressions. When a graph keyword precedes a graph pattern the graph pattern
is matched against the specified named graph.

• OPTIONAL patterns. An OPTIONAL keyword allows for partial graph pattern matching. If
a triple pattern is declared OPTIONAL a result set is returned even if some of the variables
are not bound.

• UNION patterns. Several alternative graph patterns can be matched to a single variable
by using the UNION keyword to combine multiple graph patterns.

• FILTER expressions. Filters restrict solutions of a graph pattern according to a given
constraint. FILTERs are composed of constants, elements of (U ∪B ∪ L ∪V) (see Defini-
tion 2.6) comparison operators, logical connectives and built-in functions.

• Subqueries. Nested queries are used to limit the result set based on the results of an
embedded query.

• Property paths. Property paths are used to match paths of arbitrary length between
two graph nodes.
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According to (Pérez et al., 2009) a SPARQL graph pattern is formally defined as follows:

Definition 2.7 (SPARQL graph pattern)
A SPARQL graph pattern is recursively defined

1. a triple pattern is a graph pattern;

2. a graph pattern is a graph pattern;

3. if P and P’ are graph patterns, then (P.P ′), (P OPTIONAL P’) and (P UNION P’) are
graph patterns;

4. if P is a graph pattern and F is a FILTER expression, then (P FILTER F) is a graph
pattern;

5. if P is a graph pattern and G ∈ (U ∪V), then (GRAPH G P) is a graph pattern;

For any pattern P, vars(P) is the set of variables occurring in P.

2.2.1 SPARQL Query Language
Considering the definition of a SPARQL graph pattern, presented in Definition 2.7, we describe
the general syntax of a SPARQL query. Following on from this, we present the different query
types supported by the SPARQL query language. Finally, we examine complex queries such as
subqueries, property paths, negation and aggregates.

2.2.1.1 SPARQL Query Types

The SPARQL 1.1 query language (Gearon et al., 2013) has four distinct query forms (ASK,
SELECT, CONSTRUCT and DESCRIBE). SPARQL graph patterns are used to bind variables to solu-
tions and to generate result sets. In the case of:

• SELECT queries, the variables are projected;

• ASK queries, a boolean indicating if a given graph pattern is matched is returned; and

• CONSTRUCT and DESCRIBE queries, an RDF graph is constructed.

The FROM, FROM NAMED and GRAPH clauses are used to target specific named graphs. However, if
the data resides in the default graph, these clauses may be omitted. The general syntax for the
four distinct SPARQL query forms is defined as follows:

Definition 2.8 (SPARQL query)
Following on from the SPARQL graph pattern definition, a SPARQL query is compose
of a query type (SELECT, ASK, CONSTRUCT and DESCRIBE), a WHERE clause, and optional
FROM/FROM NAMED clauses. In the following query template | is used to represent or and
[ ] are used to represent optional clauses.

SELECT projections | ASK | CONSTRUCT { BasicGraphPattern } | DESCRIBE projections
[ FROM NamedGraphIRI ]
[ FROM NAMED NamedGraphIRI ]
WHERE { GraphPattern }
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SELECT Queries. The SPARQL SELECT query syntax, which is similar to SQL, consists of a
SELECT clause identifying the variables to be bound, a WHERE clause which is used to match a
subgraph and, optional FROM and FROM NAMED clauses that are used to target one or more graphs.
The query presented in Query 2.1 uses a graph pattern with id, name and salary variables, to
project the names and salaries of all FOAF Persons.

Query 2.1 (SELECT)
Given the following query:
SELECT ?id ?name ? salary
WHERE { GRAPH entx: EmployeeDetails {
?id foaf:name ?name. ?id entx: salary ? salary } }

The output is as follows:
?id ?name ?salary

entx:JBloggs "Joe Bloggs" 60000
entx:MRyan "May Ryan" 33000
entx:JSmyth "John Smyth" 33000

ASK Query. Given ASK queries do not provide any variable bindings, the query syntax simply
includes the ASK operator, a WHERE clause, and optional FROM and FROM NAMED clauses. As per
the previous SELECT query, the ASK query presented in Query 2.2, is used to match a subgraph
which contains the names and salaries for all FOAF Persons. If the subgraph is matched the
ASK query returns yes, otherwise it returns no.

Query 2.2 (ASK)
Given the following query:
ASK
WHERE { GRAPH entx: EmployeeDetails {
?id foaf:name ?name. ?id entx: salary ? salary } }

The output is as follows:

yes

CONSTRUCT Queries. The SPARQL CONSTRUCT query syntax consists of a CONSTRUCT clause,
composed of an RDF graph template, optional FROM/FROM NAMED clauses and a WHERE clause. In
Query 2.3 a quad pattern, with a variable ?s in the subject position, is used to match all FOAF
Persons, and to create new triples that assert that these FOAF persons are employees.

Query 2.3 (CONSTRUCT)
Given the following query:
CONSTRUCT { ?s rdf:type entx: Employee }
WHERE { GRAPH entx: Employee { ?s a foaf: Person } }

continued overleaf ->
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The output is as follows:

@prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
@prefix entx: <http :// urq.deri.org/ enterprisex #> .

entx: JSmyth a entx: Employee .
entx: JBloggs a entx: Employee .
entx:MRyan a entx: Employee .

DESCRIBE Queries. The query syntax consists of a DESCRIBE clause, with either a variable
or an IRI, optional FROM/FROM NAMED clauses and a WHERE clause. In Query 2.4 a quad pattern
with a variable ?s in the subject position is used to return all information pertaining to FOAF
persons that work for Joe Bloggs.

Query 2.4 (DESCRIBE)
Given the following query:
DESCRIBE ?s
WHERE { GRAPH entx: OrgStructure { ?s entx: worksFor entx: JBloggs } }

The output is as follows:

@prefix foaf: <http :// xmlns.com/foaf /0.1/ > .
@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
@prefix entx: <http :// urq.deri.org/ enterprise /> .

entx:MRyan a foaf: Person ;
entx: salary 33000 ;
entx: worksFor entx: JBloggs ;
foaf:name "May Ryan" ;
foaf:phone "222 -2222" .

2.2.1.2 Complex Graph Patterns

In the previous section, we presented the different SPARQL query forms. In this section, we
take a closer look at graph pattern matching, with respect to aggregates, subqueries, negation
and property paths.

Aggregates. Aggregates are functions that are applied to groups of solutions, for example
COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT and SAMPLE. The query syntax is similar to a
standard SELECT query however in the case of aggregates the GROUP BY clause may be used
to specify solution groupings. In Query 2.5 COUNT and AVG are used to return the number of
employees and the average salary of these employees, respectively.
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Query 2.5 (Aggregate)
Given the following query:
SELECT ( COUNT (?s) AS ? numEmployees ) ( AVG (? salary ) AS ? avgSalary )
WHERE { GRAPH ?g {
?s rdf:type foaf: Person . ?s entx: salary ? salary } }

The output is as follows:
?numEmployees ?avgSalary

3 42000.0

Subqueries. SPARQL subqueries are used to limit the result set based on the projections of
an embedded query. In Query 2.6, we use an inner SELECT to return the names of all managers
and their employees.

Query 2.6 (Subquery)
Given the following query:
SELECT DISTINCT ? manager ? employee
WHERE { GRAPH ?g {
?x foaf:name ? employee . ?y foaf:name ? manager
{ SELECT ?x ?y WHERE { GRAPH ?g { ?x entx: worksFor ?y } } } } }

The output is as follows:
?manager ?employee

"May Ryan" "John Smyth"
"Joe Bloggs" "May Ryan"

Negation. In SPARQL, solutions can be removed from a result set using FILTER EXISTS,
FILTER NOT EXISTS or MINUS expressions. Although subqueries are not classified under nega-
tion, like FILTER EXISTS operations, subqueries allow data to be filtered from the result set. In
Query 2.7, we demonstrate how the MINUS clause can be used to filter out the names and the
salaries of all FOAF Persons who earn more than 50000.

Query 2.7 (Negation)
Given the following query:
SELECT ? employee ? salary
WHERE { GRAPH ?g { ?x foaf:name ? employee . ?x entx: salary ? salary
MINUS { ?x entx: salary ? salary FILTER ( ? salary > 50000) } } }

The output is as follows:
?employee ?salary

"John Smyth" 33000
"Mary Ryan" 33000

Property Paths. A property path, which is represented using constructs similar to those used
in regular expressions (for example, +, * and ?), is used to match a path of arbitrary length
between two graph nodes. In Query 2.8, we demonstrate how property paths can be used not
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only to return the names of all managers and their employees, but also the employees that
indirectly report to them.

Query 2.8 (Property path)
Given the following query:
SELECT DISTINCT ? manager ? employee
WHERE { GRAPH ?g1 { ?x foaf:name ? employee . ?y foaf:name ? manager
FILTER (?x != ?y)}
GRAPH ?g2 { ?x entx: worksFor * ?y } }

The output is as follows:
?manager ?employee

"May Ryan" "John Smyth"
"Joe Bloggs" "Mary Ryan"
"Joe Bloggs" "John Smyth"

2.2.2 SPARQL Update
SPARQL 1.1 update caters for five update operations (INSERT DATA, DELETE DATA, DELETE/
INSERT, LOAD and CLEAR) and five graph management operations (CREATE, DROP, COPY, MOVE
and ADD). The following examples are grouped according to their abstract syntax. If present the
SILENT keyword is used to suppress any errors that are generated.

INSERT DATA and DELETE DATA The INSERT DATA and DELETE DATA operations are used
to add triples to and remove triples from a graph. The general syntax for SPARQL INSERT DATA
and DELETE DATA queries is as follows:

Definition 2.9 (INSERT DATA, DELETE DATA)
INSERT DATA | DELETE DATA
[ GRAPH NamedGraphIRI ] { RDFGraph }

To insert data into a named graph the GRAPH clause is used. If omitted the triples are inserted
into the default graph. If the destination graph does not exist it is created implicitly. Query 2.9
demonstrates how data relating to Mike Murphy can be inserted into the employee graph.

Query 2.9 (INSERT DATA)
INSERT DATA

{ GRAPH entx: EmployeeDetails {
entx: MMurphy rdf:type foaf: Person .
entx: MMurphy foaf:name "Mike Murphy " .
entx: MMurphy entx: salary 45000 .
entx: MMurphy foaf:phone "444 -4444" } }

To delete data from a named graph the GRAPH clause is used. If omitted the triples are deleted
from the default graph. If the delete results in an empty graph this graph may be implicitly
removed. Query 2.10 demonstrates how data relating to Mike Murphy can be deleted from the
employee graph.
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Query 2.10 (DELETE DATA)
DELETE DATA

{ GRAPH entx: EmployeeDetails {
entx: MMurphy rdf:type foaf: Person .
entx: MMurphy foaf:name "Mike Murphy " .
entx: MMurphy entx: salary 45000 .
entx: MMurphy foaf:phone "444 -4444" } }

DELETE/INSERT. The DELETE/INSERT operation is used to remove triples from a graph, or
add triples to a graph, based on bindings for a query pattern specified in a WHERE clause. The
WITH clause defines the target graph. The INSERT and DELETE graph templates are updated
based on the bindings for variables returned by the WHERE clause. It is feasible to have a DELETE
without an INSERT and visa versa.
The syntax for SPARQL DELETE/INSERT queries is as follows:

Definition 2.10 (DELETE/INSERT)
[ WITH NamedGraphIRI ]
DELETE { BasicGraphPattern } INSERT { BasicGraphPattern }
| DELETE { BasicGraphPattern } | INSERT { BasicGraphPattern }
[ USING NAMED NamedGraphIRI ]
[ WHERE { GraphPattern } ]

Query 2.11 demonstrates how together the INSERT and DELETE operations can be used to the
update the FOAF name Joe Bloggs to Joseph Bloggs.

Query 2.11 (DELETE/INSERT)
WITH entx: EmployeeDetails

DELETE { ? person foaf:name "Joe Bloggs " }
INSERT { ? person foaf:name " Joseph Bloggs " }
WHERE { ? person foaf:name "Joe Bloggs " }

LOAD. The LOAD operation imports all of the triples from an RDF document into an RDF
graph. If the destination graph does not exist it is created, whereas if it does exist the data is
simply added to the existing graph. If no destination graph is provided the triples are loaded
into the default graph.

Definition 2.11 (LOAD)
LOAD [ SILENT ] NamedGraphIRI INTO GRAPH NamedGraphIRI

Query 2.12 demonstrates how data is loaded from an RDF document into an RDF graph.

Query 2.12 (LOAD)
LOAD <http :// urq.deri.org/docs/ EmployeeData > INTO GRAPH entx:

EmployeeDetails

CLEAR and DROP. The CLEAR operation removes all triples from a given graph. While the
DROP operation removes the existing graph and associated data. The GRAPH keyword is used to
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specify a graph based on a given IRI, the DEFAULT keyword is used to remove the triples from the
default graph, the NAMED keyword is used to remove all triples in all named graphs and the ALL
keyword is used to remove all triples from both the default graph and all of the named graphs.

Definition 2.12 (CLEAR and DROP)
CLEAR | DROP [ SILENT ]
GRAPH NamedGraphIRI | DEFAULT | NAMED | ALL

Query 2.13 demonstrates how all data can be removed from the entx:EmployeeDetails graph.

Query 2.13 (CLEAR)
CLEAR GRAPH entx: EmployeeDetails

CREATE. The CREATE operation creates a new graph with the name specified by the IRI.

Definition 2.13 (CREATE)
CREATE [ SILENT ]
GRAPH NamedGraphIRI

Query 2.14 simply creates a new entx:StaffHolidays graph.

Query 2.14 (CREATE)
CREATE GRAPH entx: StaffHolidays

COPY, MOVE and ADD. The COPY operation inserts all data from the source graph into the
destination graph. This operation results in the data from the destination graph being removed
before the move takes place. The MOVE operation moves all data from the source graph into the
destination graph. Like the COPY, this operation results in the data from the destination graph
being removed before the move takes place. However unlike the COPY, the data from the source
graph is removed after all the data has been moved. The ADD operation inserts all data from the
source graph into the destination graph. When this operation is used the destination graph is
not cleared before the data is added and the source graph is not cleared after the data is added.

Definition 2.14 (COPY, MOVE and ADD)
COPY | MOVE [ SILENT ]
GRAPH NamedGraphIRI | DEFAULT TO
GRAPH NamedGraphIRI | DEFAULT

Query 2.15 demonstrates how data can be copied from the entx:EmployeeDetails graph to a
new graph called entx:EmployeeBackup .

Query 2.15 (COPY)
COPY GRAPH entx: EmployeeDetails TO GRAPH entx: EmployeeBackup

2.3 Reasoning over RDF Data
In RDF there is a tight coupling between the schema and instance data. RDFSchema (RDFS)
(Brickley and Guha, 2014) is a set of classes and properties used to describe RDF data. RDFS
does not describe the structure of an RDF graph, but rather provides a framework used by
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vocabularies to denote classes, properties and relations. RDFS is composed of a set of classes
that are used to define types of resources and properties that are used to describe these resources.
Using the RDFS vocabulary it is possible to define class and property relations, similar to object
oriented programming. The RDFS vocabulary which is defined in the following namespace, is
conventionally assigned an rdfs prefix: rdfs:<http://www.w3.org/2000/01/rdf-schema#> .

2.3.1 The ρdfsubset of RDFS
In this thesis, we adopt a fragment of RDFS called ρdf (Muñoz et al., 2009), which focuses on
a set of RDFS properties (rdf:type, rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain
and rdfs:range) that are designed to relate individual pieces of data. ρdf covers the essential
features of RDFS and avoids vocabularies and axiomatic information that only serve to reason
about the structure of the language itself and not the data it describes. The following is a
summary of the different types of ρdf properties:
core properties

rdf:type indicates that a resource is an instance of a particular class.

rdfs:subClassOf defines a subsumption relation between classes.

rdfs:subPropertyOf defines a subsumption relation between properties.

restricting properties

rdfs:domain indicates that the subject of the property is an instance of the specified class.

rdfs:range indicates that the object of the property is an instance of the specified class.

2.3.1.1 ρdf Semantics

Muñoz et al. (2009) extend the simple interpretation and model presented in Section 2.1.2 so
that the intended meaning of the ρdf vocabulary is unambiguous. In the model and the rules
that follow we use a number of abbreviations: type for rdf:type, sp for rdfs:subPropertyOf,
sc for rdfs:subClassOf, dom for rdfs:domain and range for rdfs:range. Muñoz et al. (2009)
extend the simple interpretation for RDF graphs presented in Definition 2.4, as follows:

Definition 2.15 (ρdf Interpretation)
An interpretation I over a vocabulary V is a tuple
I = 〈IRes, IProp, IClass, IExt, ICExt, IType, ILit〉, where:

1. IRes is a non empty set of resources (called the domain or universe of I);

2. IProp is a set of properties (not necessarily disjoint from IRes);

3. IClass ⊆ IRes is a distinguishable subset of IRes denoting classes;

4. IExt : IProp→ 2<IRes,IRes>, a mapping that assigns IRes pairs to each IProp.

5. ICExt : IClass→ 2z, a mapping that assigns a set of resources z in IClass to every
resource denoting a class;

6. IType : (I ∪ L) ∩ V → IRes ∪ IProp, a mapping that maps IRIs and literals to
elements in IRes or IProp.
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7. ILit ⊆ IRes the set of all literal values.

Given the extended interpretation, a model of a ground RDF graph is subsequently extended by
Muñoz et al. as follows:

Definition 2.16 (ρdf Model)
An interpretation I is a model of a ground graph G, denoted I a model of G, if and only
if I is an interpretation over the vocabulary ρdf ∪ universe(G) that satisfies the following
conditions:

Simple:

1. for each (s, p, o) ∈ G, IType(p) ∈ IProp and (IType(s), IType(o))
∈ IExt(IType(p));

Subproperty:

1. IExt(IType(sp)) is transitive and reflexive over IProp;

2. if (x, y) ∈ IExt(IType(sp)) then x, y ∈ IProp and IExt(x) ⊆ IExt(y);

Subclass:

1. IExt(IType(sc)) is transitive and reflexive over IClass;

2. if (x, y) ∈ IExt(IType(sc)) then x, y ∈ IClass and ICExt(x) ⊆ ICExt(y);

Typing I:

1. x ∈ ICExt(y) =⇒ (x, y) ∈ IExt(IType(type))

2. if (x, y) ∈ IExt(IType(dom)) and (u, v) ∈ IExt(x) then u ∈ ICExt(y)

3. if (x, y) ∈ IExt(IType(range)) and (u, v) ∈ IExt(x) then v ∈ ICExt(y)

Typing II:

1. e ∈ ρdf, IType(e) ∈ IProp

2. if (x, y) ∈ IExt(IType(dom)) then x ∈ IProp and y ∈ IClass

3. if (x, y) ∈ IExt(IType(range)) then x ∈ IProp and y ∈ IClass

4. if (x, y) ∈ IExt(IType(type)) then y ∈ IClass

2.3.1.2 ρdf Deductive System

Given the extended interpretation and model presented in the previous section, Muñoz et al.
propose a sound and complete deductive system for ρdf. In the deduction rules that follow the
premise is represented above the line and the conclusion is presented below the line.

P1...Pn

P

Essentially a deduction rule states that if the propositions P1...Pn are verified to be true then
we can deduce P is also true. In this thesis, we do not concern ourselves with reflexivity and
therefore these rules are not presented. For additional information on reflexivity the reader is
referred to Muñoz et al. (2009).
Prior to presenting the ρdf deductive system we first present the definition of a map, presented

by Muñoz et al. (2009):
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Definition 2.17 (Map)
Following the definition of an RDF Graph, a map is a function µ : (I ∪B ∪ L)→ (I ∪B ∪ L)
preserving URIs and literals, i.e. µ(t) = t, for all t ∈ (I ∪B ∪ L). Given a graph G, we
define µ(G) = (µ(s), µ(p), µ(o)) | (s,p,o) ∈ G. We speak of a map µ from G1 to G2, and
write µ : G1 → G2, if µ is such that µ(G1) ⊆ G2. We say that a map µ is a grounding of a
graph G, iff µ(G) is a ground graph.

Definition 2.18 (ρdf Deductive system)
In the rules that follow G and G′ are used to represent RDF graphs and A,B,C,X and Y
are meta-variables used to represent elements in (I ∪B ∪ L).

Simple:
(a) G

G′ for a map θ : G′ → G (b) G
G′ for G′ ⊆ G

Subproperty:
(a) (A,sp,B),(B,sp,C)

(A,sp,C) (b) (D,sp,E),(X,D,Y )
(X,E,Y )

Subclass:
(a) (A,sc,B),(B,sc,C)

(A,sc,C) (b) (A,sc,B),(X,type,A)
(X,type,B)

Typing:
(a) (D,dom,B),(X,D,Y )

(X,type,B) (b) (D,range,B),(X,D,Y )
(Y,type,B)

Implicit Typing:
(a) (A,dom,B),(D,sp,A),(X,D,Y )

(X,type,B)

(b) (A,range,B),(D,sp,A),(X,D,Y )
(Y,type,B)

An instantiation of the rules presented in Definition 2.18 involves the systematic replacement of
meta-variables with elements from I ∪B ∪ L such that the inferred information represents well
formed RDF triples.

Example 2.8 (ρdf Deductive system)
In the rules that follow the variables used in Definition 2.18 are replaced with actual subjects,
predicates and objects.

Simple:

A simple model of the graph represented in Figure 2.2 is presented in Example 2.5.

continued overleaf ->
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Subproperty:

rdfs:subPropertyOf is an instance of rdf:Property, which is used to state that all
resources related by one property are also related by another:
(a)

(entx:develops, sp, entx:implements), (entx:implements, sp, entx:worksOn)
(entx:develops, sp, entx:worksOn)

(b)

(entx:implements, sp, entx:worksOn), (entx:JoeBloggs, entx:implements, entx:CRMProject)
(entx:JoeBloggs, entx:worksOn, entx:CRMProject)

Subclass:

rdfs:subClassOf is an instance of rdf:Property, which is used to state that all
instances of one class are instances of another class:
(a)

(entx:Manager, sc, entx:Employee), (entx:Employee, sc, foaf:Person)
(entx:Manager, sc, foaf:Person)

(b)
(entx:Manager, sc, entx:Employee), (entx:JoeBloggs, type, entx:Manager)

(entx:JoeBloggs, type, entx:Employee)

Typing:

rdf:type is an instance of rdf:Property, which is used to state that a resource is
an instance of a class:
(a)

(entx:develops, dom, entx:Person), (entx:JoeBloggs, entx:develops, entx:CRMProject)
(entx:JoeBloggs, type, entx:Person)

(b)

(entx:develops, range, entx:Project), (entx:JoeBloggs, entx:develops, entx:CRMProject)
(entx:CRMProject, type, entx:Project)

Implicit Typing:

rdfs:domain is an instance of rdf:Property, which is used to state that any resources
that has a given property is an instance of one or more classes. While rdfs:range is
an instance of rdf:Property which is used to state that the values of a property are
instances of one ore more classes:
(a)

(entx:worksOn, dom, entx:Person), (entx:develops, sp, entx:worksOn),

(entx:JoeBloggs, entx:develops, entx:CRMProject)
(entx:JoeBloggs, type, entx:Person)

(b)
(entx:worksOn, range, entx:Project), (entx:develops, sp, entx:worksOn),

(entx:JoeBloggs, entx:develops, entx:CRMProject)
(entx:CRMProject, type, entx:Project)
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2.3.2 Beyond RDFS Inference
Generally speaking, RDF is used to express binary predicate relations. Whereas RDFS is used
to define the domain and the range of these properties, hierarchies of classes and hierarchies of
properties. However, using RDFS, it is not possible to represent complex sentences that include
cardinality constraints or to model complex relations between classes, such as disjointness or
equivalence.
The DARPA Agent Markup Language (DAML) program was an initiative, which was setup

to develop a more expressive schema language and a related tool set. One of the outputs of
the program was the DAML ontology language (DAML-ONT), which extends RDFS with more
expressive class definitions. In parallel, a team of researchers working on a project known as
OntoKnowledge, developed the Ontology Inference Layer (OIL) language. Like DAML-ONT
the language extends RDFS. However, OIL focuses primarily on instances of concepts and a
number of predicates (known as roles). Later both teams joined forces and released a language,
known as DAML+OIL. The combined language was the starting point for the Web Ontology
Language (OWL) (McGuinness and van Harmelen, 2004), which was released by the W3C’s
as a recommendation in 2004. An overview of DAML, OIL and DAML-OIL is presented in
Gomez-Perez and Corcho (2002).
OWL is related to a family of logics known as Description Logics (DL). Like RDFS, OWL uses

classes and properties (commonly called roles) and instances (known as individuals). However,
OWL provides for:

• A rich set of relations between classes, roles and individuals (for example, owl:sameAs,
owl:equivalentClass, owl:differentFrom).

• A number of logical operations (for example, owl:unionOf, owl:intersectionOf and
owl:complementOf.

• Several cardinality constraints (for example, owl:someValuesFrom, owl:allValuesFrom,
owl:cardinality, owl:minCardinality and owl:maxCardinality).

When it comes to reasoning, in an attempt to balance expressivity and efficiency, the specification
presents three sub-languages (OWL Full, OWL DL and OWL Lite), otherwise known as species
of OWL.

• OWL Full, which includes both OWL DL and OWL Lite, is the most expressive. It is the
only OWL language, which supports RDFS. However, it is in general undecidable and it
is not supported by the majority of software vendors.

• OWL DL, which includes OWL Lite, is less expressive than OWL Full. A number of
restrictions are imposed: it is not permissible to use rdfs:Class or rdfs:Property; there
must be a clear separation between individuals, classes, roles and datatypes; and limitations
are applied to several roles. As a result OWL DL is decidable and has a worst case
computational complexity of NExpTime. In addition, it is fully supported by most software
tools.

• OWL Lite, which has a worst case computational complexity of ExpTime, is the least
expressive. Several restrictions, in addition to those specified for OWL DL, are imposed:
it is not possible to use rdfs:Class or rdfs:Property; cardinality constraints are limited
to 0 and 1; in certain situations unnamed classes cannot be used; and a number of additional
limitations are applied to roles.
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The second version of the language OWL2 was released as aW3C recommendation in 2012 (W3C
OWL Working Group, 2012). OWL2 comes in two flavours (OWL2 Full and OWL2 DL). OWL2
DL is composed of three profiles (OWL2EL, OWL2QL and OWL2RL) that are based on well
used DL constructs. OWL2 extends OWL with additional datatypes, additional annotations
and relaxes the strict separation between classes, properties and annotations. For specific de-
tails on OWL, the reader is referred to the OWL (McGuinness and van Harmelen, 2004) and
OWL2 (W3C OWL Working Group, 2012) specification documentation.

2.4 Linked Data
The term Linked Data Web (LDW) is used to describe a World Wold Wide where structured
data is directly linked with other relevant data using machine accessible formats. According to
Heath and Bizer (2011), the LDW enables things, otherwise known as resources, to be linked
using URIs, in a similar way to how web documents are interlinked using the HyperText Markup
Language (HTML) hypertext reference (HREF) attribute. In recent years, we have seen signifi-
cant advances in the technology used to both publish and consume Linked Data, namely RDF,
RDFS, OWL and SPARQL.

2.4.1 Linked Data Principles
Underpinning the LDW is a set of best practices for publishing and interlinking structured data,
know as the Principles of Linked Data. These principles are defined by Berners-Lee, Tim (2006)
as follows:

” 1. Use URIs as names of things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards (RDF*,
SPARQL).

4. Include links to other URIs. so that they can discover more things. ”

The term thing is used to refer to both real world entities and abstract concepts, commonly re-
ferred to as resources. The LDW builds on the existing web infrastructure, by using HyperText
Transfer Protocol (HTTP) URIs to identify things, as well as documents. However, URIs only
support a subset of the American Standard Code for Information Interchange (ASCII) character
set. Later the W3C introduced Internationalised Resource Identifiers (IRIs), that provides sup-
port for the richer Unicode character set. Although the principles defined by (Berners-Lee, Tim,
2006) refer to URIs, as there is a mapping from IRIs to URIs, it is also possible to use IRIs. The
latest versions of the RDF, RDFS and SPARQL specifications have all chosen to migrate from
URIs to IRIs.
However, it is not enough to simply use URIs to refer to things. According to the Linked Data

principles, it should be feasible to use the URI to return a description of the resource (commonly
referred to as dereferencing). As URIs often represent real world entities, it is common practice
to use different URIs to represent the resource and the document that describes it. Two different
strategies, that can be used to dereference URIs exist, namely 303 redirects and Hash URI’s. In
the case of 303 redirects, when a client attempts to dereference a resource, the server responds
with a 303 See Other, and a URI for the document that describes this resource. The client
subsequently uses this new URI to retrieve the description of the resource. Whereas, in the case
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of hash URIs a # separator is used to append an identifier, which identifies the resource, to the
end of the URI. Prior to attempting to dereference the resource, the client strips off the # and
the identifier, making it possible to distinguish between the physical resource and the document
that describes it.
The final principle refers to the linking of URI’s. Just like the web of documents uses reference

links to enable humans and machines to navigate web pages, the web of data is constructed in
a similar fashion. By using RDF to describe resources, it is possible not only to link structured
data, but also to describe complex relations between resources in a machine readable format.

2.4.2 Publishing Linked Data
When it comes to publishing Linked Data, a number of alternative strategies exists.

• Static data, or data that does not change frequently, can be represented in RDF documents
that are served by regular web servers.

• RDF data can be embedded in HTML documents, using RDFa (Adida et al., 2013), a W3C
Recommendation which enables RDF markup to be embedded in HTML attributes.

• RDF stores generally allow RDF data to be exposed as Linked Data via interfaces know as
SPARQL endpoints. A SPARQL endpoint accepts queries and sends responses using the
HTTP protocol.

• Information stored in relational databases can be translated into RDF using relational
data to RDF converters. The W3C recommends two complementary RDB2RDF standards,
Direct Mapping of Relational Data to RDF (Arenas et al., 2012) and RDB to RDF Mapping
Language (R2RML) (Das et al., 2012). Direct Mapping defines a simple transformation
which can also be used to materialize RDF graphs or define virtual graphs, which can
be queried by SPARQL or traversed by an RDF graph API. Whereas R2RML is used
to express custom mappings from relational databases to RDF datasets. Unlike Direct
Mapping, where the RDF graph directly reflects the structure of the database, R2RML
caters for the definition of highly customized views over relational data.

2.4.3 Consuming Linked Data
In a similar fashion to the web of documents, Linked Data can be accessed using Linked Data
browsers, search engines and crawlers. When it comes to consuming Linked Data, Heath and
Bizer (2011) propose three different patterns.

• The Crawling Pattern, which retrieves RDF data by starting with a seed URI and uses the
dereferenced data to find more links. All data is stored locally and an integrated view is
provided to the application.

• The On-The-Fly-Dereferencing Pattern also uses dereferencing, however in this instance
data is consumed at query time.

• The Query Federation Pattern involves querying a fixed set of data sources via SPARQL
endpoints.

The choice of pattern depends on the number of data sources to be accessed, the response time
demanded by the application, and importance placed on up to date data.
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2.5 Summary
In this chapter, we provided an overview of the RDF data model and presented a simple interpre-
tation of a ground graph according the RDF model theoretic semantics. Following on from this,
we introduced the SPARQL query and update languages. We described the four SPARQL query
forms and we examined a number of different query constructs, such as subqueries, property
paths, negation and aggregates. In addition, we discussed how SPARQL update can be used to
manage graph data. We subsequently discussed the role played by RDFS when it comes to data
modelling and reasoning, and presented a deductive system for a subset of RDFS, known as ρdf .
We briefly introduced a more expressive language, known as OWL. Finally, we discussed the
principles of Linked Data and presented existing strategies for publishing and consuming Linked
Data.
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Chapter 3

State of the Art

Generally speaking the term access control is used to refer to the model, which is the blueprint
used to guide the access control process; the policy language, which defines both the syntax and
the semantics of the access control rules; and the framework, which is a combination of the access
control model, the language and the enforcement mechanism. At its most basic, an access control
rule (otherwise known as an authorisation) can be represented as a tuple 〈S,R,AR〉 where S
denotes the subject (entities requesting access to resources), R denotes the resource (entities to
be protected) and AR represents the access rights (permissions and prohibitions often based on
actions pertaining to the resource). Sets of access control rules are collectively referred to as an
access control policy. The decision to grant or deny access is based on two distinct processes,
authentication and authorisation. Authentication involves the verification of identity (you are
who you say you are). Whereas, authorisation is the process of granting or denying access to
system resources based on identity.
Security in general and access control in particularity have been extensively studied by both

the database and the information system communities, among others. Although various access
control models, policy languages and enforcement frameworks have been proposed, given that
access control models tend not to be domain specific, it is not surprising that they have had
a strong influence on access control research within the Semantic Web community. Early work
on access control policy specification and enforcement, within the Semantic Web community,
focused on representing existing access control models and standards using semantic technology;
proposing new access control models suitable for open, heterogeneous and distributed environ-
ments; and recommending languages and frameworks that can be used to facilitate access control
specification and maintenance. Later the focus moved to access control for the RDF data model
and access control propagation, based on the semantic relations between policy entities. In recent
years the focus has shifted to access control policy specification and enforcement over Linked
Data.
The remainder of the chapter is structured as follows: Section 3.1 presents relevant access

control models and standardisation efforts and discusses how they have been applied to, or
enhanced, using semantic technology. Section 3.2 describes several well known policy languages
and frameworks. Section 3.3 describes the different access control strategies that have been
proposed for RDF data. Finally Section 3.4 presents a set of access control requirements and
examines the suitability of the presented access control models, languages and frameworks for
protecting Linked Data.
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3.1 Access Control Models and Standards
In this section, we describe a number of well known access control models, emerging access
control models and relevant standardisation efforts. In each instance, we provide a description
of the access control model/standard and discuss how it has been applied to, or enhanced using,
semantic technologies.

3.1.1 Access Control Models
Mandatory Access Control (MAC), Discretionary Access Control (DAC) and Role Based Access
Control (RBAC) are the most prominent access control models found in the literature, and used
in practice. View Based Access Control (VBAC) is a complementary access control model which
grants access to sets of entities, logically structured as views. In addition, several researchers
have proposed new access control models, that were deemed more suitable for the open, heteroge-
neous and distributed architecture of the web. Primary research efforts, involve using properties
(relating to the subject, resource or the environment) as opposed to identities, in order to de-
termine if access to resources should be permitted. Attribute Based Access Control (McCollum
et al., 1990) and Context Based Access Control (Rubart, 2005) are the predominant works in
this area.

3.1.1.1 Mandatory Access Control

MAC limits access to resources using access control policies determined by a central author-
ity (Samarati and de Vimercati, 2001). The central authority is responsible for classifying both
subjects and resources according to security levels. Resources are assigned labels that represent
the security level required to access the resource, and only subjects with the same security level
or higher are granted access.
MAC was originally developed for military applications and therefore it is best suited to closed

environments, where a great deal of control is required (Bertino and Sandhu, 2005). Given the
open, heterogeneous and distributed nature of the web, it is not surprising that MAC has not
gained much traction among Semantic Web researchers.
The primary focus has been on demonstrating how MAC can be supported by Semantic Web

policy languages. Kodali et al. (2004) describe a unifying framework which can be used to
represent a number of different access control models, MAC being one of them. Whereas, Yagüe
et al. (2003) demonstrate how their attribute based access control model, can be used to represent
MAC, DAC and RBAC. Details of both of these models are provided in Section 3.1.1.7.

3.1.1.2 Discretionary Access Control

DAC policies associate one or more subjects with sets of access rights pertaining to one or more
resources. Like MAC, DAC restricts access by means of a central access control policy, however
the users are allowed to override the central policy and can pass their access rights on to other
users, known formally as delegation (Sandhu and Samarati, 1994).
As with MAC, both Kodali et al. (2004) and Yagüe et al. (2003) demonstrate how the access

control models they propose can support Linked Data, DAC being one. Details of both of these
models are provided in Section 3.1.1.7. According to Weitzner et al. (2006a), the web needs
discretionary, rule based access control. Although the authors describe a motivating scenario
and present a potential solution, they focus primarily on the general architecture of the system,
as opposed to investigating how discretionary access control can be modelled or enforced.
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3.1.1.3 Role Based Access Control

RBAC restricts access to resources to groups of users, with common responsibilities or tasks,
generally referred to as roles. In RBAC, users are assigned to appropriate roles and access to
resources is granted to one or more roles, as opposed to users directly (Sandhu et al., 1994).
The term session is commonly used to refer to the set of roles the user is currently assuming
(their active roles). Whereas, role deactivation is generally used to refer to the process whereby
a user is removed from a role. Depending on the use case, roles may be organised to form either
a hierarchy or a partial order. Such structures are used to simplify access control specification
and maintenance. Access control constraints, are commonly used to enforce conditions over
access control policies. For RBAC, these constraints take the form of both static and dynamic
separation of duty (a user cannot be assigned to two roles simultaneously) and prerequisites (a
user can only be assigned to a role if they have already been assigned another required role).
When it comes to traditional access control models, much of the research effort within the

Semantic Web community, focuses on modelling RBAC using ontologies. In order to provide
the reader with an overview of the different possibilities, we present four different strategies for
representing RBAC in OWL.

RBAC entities as classes. Di et al. (2005) provide a basic modelling for RBAC concepts
and constraints using OWL. User, Role, Permission and Session entities are represented
as classes. While, the following properties are used to represent relationships:
• hasRole (assigns a user to a role);
• hasPermission (associates a role with a permission);
• belongTo (maps a session to a single user); and
• hasActiveRole (maps a set of roles to a session).

Two additional properties are used to model separation of duty and prerequisite constraints:
• conflictRole (indicates that there is a conflict between two roles); and
• prerequesiteRole (specifies that one role is dependent on another).

Roles as classes versus roles as instances. Finin et al. (2008a) discuss the advantages and
disadvantages of two different approaches for representing RBAC policies in OWL. The
first approach which represents roles as classes and the second approach which represents
roles as instances. In both instances Subject, Object and Action entities are represented
as classes. The authors propose two disjoint Action subclasses, PermittedAction and
ProhibitedAction, which are used to associate permissions and prohibitions with users.
• When roles are represented as classes a general Role is defined as a class and
specific roles are defined as subclasses of the Role class. The rdf:type property is
used to associates users with roles and an activeForm property is used to indicate if
a role is currently active. The role hierarchy is modelled using the rdfs:subclassOf
property. While, the owl:disjointWith property is used to model separation of duty
constraints.

• When roles are represented as instances a general Role is defined as a class and
roles are defined as instances of the Role class. Role hierarchies are represented us-
ing the owl:TransitiveProperty, which is used to describe a transitive relationship
between properties. Two properties role and activeRole are used to assign roles to
users. Whereas, two additional properties ssod and dsod are used to represent static
and dynamic separation of duty.

When roles are represented as instances the modelling is simple and more concise. Whereas,
when roles are represented as classes, it is possible to determine subsumption relationships
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according to a users active role and the role hierarchy, using standard description logic
subsumption. As OWL is monotonic, using either approach, it is not possible to remove
assertions from the knowledge base, as such role deactivation cannot be supported. Al-
though the authors indicate that model checking can be used to verify the effectiveness of
the proposed approaches, no concrete details are supplied.

Using the eXtensible Access Control Markup Language for RBAC. Ferrini and Bertino
(2009), demonstrate how the eXtensible Access Control Markup Language (XACML), an
attribute based access control language and framework proposed by the Advanced Open
Standards for the Information Society (OASIS), and OWL can be used to specify and enforce
RBAC. Policies are specified using the XACML vocabulary, whereas role hierarchies and
constraints are represented using OWL. The proposed modelling is a combination of the
two approaches, proposed by Finin et al. (2008a).
• Like the roles as instances approach, roles are represented as instances of a generic Role
class and subjects as instances of a generic Subject class. Two properties subRoleOf
and supRoleOf, are used to represent the relationship between role instances. The
owl:inverseOf property is used to indicate the relationship between the subRoleOf
and supRoleOf and the owl:TransitiveProperty is used to model the transitive re-
lationship between roles. A hasRole property is used to indicate that a subject has
been assigned to a give role.

• Like the roles as classes approach (Finin et al., 2008a), the owl:disjointWith property
and an activeRole property are used to model separation of duty and active roles
respectively.

A request is composed of one or more attributes pertaining to the subject, action, resource
or the environment. In order to support RBAC the user submits their role as a subject
attribute. On receipt of the request the system extracts the role from the subject attribute.
The description logic reasoner is used to retrieve additional roles that can be inferred from
the OWL ontology. These roles are subsequently fed into the XACML engine. Finally
the XACML engine consults the XACML policy in order to determine if access should be
granted. As the policies are not modelled in OWL it is possible to support role deactivation.
However, with the existing modelling it is not possible to exploit reasoning over policy
resources or access rights.

Using the Common Information Model for RBAC. Alcaraz Calero et al. (2010) demon-
strate how the Common Information Model (CIM) (a standard vocabulary used to represent
information technology objects and the relationship between them) can be used to represent
RBAC. The authors provide a mapping between RBAC entities and CIM entities that are
represented using OWL. The primary entities are mapped as follows:
• subject is mapped to the CIM Identity;
• privilege is simply a CIM Privilege; and
• object is associated with an entity inheriting from CIM ManagedElement.

Information is asserted into the knowledge base using two different properties:
• AuthorisationSubject which maps a subject to a privilege; and
• AuthorisationTarget which associates a privilege with an object.

The following properties, which are declared transitive (using owl:TransitiveProperty),
are used to represent hierarchies:
• MemberOfGroup is used to represent role and group hierarchies; and
• Aggregations and Dependencies are used to model object hierarchies.
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Constraints are represented as rules using the Semantic Web Rule Language (SWRL). For
example, in order to model a separation of duty constraint, a rule is defined which checks
if there are any common instances between roles and if so generates an exception. The
authors describe how a SPARQL enabled reasoner, such as Pellet, can be used to query the
OWL policy, in order to determine if access should be granted or denied.

Several authors (Kagal et al., 2003a; Yagüe et al., 2003; Corradi et al., 2004b; Kodali et al.,
2004; Toninelli et al., 2006) argue that RBAC is not suitable for systems where it is not possible
to assign permissions in advance or where permissions change frequently. Nonetheless, the access
control models they propose, either extend RBAC with additional functionality or include RBAC.

3.1.1.4 View Based Access Control

VBAC (Griffiths and Wade, 1976) is used in relational databases to simultaneously grant access
to one or more relations, tuples, attributes or values. A similar approach is used in Object
Oriented Access Control (OBAC) (Evered and Bögeholz, 2004), where access rights are granted
to sets of application objects.

Using rules to create views. Li and Cheung (2008) use rules to generate views of data based
on relations between ontology concepts. For additional details see Section 3.3.1.3.

Using SPARQL to create views. Gabillon and Letouzey (2010) describe how RDF data
can be logically organised into views using SPARQL CONSTRUCT and DESCRIBE queries.
Inspired by access control in relational databases, the authors propose an access control
model which can be used to grant/deny access to named graphs or SPARQL views. For
additional details see Section 3.3.3.2.

Using policies to limit access to views. Costabello et al. (2012a) propose a policy language
that can be used to restrict access to named graphs using query rewriting. For additional
details see Section 3.3.3.2.

3.1.1.5 Attribute Based Access Control

ABAC was designed for distributed systems, where the subject may not be known to the system,
prior to the submission of a request. ABAC grants or denies access to resources, based on
properties of the subject and/or the resource, known as attributes.

Using rules for ABAC. Stermsek et al. (2004) discuss how attributes can be used to specify
access control directly using rules and indirectly using roles. In the former, the requesters
attributes are compared against a policy, which indicates the attributes necessary to access a
resource. Whereas in the latter, the requesters attributes are used to determine the access
rights or roles the subject should be mapped to. The authors, describe three different
mechanisms that can be used to obtain the attributes pertaining to a subject:
(i) subjects can send all of their attributes to the server, with the initial request;
(ii) the server can request particular attributes from the subject, once the initial request

is submitted; and
(iii) given the subject may be cautious about giving out the requested credentials to an

unknown entity, both the server and the client could exchange policies and attributes
(a process commonly known as trust negotiation).

Although a high level architecture is described, the formal representation of the model is
left to future work.
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A Metadata-Based Access Control design pattern. Priebe et al. (2004), inspired by
software design patterns, present a Metadata-Based Access Control (MBAC) pattern, which
aims to encapsulate best practice with respect to attribute based access control. In the
presented pattern, the authors indicate that, subjects and objects should be modeled as sets
of attribute/value pairs. While, authorisation subjects and authorisation resources should
be described in terms of required attributes and corresponding values. Follow up work, by
Priebe et al. (2006), describes how attribute based access control policies specified using
XACML can be modelled using OWL. The XACML policies together with a reasoning
engine, allows for deductive reasoning based on the OWL vocabulary.

Combining roles and attributes. Cirio et al. (2007) propose an access control model which
combines role and the attribute based access control. Rather than associating permissions
with attributes directly, the permissions are associated with roles and attributes are added
to roles. In the presented modelling roles, resources, privileges and actions are
represented as classes, similar to the roles as classes approach presented by Finin et al.
(2008a). The authors define the following predicates:
• hasPrivelege (associates a role with a privilege);
• notTogetherWith (used to express dynamic separation of duty);
• performsAction (maps privileges to actions); and
• usesResource (maps privileges to resources).

The authors used the rdfs:domain and rdfs:range properties to assert knowledge instead
of using them as constraints. Such an approach simplifies policy specification as concepts
can be defined implicitly. Using description logic, it is not possible to specify policies
based on relations between instances. Therefore, the authors use two additional predicates,
requiresTrue and requiresFalse, to specify run time constraints based on user attributes.
Constraints are represented using SPARQL ASK queries and are evaluated at runtime using
a custom policy decision point, which wraps a description logic reasoner.

3.1.1.6 Context Based Access Control

CBAC uses properties, pertaining to users, resources and the environment, to grant/deny access
to resources. In light of new and emerging human computer interaction paradigms, such as
ubiquitous computing and the internet of things, access control based on context has been
graining traction in recent years.

Physical versus Logical Context. Corradi et al. (2004a) and Montanari et al. (2005) propose
a context based access control model and framework, called UbiCOSM. The proposed access
control model uses context to group policies. The authors distinguish between physical
and logical context. The former relates to the physical location denoted by geographical
coordinates. Whereas, the latter refers to logical properties pertaining to the users and
resources. In the proposed modelling, user identities and roles are specified using logical
properties. Context is represented using a generic context class and the following properties
are used to associate instances with classes:
• context_Name (identifier for the context);
• context_Type (either physical or logical); and
• context_Activation_Condition (used to associate specify contextual constraints).

Resources are represented using a generic resource class and instances are specified using
the following properties:
• resource_Name (identifier for the context); and
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• resource_Description (used to associate context with resources).
While, permissions are represented using a generic permission class and instances are
specified using the following properties:
• Name (identifier for the permission);
• Target (the resource the permission is applied to);
• Action (the operation pertaining to the resource); and
• Kind (which is used to specify either a positive or a negative).

Access control policies are composed of mappings between context and permissions. Com-
plex policies are generated using conjunction, disjunction and negation operators. When
a user requests access to a resource, the UbiCOSM enforcement framework retrieves the
relevant policies and generates a view based on the users permissions. If the user possesses
the context necessary to access the resource, access is granted. Otherwise access is denied.

Context relating to the subject, object, transaction and environment. Shen and
Cheng (2011) propose a semantic-aware context-based access control model (SCBAC) and
demonstrate how together ontologies and rules can be used to generate authorisations.
The authors provide both a context ontology and a policy ontology, which can be used to
specify positive and negative authorisations and obligations. Like Corradi et al. (2004a)
and Montanari et al. (2005), context provides a level of indirection between subjects and
permissions. The authors propose four different types of context, that are relevant from a
access control perspective:
• Subject contexts (properties pertaining to a subject);
• Object contexts (information relating to resources);
• Transaction contexts (either current or past information relating to a particular action);
• Environment contexts (other contextual information not relating directly to the subject,
the resource or the action, for example time of day).

An authorisation permits/prohibits an action, based on sets of contexts supplied by the user.
Actions are used to represent operations that a subject wishes to perform. Permission
Assignments are used to associate contexts with actions. Rules are used to insert new
authorisations, based on contextual information, into a knowledge base. An access request
is represented as a tuple 〈U,P,C,R〉 where user U, requests privilege P on resource R, in
light of a given context C. Access is enforced by representing access requests as SPARQL
queries that are executed over the knowledge base. However, given OWL is monotonic, it
is not clear how changes to contextual information are handled in the proposed approach.

3.1.1.7 Combination of Traditional Models

A couple of authors have proposed access control strategies which can be used to represent a
number of different access control models.

A unifying access control framework. Kodali et al. (2004) describe a unifying framework
which can be used to represent and enforce access control policies adhering to the MAC,
DAC and the RBAC access control paradigms. The authors demonstrate how a tuple
〈S, P,O〉, where S, P and O represent subject, permissions and objects respectively, can be
used to model authorisations, pertaining to each of the access control models. To this end
they propose a basic ontology with:
• an AC Models class and Disc Access Control, Mandatory Access Control and

Role-Based Access Control subclasses;
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• a Subject class and DAC-Subject, MAC-Subject and RBAC-Subject subclasses; and
• an Object class and DAC-Object, MAC-Object and RBAC-Object subclasses.

In addition, a general Constraint class and Time-dependent Constraints, Obligatory
Constraints and Context-dependent Constraints subclasses are defined.

Supporting RBAC, DAC and MAC using attributes. Yagüe et al. (2003) attest that ac-
cess control mechanisms that use attributes, to represent user credentials, are more general
than MAC, DAC and RBAC, and as a result can be used to represent such policies. The
authors propose an access control model which determines access based on the semantics
of the resource. Access control policies are specified in terms of attributes and access is
permitted or denied depending on requester attributes, that are submitted using certificates
that have been verified by a trusted certification entity. No specific details are provided on
how their access control model can be used to support MAC, DAC and RBAC.

3.1.2 Relevant Standardisation Efforts
In recent years, there have been a number of standardisation efforts, by both the W3C and
OASIS, in relation to access control for web data. In this section, we provide a high level
overview of the relevant standards and describe how they have been adapted or enhanced using
semantic technology.

3.1.2.1 eXtensible Access Control Markup Language

The eXtensible Access Control Markup Language (XACML)1, is an OASIS standard, which is
used to represent attribute based access control policies (Rissanen, 2013). XML was chosen as
the representation formalism for the policy language as it:

(i) can be used to represent information in both a human and machine readable manner;

(ii) can easily be adapted to represent different access control requirements; and

(iii) is widely supported by software vendors.

The specification provides an XML schema which can be used to represent attribute based
access control policies. The root of an XACML policy is a Policy or a PolicySet (used to
represent multiple policies). Policies are composed of sets of Rules that are in turn composed
of sets of a Targets (conditions relating to Subjects, Resources and Actions) and an Access
Decision (permit, deny or not applicable). An XACML Request is represented as a tuple
〈subject, resource, action, environment〉. Where subject represents the entity requesting access,
resource denotes the object to be protected, action defines the type of access and environment
represents the requesters attributes. The XACML framework is composed of the following com-
ponents:

• a policy decision point (which evaluates policies and returns a response);

• a policy enforcement point (which is responsible for making decision requests and enforcing
the decisions);

• a policy information point (which obtains attributes pertaining to subjects, resources and
the environment); and

• a policy administration point (which enables policies and sets of policies to be created and
updated);

1XACML,https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
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Deductive reasoning over XACML policies. Priebe et al. (2006, 2007) present an ex-
tension to XACML, which enables deductive reasoning over attribute ontologies, specified
using OWL. In order to support reasoning, the authors propose two additional architecture
components: an ontology administration point and an inference engine. If the attributes
presented by the requester are not explicitly stated in the access control policy, the system
attempts to infer the required access rights from the policy attributes, requester attributes
and the attributes ontology, using the inference engine.
Chen and Stuckenschmidt (2010) also extend XACML with OWL deductive reasoning ca-

pabilities. Access control policies are specified using XACML and access control is enforced
via query rewriting. The authors use SPARQL filters to both permit and deny access to
instance data. Reasoning over the data, represented in the filters, is delegated to reasoners
which support OWL and SPARQL.

Extending XACML policies with Context. Franzoni et al. (2007) demonstrate how
XACML can be extended to consider access control based on contextual properties per-
taining to either the user or the application. In addition to standard access control policies,
specified using XACML, the authors propose fine grained access control policies, which are
used to specify the instances of a concept that a user is permitted to access. The proposed
fine grained access control policies are enforced over RDF data, by rewriting a SeRQL
query (an alternative to SPARQL), so that it limits access to the instances that have been
permitted.

Supporting RBAC using XACML. Ferrini and Bertino (2009) describe an extension of
XACML, which uses a combination of XACML and OWL, in order to support RBAC. Like
Priebe et al. (2006, 2007), access control policies are specified using XACML, therefore it is
possible to take advantage of OWL’s out of the box reasoning capabilities. However rather
than modelling relationships between attributes, the authors model role hierarchies and
cardinality constraints.

3.1.2.2 Web Identity and Discovery

Web Identity and Discovery (WebID)2, which is supported by a W3C community group, is a
mechanism used to uniquely identify and authenticate a person, company, organisation or other
entity, by means of a URI (Sambra et al., 2014). Essentially a WebID is a HTTP URI which is
used to represent an agent. According to the WebID Incubator Group (Sporny et al., 2011), a
WebID should:

(i) be under the control of the entity it describes;

(ii) be linkable on the web;

(iii) describe the entity is represents;

(iv) enable authentication and access control;

(v) respect the privacy of the entity it describes; and

(vi) rely solely on HTTP and the Linked Data web.

A description of the agent is provided in an RDF document, known as a WebID profile, which can
be dereferenced using 303 or Hash URI’s (see Section 2.4.1). The WebID-TLS protocol (where
TLS stands for Transport Layer Security) specifies how together the WebID profile and public
key certificates, can be used to authenticate users (Inkster et al., 2014). The user places their
WebID profile document URI in the Subject Alternative Names field of their certificate. Once

2WebID, http://www.w3.org/wiki/WebID
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the certificate has been generated the user adds the public key details to their WebID profile
document. A service wishing to authenticate the user, needs to verify that the public key of the
certificate it receives matches the public key specified in the WebID profile.
Hollenbach et al. (2009) use FOAF and the Secure Sockets Layer (SSL) to determine if the

public key in the users FOAF profile matches that of the certificate. When a requester at-
tempts to authenticate, the system extracts the public key from the certificate. The system
subsequently verifies the signature and if successful, a SPARQL query is run against the FOAF
profile, in order to determine if it contains a matching public key. In Berners-Lee et al. (2009),
the authors describe their vision of a read-write web of data and present a proof of concept. Like
Hollenbach et al. (2009), the authors discuss how WebID, together with FOAF+SSL, can be used
for authentication. Although Stermsek et al. (2004) do not use the term WebID, they describe
how attributes pertaining to a subject (commonly known as credentials), can be associated with
public keys and attached to digital certificates.

3.1.2.3 Web Access Control

WebAccessControl (WAC)3 is an RDF vocabulary and an access control framework, which
demonstrates how together WebID and access control policies specified using the WAC vocabu-
lary, can be used to enforce distributed access control. WAC authorisations grant agents, access
to resources. Agents are specified using the agent and agentClass properties and resources are
specified using the accessTo and accessToClass properties. Whereas, Read, Write, Append
and Control access rights are represented as classes. Once the user has been authenticated
using WebID, the system checks if a policy exists which grants the user access to the requested
resource. If no such policy exists, then the system checks for classes that are granted access. For
each class the system dereferences the URI and checks if the users WedID is a type of the given
class. If yes, then the user is granted access to the system.

Using WebID and WAC. In addition to using WebID for authentication, Hollenbach et al.
(2009) use the WAC vocabulary to specify access control policies. The authors provide a
mapping between permissions and HTTP operations and demonstrate how together WebID
and WAC can be used to grant/deny access to web resources. In order to verify if the user
has the permissions required to perform the requested HTTP operation, a SPARQL query
is executed against the access control policy. If access is denied, a 403 response is returned
from the server.

Extending the WAC vocabulary. Both Villata et al. (2011) and Sacco and Passant (2011b)
extend the WAC to cater for access control over the RDF data model. Using the extended
vocabularies, it is possible to associate access control with individual RDF resources (sub-
jects, predicates and objects) and also collections of RDF resources (named graph). In
addition, the authors extend the vocabulary to cater for a broader set of access privileges
(create, read, write, update, delete, append and control).

3.1.2.4 Platform for Privacy Preferences

The Platform for Privacy Preferences (P3P)4, is a W3C recommendation, which enables websites
to express their privacy preferences in a machine readable format. Like XACML, the specification
provides an XML Schema, which can be used to specify policies. In addition, the specification
details how privacy policies can be associated with webpages/websites and describes how P3P

3WAC,http://www.w3.org/wiki/WebAccessControl
4P3P,http://www.w3.org/TR/P3P/

41

http://www.w3.org/wiki/WebAccessControl
http://www.w3.org/TR/P3P/


3.2. POLICY LANGUAGES AND FRAMEWORKS

policies can be used in conjunction with HTTP. Organisations wishing to specify machine read-
able privacy policies can publish their privacy policies using the P3P syntax. A reference to
the policy can be added to a well known location (for example, /w3c/p3p.xml), which can be
specified using the HTML link tag, or alternatively can form part of the HTTP Response. P3P
agents can be built into browsers, plug-ins or proxy servers. The agent is responsible for fetch-
ing the servers privacy preferences and taking some action. This action can vary from simply
displaying a symbol, to comparing the servers privacy preferences to those of the client and
taking some form of action. A related specification, which describes A P3P Preference Exchange
Language (APPEL) (Cranor et al., 2002), presents a vocabulary, which is used by individuals
(as opposed to websites) to express their privacy preferences.

Extending the P3P vocabulary. Kolari et al. (2005) propose an extension to P3P, to cater
for more expressive privacy preferences. The authors adopt a policy language, based on
Semantic Web technology, known as Rei. As Rei is a general policy language, it can easily
be used to represent existing P3P policies in a manner which supports reasoning based on
context. As access rights in Rei are based on deontic logic, it is possible to model, not only
positive and negative permissions, but also positive and negative obligations.

Representing P3P policies using OWL. Garcia and Toledo (2008) demonstrate how P3P
policies can be represented in OWL. The authors detail how the Web Services Policy Frame-
work (WS-Policy) can be used to allow service providers to expose these OWL based privacy
policies.

3.2 Policy Languages and Frameworks
Policy languages can be categorised as either general or specific. In the former, the syntax caters
for a diverse range of functional requirements (access control, query answering, service discovery,
negotiation, to name but a few), whereas the latter focuses on just one functional requirement.
Two of the most well-known access control languages, KAoS (Bradshaw et al., 1997, 2003; Uszok
et al., 2003b) and Rei (Kagal and Finin, 2003; Kagal et al., 2003b), are in fact general policy
languages. Natural language, programming languages, XML and ontologies can all be used to
express policies. XML and ontologies are two popular choices for representing policy languages
as they benefit from flexibility, extensibility and runtime adaptability. However, ontologies are
better suited to modelling the semantic relationships between entities. In addition, the common
framework and vocabulary used by ontologies, to represent data structures and schemas, provides
greater interpretability and interoperability. Regardless of the language chosen, a logic based
underlying formalisation is crucial for automatic reasoning over access control policies. Therefore,
the work presented in this section is limited to policy languages that use ontologies, rules or a
combination of both to represent policies. As the objective is to provide the reader with an
overview of each approach, we present a detailed description of well known frameworks in each
category. For a broader comparison of policy languages, the author is referred to a survey by
Bonatti and Olmedilla (2007), which evaluates twelve different policy languages against a set of
criteria, that are deemed necessary for ensuring security and privacy in a Semantic Web context.

3.2.1 Ontology Based Approaches
Using OWL ontologies it is possible to specify access control vocabularies that can easily be
adopted by others. Additionally, access control policies specified using different vocabularies
can easily be merged. By using an ontology based approach, it is possible to perform deductive
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reasoning (deriving the consequent) and abductive reasoning (affirming the consequent) over
access control policies, with standard description logic reasoners. The former is often used to
infer new policies based on relationship between access control entities, whereas the latter is used
in access control administration in order to determine the access rights required to meet a given
policy. In this section, we examine KAoS (Bradshaw et al., 1997, 2003; Uszok et al., 2003b) a
general policy language which adopts a pure ontological approach.

3.2.1.1 KAoS

KAoS (Bradshaw et al., 1997, 2003; Uszok et al., 2003b) is an open distributed architecture,
which allows for the specification, management and enforcement of a variety of policies. In ini-
tial versions of the language, policies were represented using DAML. However, the authors later
moved to OWL, the successor of DAML (Uszok et al., 2004c). As both DAML and OWL are
based on description logic, using the KAoS language it is possible to define class and property
hierarchies, along with inference rules. Although KAoS was originally designed to enable inter-
operability between complex web agents (software that acts on behalf of humans) (Bradshaw
et al., 1997; Suri et al., 2003), it was later applied to web services (Uszok et al., 2004a,d,c,b) and
grid computing (Johnson et al., 2003; Uszok et al., 2004a).

Core entities. The authors define a set of core vocabularies, known as KAoS policy ontologies,
that are used to describe:
• actors (both humans and artificial agents);
• actions (various system operations such as accessing, communication and monitoring);
• resources (entities associated with actions);
• policy types (authorisations and obligations); and
• policies (positive and negative constraints).

Specification of policies. A policy is used to express either an authorisation or an obligation,
on the part of one or more actors, with respect to actions relating to resources. Policies
are represented as instances of the aforementioned policy types. The language is not meant
to be exhaustive, but rather to provide a basis, which can be further extended, to cater
for use case specific classes, instances and rules. In order to simplify policy administration
and enforcement, actors and resources are organised into domains, that can be nested
indefinitely. Domains and subdomains are used to represent complex relationships between
classes and instances, such as organisation structures.

Enforcement of policies. The authors propose a general policy and domain services frame-
work, which consists of the following components: a policy administration tool, directory
services, guards, enforcers and a domain manger. The policy administration tool, known
as KPAT, is a user friendly interface that allows administrators, who are unfamiliar with
DAML and OWL, to either specify new or maintain existing policies. Guards are responsible
for enforcing platform independent policies. While, enforcers are responsible for enforcing
policies that are platform dependent. The domain manger is used to manage domain
membership and to distribute policies to guards. This component is also responsible for
notifying the guards of any policy updates. Given that the actual enforcement may depend
not only on the action to be performed, but also on the application, it may be necessary
for the developer to implement platform specific code. In order to simplify the integration
of these custom enforcement mechanisms with the KAoS framework a number of interfaces
are provided as a guide for developers.
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In a follow up paper (Uszok et al., 2003a), the authors discuss how description logic can be
used to support policy administration, exploration and disclosure. Administration is primar-
ily concerned with subsumption based reasoning and the determination of disjointness. Using
deductive reasoning it is possible to identify and resolve conflicts at design time. Whereas, ex-
ploration and disclosure is supported using instance classification capability. Using abductive
reasoning it is possible to both test constraints, and to return relevant constraints given one or
more properties.
In Uszok et al. (2003a), the authors propose a general algorithm for conflict resolution and

harmonisation, which can be used even when the entities (actors, actions, resources and
policies) are specified at different levels of abstraction. The proposed conflict resolution strat-
egy is based on policy priorities and timestamps. In the event of a conflict the algorithm takes
the policy with the lowest precedence and subdivides it until the conflicting part has been iso-
lated. The conflicting policy is removed, and non conflicting policies are generated and feed into
the knowledge base.

3.2.2 Rule Based Approaches
One of the benefits of a rule based approach is that it is possible to support access control
policies that contain instance dependencies or variables. Like ontology based approaches, access
control policies are defined over ontology entities. Therefore access control policies specified
using different vocabularies can easily be integrated. In this section, we examine two different
rule based languages and enforcement frameworks, Rei (Kagal and Finin, 2003; Kagal et al.,
2003b) and Protune (Bonatti et al., n.d.; Bonatti and Olmedilla, 2005, 2007). Although Rei
is a general policy language, it is primarily concerned with the specification and enforcement
of policies in ubiquitous environments. Protune, is also a general policy language, however the
authors focus primarily on trust negotiation and policy explanations

3.2.2.1 Rei

Rei (Kagal and Finin, 2003; Kagal et al., 2003b) is a Semantic Web policy language and dis-
tributed enforcement framework, which is used to reason over policies, that are specified using
RDFS or Prolog rules. As OWL has a richer semantics than RDFS, the authors later provided
an OWL representation for their policy language (Denker et al., 2005; Kagal et al., 2006). Like
KAoS, Rei is a general policy language which can be applied to agents and web services (Denker
et al., 2005; Kagal and Berners-lee, 2005). Although Rei policies can be represented using RDFS
or OWL the authors adopt a rule based enforcement mechanism, in contrast to the description
logic enforcement mechanism adopted by KAoS.

Core entities. The authors propose a number of core ontologies, that are used to describe:
• entities (users, agents, services and resources);
• access rights (derived from the following speech acts: delegation, revocation, re-
quest, cancel, promise and command);

• actions (mapping between access rights to entities);
• conditions (one or more access rights applied to entities, combined using disjunction,
conjunction and negation);

• policy types (permissions, prohibitions, obligations and dispensations); and
• policies (policy rules and meta-policies).

Specification of policies. Although Rei provides support for four distinct policy types, there
is a direct mapping between permissions and prohibitions in Rei and the positive and
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negative authorisations in KAoS, and also between obligations and dispensations in Rei
and the positive and negative obligations in KAoS. Given requesters might not be known
to the system in advance, constraints are specified in terms of credentials (attributes that
are used to identify entities). By choosing to represent access rights as speech acts Rei is
able to support not only a wide range of policies but also the delegation and revocation of
policies. A policy is composed of a set of rules, based on the four policy types, that are
used to associate conditions with actions. A has predicate is used to associate permissions
and obligations with entities. Like KAoS, the core ontologies can be further extended to
meet the requirements of specific use cases.

Enforcement of policies. The Rei policy framework, called Rein (Rei and N3), presented in
Kagal and Berners-lee (2005) and Kagal et al. (2006), consists of the following components:
• a set of ontologies, used to represent Rein policy networks (resources, policies, meta-

policies and the Rein policy languages) and access requests; and
• a reasoning engine, that uses both explicit and derived knowledge to determine if a
request should be granted or denied.

The authors propose a distributed enforcement architecture, whereby each entity is respon-
sible for specifying and enforcing their own policies. Rein is capable of acting as a server
or a client. In server mode, Rein retrieves the relevant policies; requests the credentials
necessary to access the resource; and verifies the credentials against the policies. Whereas
in client mode, the server returns a link to a policy which the client must satisfy; Rein
generates a proof that the requester can satisify the policy; and forwards the proof to the
server. In order to cater for scenarios where part of the policy is private and part is public,
the authors propose a hybrid approach, where Rein acts both as a client and a server.

Using Rein it is possible to combine and reason over different access control policies,
meta-policies and policy languages. Policies are expressed using either RDFS or OWL, and
inference over both data resources and policies is performed using an N3 reasoner, known
as Cwm5. N3 was originally used as a representation syntax for RDF, however it was later
extended to allow for variables and nested graphs. Cwm extends N3 with inference rules and
built-in functions, making it possible to express relationships between graphs, specify both
existential and universal constraints and to represent implication. Although the authors
demonstrate how the Rei vocabulary can be used to specify policies, these policies could in
fact be represented using alternative ontologies.

In Kagal et al. (2003b), the authors discuss how conflict resolution can be achieved using
meta-policies. Priority policies are used to indicate dominance between policies or policy
rules. While, precedence policies are used to specify a default grant or deny, for policies,
sets of actions or sets of entities satisfying specific conditions. In order to guarantee that a
decision can always be reached, the authors propose a partial order between meta-policies.
Given Rei allows for policies to contain variables, conflicts need to be resolved at run-time,
as opposed to design time, which is the case with KAoS.

3.2.2.2 Protune

Protune (Bonatti and Olmedilla, 2005, 2007) is a policy language which was proposed by the
Research Network of Excellence on Reasoning on the Web, known as REWERSE6. Like Rei,
Protune adopts a rule based approach to policy enforcement. The authors identify usability as
one of the primary factors for a policy aware web. To this end, Protune was designed to support

5Cwm, http://www.w3.org/2000/10/swap/doc/cwm.html
6REWERSE, http://rewerse.net/
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both trust negotiation and policy explanations. Lightweight ontologies are used to represent
concepts, the relationships between these concepts and details of the evidences needed to prove
their truth. Protune is an extension of two other well known policy languages, the Portfolio and
Service Protection Language (PSPL) (Bonatti and Samarati, 2000) and PeerTrust (Gavriloaie
et al., 2004). PSPL is a model and framework, which uses rules to support policy filtering,
policy exchange and information disclosure. Whereas, PeerTrust is a language and a framework,
which uses semantic annotations and access control rules, in order to cater for automated trust
negotiation and access control.

Specification of policies. Protune policies are specified using rules and meta-rules (essentially
horn clauses with some syntactic sugar), which provide support for both deductive and
abductive reasoning. The former is used in order to enforce policies, whereas the latter is
used in order to retrieve information about the policy conditions that need to be satisfied.
Protune provides three predicate categories (decision predicates, provisional predicates and
abbreviation predicates).
• Decision predicates are used to specify the outcome of a policy.
• Provisional predicates are used to represent the conditions the requester must satisfy.

By default the system supports two conditions: requests for credentials and request
for declarations. Both credentials and declarations are used to assert facts about the
requester, however credentials are certified by a third party, whereas declarations are
not.

• Abbreviation predicates, which are composed of one or more provisional predicates, are
used to represent abstractions of the conditions listed in the body of the rule, simplifying
policy specification and maintenance.

It is however possible to extend the language, with custom predicate categories. Ontologies
are used to associate evidences (descriptive requirements of what is needed to meet the con-
ditions) with access conditions. Evidences of this nature facilitate negotiation. Metapolicies
are used to assign sensitivity levels to predicates, controlling when actions are executed and
constructing new provisional predicates. Metapolicies, containing details of the action and
the actor in charge of executing an action, are used to define new provisional predicates.

Enforcement of policies. The enforcement framework is composed of three separate compo-
nents, a negotiation handler, an execution handler and an inference engine.
• The negotiation handler is responsible for sending conditions to the requester and
providing responses to conditions that were requested.

• The execution handler is used to interact with external systems and data sources.
• The inference engine is tasked with both enforcing policies (deduction) and retrieving
evidences (abduction).

Like Rei, Protune can be used as a client, as a server, or both. Protune explanations
are provided by a component known as protune-x, which supports four different types of
queries:
• How-to queries (provide a description of the policy).
• What-if queries (give foresight into potential policy outcomes).
• Why queries (give explanations for positive negotiations outcomes).
• Why-not queries (give explanations for negative outcomes).

Protune is developed in Java with a Prolog reasoning component, which is compiled into
Java byte code. In Bonatti and Olmedilla (2007), the authors perform a performance
evaluation of the negotiation algorithm, using test data which was automatically generated.
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Based on the evaluation results the authors concluded that the systems scales well beyond
that which would be required for realistic policies.

3.2.3 Combined Ontology and Rule Based Approaches
A hybrid approach to policy specification and enforcement can be used to exploit the out of the
box deductive capabilities, of an ontology based approach, and the runtime inference capabilities,
of a rule based approach. In this section, we describe Proteus (Toninelli et al., 2005) which uses a
combined approach to policy enforcement. We also examine an alternative approach, presented
by Kolovski et al. (2007) which demonstrates how description logic based access control policies
can be extended with defeasible logic rules.

3.2.3.1 Proteus

Proteus (Toninelli et al., 2005) uses a hybrid approach to semantic policy specification. The
authors examine early versions of KAoS and Rei, and highlight the strengths and weaknesses of
both ontology based and logic based policy languages and frameworks. Like KAoS the authors
use ontologies to model both domain information and policies. Such an approach allows for
conflict resolution and harmonisation at design time. Like Protune, policy descriptions are used
to facilitate partial policy disclosure and policy negotiation. Like Rei, the authors adopt a rule
based approach in order to support dynamic constraints and run time variables. For example, to
support access control based on dynamic context pertaining to the requester or the environment.

Core entities. The context-aware adaptive policy model, which they call Proteus (Toninelli
et al., 2006, 2007), is composed of several core entities:
• resource state (the status of the various entities to be protected);
• actors (represented as roles, identities or security credentials);
• environment (the surrounding conditions and nearby resources);
• protection context (name-value pairs pertaining to resources, actors and the envi-

ronment); and
• policies (a mapping from resources to protection contexts).

Specification of policies. Policies are represented as classes and contextual information,
relating to the user, are represented as instances. Description logic deduction is used to
determine the policies that are relevant for the instance data supplied. However, using
description logic reasoning it is not possible to cater for contextual properties that are
based on property paths or that are associated with variables. In order to handle reasoning
of this nature, the authors propose context aggregation and context instantiation rules.
Such rules are represented as horn clauses, with predicates in the head and ontological
classes and properties in the body.

Enforcement of policies. A subsequent paper by Toninelli et al. (2009), presents the Proteus
policy framework, which is composed of the following core components: a policy installation
manager, a reasoning core, a policy enforcement manager and a context manager.
• The policy installation manager is responsible for loading ontologies, access control
policies, contextual information and quality constraints.

• The reasoning core performs reasoning over policies, context and quality constraints in
order to determine which policies are currently active.

• The policy enforcement manager intercepts action requests, collects relevant contextual
information and interacts with the reasoning core in order to determine if access should
be granted or denied.
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• The context manager collects state information pertaining to system entities and for-
wards this contextual information to the reasoning core.

The authors provide details of their prototype which is implemented in Java with a Pellet
reasoner. The proposed solution supports incremental reasoning via an OWL application
programming interface and SPARQL queries. Their evaluation shows that incremental
reasoning over increasing assertions remains constant. Furthermore in light of increasing
assertions, queries with quality constraints are evaluated in constant time and queries with-
out quality constraints demonstrate linear growth.

3.2.3.2 Kolovski et al. (2007)

Kolovski et al. (2007) propose a description logic formalisation for XACML. The authors demon-
strate how together description logic and defeasible logic rules, known as defeasible description
logic (Governatori, 2004), can be used to understand the effect and the consequence of sets of
access control policies.

Enforcement of policies. Although the actual framework is not presented, the following
subset of policy services are described:
• Constraints. Like Finin et al. (2008b,a) the proposed solution caters for role cardi-

nality and separation of duty;
• Comparison. Policies or sets of policies can be compared in order to determine if one
is equivalent to or logically contains the other;

• Verification. Like Bonatti and Olmedilla (2007), this component checks if the policy
satisfies a given property;

• Incompatibility. This component provides details of policies that cannot be active
at the same time;

• Redundancy. This component checks hierarchies to ensure that all policies are reach-
able; and

• Querying. Given a set of attributes, this component searches for relevant policies.
The proposed XACML analysis prototype was implemented on top of Pellet (an open source
description logic reasoner). The authors compare their first order logic analysis tool against
a propositional logic analysis tool, using identical test data (the access control policy for
the Continue Conference Manager System). Verification of the policies using their first
order logic analysis tool took .42 seconds, whereas the propositional tool took less than a
millisecond. The authors attributed this to the fact that the Pellet is optimised for reasoning
over more expressive formalisms and conclude that the proposed approach is still acceptable
for practical purposes.

3.3 Access Control for RDF
In the previous sections, we saw how access control models and standards can be represented/ex-
tended using semantic technology and we examined a number of different policy languages. In
this section, we present the different access control mechanisms that have been used to protect
RDF data. In particular, we focus on the different mechanisms used to specify access control
policies, access control reasoning strategies based on the RDF data model and the different query
rewriting strategies.
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3.3.1 Specification of Access Control for RDF
Over the years several researchers have focused on the modelling and the enforcement of access
control over RDF data. A number of authors (Reddivari et al., 2005; Jain and Farkas, 2006;
Abel et al., 2007; Flouris et al., 2010) define access control policies based on RDF patterns, that
are mapped to one or more RDF triples. Li and Cheung (2008); Gabillon and Letouzey (2010)
and Costabello et al. (2012a) inspired by existing relational database access control strategies,
propose a view based access control model for distributed RDF data. Whereas, Sacco et al.
(2011) and Costabello et al. (2012a) both propose access control ontologies and enforcement
frameworks that rely on SPARQL ASK queries to verify if the requester possesses the credentials
necessary to access a resource.

3.3.1.1 Triple Patterns

Reddivari et al. (2005) define a set of actions required to manage an RDF store and demonstrate
how access control rules can be used to permit or prohibit the requested actions. The actions
are organised into four categories:

• adding (the insertion of explicit triples, implicit triples and sets of triples);

• deleting (the deletion of explicit triples, implicit triples and sets of triples);

• updating (directly replacing one triple with another); and

• querying (returning triples or using triples to return answers to queries).

Policies are defined using Prolog facts and rules and compiled into Jena rules. Two predicates
permit and prohibit are used to grant and deny access rights based on the aforementioned
actions, to one or more triples using triple patterns. Authorisations can be further constrained
using conditions relating to policies, triples and agents.

• Policy specific conditions relate to the access control policies, for example a user can only
add instances if they added the class.

• Triple specific conditions correspond to the triple specified in the authorisation, for example
if an authorisation governs a triple then all triples associated with a subProperty relation
are governed by the same policy.

• Agent specific conditions use properties of the user to limit the authorisation, for example
it is possible to limit access to users who are managers in a specific company division.

The proposed RDF Store Access Control Policies (RAP) framework checks the policy to ensure
that the action is permitted, temporarily allows the action, and afterwards checks the policy to
ensure that the inferences are allowed. The authors propose default and conflict preferences that
can simply be set to either permit or deny.
Flouris et al. (2010) also use RDF triple patterns to expose or hide information represented

as RDF. Although the authors go beyond simple graph patterns by allowing the graph pattern
to be constrained by a WHERE clause, no consideration is given to either data or policy inference.
Like Reddivari et al. (2005), the authors propose a default policy and a conflict resolution
strategy. They formally define the semantics of the individual access control statements and
the entire access control policy, and present the different possible interpretations for the default
semantics and the conflict resolution. A flexible system architecture that demonstrates how
the access control enforcement framework can be used with disparate RDF repositories and
query languages is presented. The system was implemented using Jena ARQ, Jena SDB with a
Postgresql back-end and Sesame. The authors reported a linear increase in processing times over
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increasing document size, statements in an access control policy, and triple pattern constraints
in the WHERE clause.
Both Jain and Farkas (2006) and Abel et al. (2007) also use triple patterns to specify access

control policies. Information on their approaches is presented under reasoning (Section 3.3.2)
and query rewriting (Section 3.3.3), respectively.

3.3.1.2 Views and Named Graphs

Gabillon and Letouzey (2010) highlight the possible administration burden associated with main-
taining access control policies that are based on triple patterns. They propose the logical dis-
tribution of RDF data into SPARQL views and the subsequent specification of access control
policies, based on existing RDF Graphs or predefined views. The policy language contains the
following entities:

• subjects (identified using attributes pertaining to users or processes);

• objects (represented as either RDF graphs or RDF views); and

• actions (that are tightly coupled with the SPARQL SELECT, ASK, CONSTRUCT and DESCRIBE
query types).

Access control policies are specified using contextual information pertaining to the user, resources
or the environment. The body of the rule is a possibly empty condition, or a combination of
conditions connected via conjunction or disjunction. The head of the rule is an authorisation.
The authors describe an enforcement framework, whereby users define security policies for the
RDF graph/views that they own. Users may delegate rights to other users by specifying an
authorisation which grants construct and describe privileges to the RDF Graph or View.
Although the authors acknowledge the need for conflict resolution, they do not propose a conflict
resolution strategy.

3.3.1.3 Ontology Concepts

Sacco and Passant (2011b,a) and Sacco et al. (2011) demonstrated how an extension of the Web
Access Control vocabulary known as the Privacy Preferences Ontology (PPO) can be used to
restrict access to an RDF resources, statements and graphs. An access control policy is composed
of:

• a restriction in the form of an RDF resource, statement or graph;

• a condition which provides specific details of the restriction, for example hasProperty,
hasLiteral;

• an access privilege (either read, write or both); and

• a SPARQL ASK query that must be satisfied by the requester.

The authors describe the formal semantics of the PPO and present a detailed description of their
Privacy Preferences Manager (PPM), which can be used to enforce access control using SPARQL
ASK queries. A follow-up paper Sacco and Breslin (2012) extends the original PPO and PPM
to allow access to be restricted based on a dataset or a particular context. The authors also
provide support for conflict resolution, more expressive authorisations (in the form of negation
and logical operators), and a broader set of access privileges (create, read, write, update,
delete, append and control). In Sacco et al. (2013), the authors demonstrate how both the
PPO and the PPM can be used to cater for fine grained access control on a mobile device.
A number of shortcomings of their original enforcement algorithm are identified and a more
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efficient algorithm which utilises pre-indexing, query analysis and results filtering is presented
and evaluated.
An alternative access control vocabulary called the Social Semantic SPARQL Security for

Access Control (S4AC) is presented in Villata et al. (2011). Like Sacco and Passant (2011b)
they extend the WAC to cater for fine grained access control over RDF data. Their proposal is
tightly integrated with several social web and web of data vocabularies, namely: SIOC7, SCOT8,
NiceTag9, TIME10, FOAF11, Dublin Code12 and RELATIONSHIPS13. The authors define access
control policies for named graphs, which can also be used to grant/deny access to sets of triples.
S4AC provides support for logical operators and a broad set of access privileges (create, read,
write, update, delete, append and control) from the offset. Like Sacco and Passant (2011b),
SPARQL ASK queries are used to determine if the requester has the permissions necessary to
access a resource. The authors propose the disjunctive evaluation of policies, thus circumventing
the need for a conflict resolution mechanism. Follow up work by Costabello et al. (2012a,b)
describes how an access control framework, called Shi3ld, can be used to enforce access control
over SPARQL endpoints in a pluggable manner. Although limited implementation details are
provided, an evaluation over the Berlin SPARQL Benchmark dataset is performed. The authors
conclude that in general there is a small overhead associated with access control. However,
when access is granted to a small number of named graphs the query executes faster than the
respective query without access control.
In a follow-up paper (Costabello et al., 2013) the authors extend the Shi3ld framework to

cater for access control for a Linked Data Platform (LDP)14 (Speicher et al., 2014). Resources
refer simply to Linked Data resources that are queries, created, modified and deleted via HTTP
requests processed by a LDP. Two alternative frameworks are presented, one which contains an
embedded SPARQL engine and a SPARQL-less solution. In the first scenario, Shi3ld remains
unchanged. Whereas in the second scenario, authorisations cannot contain embedded SPARQL
queries and therefore are evaluated using subgraph matching. In their evaluation the authors
compare all three frameworks, using the Billion Triple Challenge 2012 Dataset15. Based on
their performance evaluation the authors conclude that access control over SPARQL endpoints
is marginally slower than access control over LDP resources and that their SPARQL-less solution
exhibits a 25% faster response time.

3.3.2 Reasoning over RDF Access Control Policies
Inference is a process whereby new data is derived from data which is known or assumed to be
true. In Section 3.2, we discussed how deduction and abduction can be used to simplify both
policy specification and maintenance. However, inference can also be used to deduce informa-
tion, which users should not have access to, commonly known as the inference problem. Both
Thuraisingham (2007) and Nematzadeh and Pournajaf (2008) highlight the need for security
mechanisms to protect against such unauthorised inference. Although this is not a new problem,
the authors highlight the fact that with advances in current data integration and mining tech-
nologies, the problem is further magnified. According to Qin and Atluri (2003), if the semantic
relationship between entities is not taken into account it may be possible to infer information

7http://rdfs.org/sioc/spec/
8http://scot-project.net/
9http://ns.inria.fr/nicetag/2010/09/09/voc.html

10http://www.w3.org/TR/2006/WD-owl-time-20060927/
11http://xmlns.com/foaf/spec/
12http://dublincore.org/documents/dcmi-terms/
13http://vocab.org/relationship/
14LDP, http://www.w3.org/2012/ldp/wiki/Main_Page
15BTC2012, http://km.aifb.kit.edu/projects/btc-2012/
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which has been restricted, or access control policies may not exist for the inferred information
making this information inaccessible.
Relational database administrators have tackled the problem using constraints, that are speci-

fied when the database is designed, or updated and enforced when the data is queried. A number
of different reasoning strategies have been proposed for RDF data. Qin and Atluri (2003); Ja-
vanmardi et al. (2006a); Ryutov et al. (2009) and Amini and Jalili (2010) propose strategies
for propagation of access rights based on authorisation subjects, access rights and resources.
Whereas, Jain and Farkas (2006); Kim et al. (2008) and Papakonstantinou et al. (2012) demon-
strate how access rights can be inferred for new triples deduced based on RDFS inference rules.
In contrast, Bao et al. (2007) present a number of use cases where it is desirable to grant access
to data which has been inferred from unauthorised data. In order to meet this need, the authors
present a privacy preserving reasoning strategy.

3.3.2.1 Propagation of Authorisations

Early proposals for the propagation of authorisations focused on reasoning over ontology con-
cepts (Qin and Atluri, 2003). Subsequent work by Javanmardi et al. (2006b) and Javanmardi
et al. (2006a) focused not only on ontology concepts but also on reasoning over ontology proper-
ties and ontology instances. An alternative strategy which was proposed by Ryutov et al. (2008,
2009), takes a more abstract approach by propagating policies based on nodes and edges in a
semantic network.

Reasoning over Concepts. Qin and Atluri (2003), extend XML based access control to
take into account the semantic relationships between the concepts that need to be pro-
tected. The authors propose a Concept Level Access Control (CLAC) model, which al-
lows for reasoning over concepts appearing in authorisation subjects, permissions and ob-
jects. Access control policies are represented using an OWL based vocabulary, which
they call the Semantic Access Control Language (SACL) and data instances are defined
in domain ontologies. Two properties SACL:higherLevelThan and SACL:lowerLevelThan
are used to specify a partial order between authorisation subjects and permissions. The
proposed access control propagation is based on six domain independent relationships
(superclass/subclass, equivalence, partof, intersection, union and complement).
In the case of equivalence, partof, union and subclass positive policies are propa-
gated from subject to object and negative policies are propagated from object to subject.
Where there is an intersection between two concepts, only negative policies are prop-
agated. In the case of complement relations neither positive nor negative authorisations
are propagated. The authors acknowledge the need for conflict resolution and simply pro-
pose a negation takes precedence handling mechanism. Although a motivating scenario is
described, no implementation details or evaluation are provided.

Reasoning over concepts, properties and individuals. The Semantic Based Access Con-
trol Model (SBAC) proposed by Javanmardi et al. (2006b) and Javanmardi et al. (2006a),
builds on the work presented in Qin and Atluri (2003), by catering for access control policy
propagation, not only based on the semantic relations between ontology concepts, but also
based on the relations between concepts, properties and individuals. Like Qin and Atluri
(2003), OWL vocabularies are used to represent the authorisation subjects, permissions
and objects, however the authorisations themselves are specified using rules. The authors
propose the propagation of access rights based on seven different types of inference, from:
• concept to concept (where classes are deemed related based on some vocabulary, for
example rdfs:subClass, owl:equivalentClass);
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• concept to individual (where an entity is a type of class, for example if employee is a
class and JoeBloggs rdf:type employee);

• individual to individual (using properties such as owl:sameAs it is possible to propagate
entities that represent the same thing);

• property to concept (if access is granted to the property access should be granted to the
classes governed by rdfs:domain and rdfs:range);

• property to property (where properties are deemed related based on some vocabulary,
for example rdfs:subProperty, owl:equivalentProperty);

• property to individual (where an entity is a type of property, for example if roles is a
property and manager is of rdf:type role); and

• concept to property (where access is granted to a concept it should also be granted to
all properties relating to that concept).

The authors describe how the aforementioned semantic relations can be reduced to sub-
sumption relations and propose a general propagation strategy for subsumption relations
among subjects, permissions and objects. In the case of subjects and objects, both positive
and negative access rights propagate from subsumee to subsumer. However, in the case of
permissions positive access rights propagate from subsumee to subsumer, while negative
access right propagate from subsumer to subsumee. Although an architecture is presented
by Javanmardi et al. (2006a), very little detail on the actual enforcement mechanism is
supplied. Their evaluation, which is performed over increasing datasets, highlights that
their custom reasoner over the reduced ontology performs considerably better than a Pellet
reasoner over the standard ontology.

Follow-up papers by Ehsan et al. (2009) and Amini and Jalili (2010) build on previous
work, by providing for an access control model with formal semantics and an enforcement
framework, which is suitable for distributed semantic aware environments (for example
Semantic Web, Semantic Grid and Semantic Cloud Computing). Policy rules, in both the
conceptual and individual levels, are specified using a combination of deontic and description
logic, which they refer to as MA(DL)2. The prototype consists of:
• a user interface developed using the Google Web Toolkit;
• a data reasoner implemented in Jena; and
• a tableaux reasoner implemented in Prolog.

The authors present the results of a performance evaluation over increasing policy rules,
where the decision to grant or deny access is based on ground policies, inferred policies and
the proposed conflict resolution strategy. The authors conclude that real-time reasoning is
expensive. Therefore they suggest:
(i) using the parallelisation facilities of the tableaux system;
(ii) adopting a proof based approach where the requester presents authorisation rules that

demonstrate they can access the requested resource; and
(iii) materialisation of inferred relations in advance.

Reasoning based on the semantic network. Ryutov et al. (2008, 2009) propose a policy
language which can be used to specify access control in terms of the semantic relationships
between the nodes and edges of a graph. The policy language is composed of the following
entities:
• Subjects (the union of users and groups);
• Permissions (operations to be performed on resources);
• Resources (rdf resources);
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• Links (rdf properties);
• Types (rdf classes);
• Objects (the union of resources, links, properties and types); and
• Entities (the union of subjects and objects).

The following predicates are used to describe the structure of the semantic network:
• link is used to specify a relationship between two entities;
• property is used to attach a literal property to an entity;
• type is used to specify an instance of a class; and
• permit is used to denote a subject is assigned permission to a resource.

In order to cater for policy propagation, two directed acyclic graphs are used to represent
the relationship between users and groups (using a memberOf property) and between objects
and bundles (using a partOf relation). Propagation policies are defined to allow for policy
propagation based on both the partOf and memberOf relations. The authors propose a
conflict resolution algorithm, which is based on the semantic network. When a policy
explicitly refers to a node, the policy distance is zero. Whereas, when a policy is implicitly
assigned, based on a propagation policy, the distance is determined by counting the number
of nodes in the path from the node with the explicit policy. The smaller the distance,
the more specific the policy. If multiple policies exist at different distances, the most
specific policy takes precedence. If multiple explicit conflicting policies exist, conflicts are
resolved using logical conjunction. In the case of implicit policies, conflicts are resolved
using logical disjunction. The authors also propose safety and consistency policies that are
used to prevent undesirable access control policy specification and propagation, for example
resources that nobody can access. A specific implementation which limits access to semantic
objects, files and executables is presented, however no formal evaluation is performed.

3.3.2.2 RDFS Inference

When it comes to RDFS inference, there are two different strands of research. The first infers
access rights for triples that are inferred using RDFS entailment rules (Jain and Farkas, 2006;
Kim et al., 2008). Whereas the second uses RDFS entailment rules to propagate permissions for
triples that already exist (Papakonstantinou et al., 2012).

Infer access right for new triples. Jain and Farkas (2006), demonstrate how RDFS entail-
ment rules can be used not only to infer new RDF triples, but also to infer access control
annotations for those triples. The authors use RDF triple patterns and associated security
classifications, known as security labels, to limit access to RDF statements. They define a
subsumption relationship between patterns and stipulate that subsuming patterns must be
as restrictive as the subsumed patterns. In addition, they define a partial order between
security labels, which is used to determine the security classification of triples inferred via
RDFS entailment rules. If more than one pattern maps to a statement the most restrictive
or the lowest upper bound takes precedence. The authors provide formal definitions for each
of the RDF security objects and define an algorithm to generate security labels for both
explicit and inferred triples based on a security policy and a conflict resolution strategy.
Limited details of the implementation are supplied and no evaluation is performed.

Kim et al. (2008) demonstrate how together authorisations and RDFS inference rules
can be used to generate new authorisations. An authorisation is defined as a four tuple
〈sub, obj, sign, type〉, where sub refers to the access control subject; obj is represented an
RDF triple pattern; act is the operation; sign indicate if access is granted or denied; and
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type which is either R to indicate that the authorisation should be propagated or L if it
should not. The authors discuss how rdfs:subClass, rdfs:subProperty and rdf:type
inference can be used to infer new authorisation objects (triple patterns) and consequently
new authorisations. In addition, they examine the different scenarios which might result in
access to data being both permitted and prohibited. If the authorisation that is prohibited
is more specific than the authorisation that is permitted based on the subclass/subproperty
hierarchy then access should be denied. In order to determine if there is a conflict, only
authorisations with a superclass or superproperty that is negative need to be checked.

Infer and propagate access right for new triples. Papakonstantinou et al. (2012) propose
a strategy for associating access control annotations results using RDFS inference and
propagation policies. In the proposed strategy access to triples is granted/denied based on
annotations that are assigned to triples. In the presented modelling both the triples and
the corresponding annotations are represented as quads. Annotations can be:
• directly associated with triples;
• inferred using RDF inference rules;
• propagated using RDF inference rules; or
• assigned a default label.

The authors demonstrate how the RDFS subClass, subProperty and type inference rules
can be used to assign annotations to inferred triples. However, they do not dictate how
the access control annotations assigned to the premises should be combined, but rather
propose an abstract operator which can be adapted to suit particular use cases. In addition,
the authors demonstrate how the RDFS subClass, subProperty and type inference rules
can be used to propagate permissions to existing triples. As per inference rules existing
annotations and propagated annotations are inferred by means of a domain operator. The
triples, access control labels and details of the triples that are used to derive an annotation
are stored in a relational database. The database is composed of a Quad table, a LabelStore
table and a Map table. The Map table is used to associate a unique id with each URI and
literal. When labels are associated with triples directly, the annotation is represented in
the label attribute of the Quad table. However in the case of inferred or propagated labels,
a reference is placed in the LabelStore for each of the triples that are used to generate the
annotation. The authors evaluate their prototype over both ProgresSQL and MonetDB
relational databases. Based on their performance evaluation of both the inference and
propagation rules, the authors concluded that more efficient storage and indexing schemes
are required.

3.3.2.3 Reasoning over restricted data

When it comes to reasoning over restricted data, there is a general consensus that any information
that can be inferred from restricted data should also be restricted. An alternative viewpoint is
presented by Bao et al. (2007). The authors focuses on a number of use cases where it is desirable
to grant access to information that has been inferred from restricted data:

(i) a calendar showing the existence of an appointment without revealing specifics;

(ii) a booking engine sharing partial hotel details; and

(iii) a pharmacy confirming that the patients drugs are reimbursable without disclosing details.

The open world assumption is used to ensure that users cannot distinguish between information
which does not exist and information with is inaccessible. The authors stipulate that, the
knowledge base should not lie, the answers given should be independent of any previous answers
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and it should not be possible to infer any restricted data. The proposed strategy is based on
the notion of conservative extension. Essentially the reasoner keeps a history of the answers to
all previous queries. For each subsequent query, the history is consulted, in order to verify that
unauthorised information cannot be inferred by the requester.

3.3.3 Partial Query Results
A number of the access control mechanisms for RDF data that we have examined, demonstrate
how their access control can be enforced on top of SPARQL queries. However, the solutions
we have examine thus far either grant or deny access to the entire query. In this section, we
examine the different strategies that can be used to ensure that access to unauthorised data is
not permitted. Such approaches can be used to grant access in the general case and deny access
to specific data.

3.3.3.1 Data Filtering

Dietzold and Auer (2006) examine access control requirements for an RDF Store from a semantic
wiki perspective. The authors propose access control policy specification at multiple levels of
granularity (triples, classes and properties). In addition, they define three atomic actions (read,
insert and delete) for both individual triples and sets of triples. Authorisations are used to
generate a virtual model of the data, upon which user queries are executed. Authorisations
are used to associate filters (SPARQL CONSTRUCT queries) with users and resources. When a
requester submits a query, a virtual model is created based on the matched authorisations. The
query is executed against the virtual model, which only contains data the requester is authorised
to access.
Muhleisen et al. (2010) describe a Policy-enabled Linked Data Server (PeLDS), which uses

WebID to authenticate users. The policy language caters for the specification of access control
policies for particular triple patterns, resources or instances, using SWRL rules. An OWL on-
tology is used to identify the rule types (single concept and triple pattern) and supported
actions query and update. Negation is not supported in the presented modelling. When a re-
quester submits a query, the system uses their WebID to determine the data instances that the
user has been granted access to and generates a temporary named graph containing authorised
data. The requesters query is subsequently executed against the temporary named graph and
the results are returned to the user.

3.3.3.2 Query Rewriting

To date a number of query writing strategies have been proposed. Different strategies involve
creating bindings for variables and adding them to the query WHERE clause in the case of positive
authorisations, or the query MINUS clause in the case of negative authorisations (Abel et al., 2007).
Binding user attributes to path expressions (Franzoni et al., 2007). Using FILTER expressions
to filter out inaccessible data (Chen and Stuckenschmidt, 2010; Oulmakhzoune et al., 2010).
Limiting the query to a specific named graph (Costabello et al., 2012a) or rewriting a view so
that it considers propagation rules and both instance and range restrictions (Li and Cheung,
2008).

Bindings added to where or minus clause. Abel et al. (2007) propose the evaluation of
access control policy constraints at both the query layer and the data layer. Contextual
conditions that are not depended on RDF data are evaluated by a policy engine. Whereas
the query is expanded to include the contextual conditions that are dependent on RDF data.
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Such an approach requires the substitution of variables to ensure uniqueness, however in
doing so they are able to leverage the highly optimized query evaluation features of the
RDF store. In the presented modelling, both positive and negative authorisations are
composed of sets of contextual predicates, path expressions and boolean expressions. Queries
are assumed to have the following structure SELECT/CONSTRUCT RF FROM PE WHERE BE ,
where RF represents the result form (projections in the case of SELECT queries and triples
in the case of CONSTRUCT queries); PE denotes the path expression; and BE corresponds
to one ore more boolean expressions connected via conjunction or disjunction operators.
An authorisation is deemed applicable if the triple pattern the policy is protecting, is part
of either the PE or the BE , and the corresponding contextual predicates, path expressions
and boolean expressions are satisfied. The authors propose a query rewriting algorithm,
which constructs bindings for authorisation path expressions and contextual predicates.
For positive authorisations the bindings are appended to the query WHERE clause. Whereas,
for negative authorisations the bindings are added to a MINUS clause, which in turn is
appended to the query. The authors conclude that the proposed rewriting strategy, which
was evaluated over a Sesame database, increases linearly with additional WHERE clauses.

Binding user attributes to path expressions. Franzoni et al. (2007) propose a query
rewriting strategy, which is used to grant/deny access to ontology instances. The au-
thors rewrite queries to take into account contextual information, pertaining to the user
or the environment. A fine grained access control (FGAC) policy is defined as a tuple
〈target, 〈property, attribute, operator〉〉 where:
• target is the resource that the policy relates to;
• property is a path expression, which either directly or indirectly relates to the resource;
• attribute is the user attributes, that are bound to the path expression variables; and
• operator is the filter condition.

The authors propose a two tiered approach to access control enforcement. Access control
policies are used to determine if access should be granted or denied. FGAC policies are only
applied if access is granted. If the query contains one ore more FGAC policy targets, the
query is rewritten to include the path expression and a WHERE clause, which is composed
of an expression generated from the variables in the path expression, the attributes of the
requester and the operator.

Optionals and filters. Chen and Stuckenschmidt (2010) present a query rewriting strategy,
which can be used to restrict access to data represented using ontologies. The authors
focus on restricting access to instance data. Access control policies are used to deny access
to specific individuals or to grant/deny access to instances associated with a given class or
property. When access is prohibited to specific individuals, a FILTER expression is generated,
which ensures that none of the query variables bind to the prohibited individuals. When
access is granted to predicates or classes, a FILTER expression is generated, which binds the
relevant variables in the query to the specified predicate or class. Whereas, when access is
prohibited to predicates or classes, the matching triple patterns are made OPTIONAL and a
FILTER expression is generated, which ensures that the corresponding variables do not bind
to the specified predicate or class, and variables that are !BOUND are not returned.

Oulmakhzoune et al. (2010) propose a query rewriting strategy for SPARQL queries.
In the presented modelling, both positive and negative authorisations are composed of sets
of filters that are associated with simple conditions or involved conditions.
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Given a SPARQL query the algorithm examines each individual basic graph pattern (BGP).
In the case of:
• simple conditions, when authorisations permit/deny access to a single triple pattern,
the following query rewriting strategy is applied:
– If all authorisations that match the triple pattern, permit access to the triple pat-

tern, no action is required.
– If all authorisations prohibit access to the triple pattern, the triple pattern is

deleted.
– Otherwise, if the BGP is converted to an OPTIONAL BGP, and the authorisation

FILTER expression is added to the query.
• involved conditions, where authorisations permit/deny access for a given predicate, the

following query rewriting strategy is applied:
– In the case of positive authorisations, if the query contains a triple pattern which

matches the predicate of the authorisation, the FILTER condition is added. Alter-
natively both the triple pattern and the corresponding FILTER are added.

– In the case of negative authorisations, if the query contains a triple pattern which
matches the predicate of the authorisation, and the object is a variable, both the
FILTER condition and a !BOUND expression are added.

– Alternatively the triple pattern, the corresponding FILTER condition and a !BOUND
expression are added.

Named graph added to the query. Costabello et al. (2012a) restrict access to named graphs
using query rewriting. An access control policy is a tuple 〈ACS,AP, S,R,AEC〉, where ACS
is a set of access conditions (specified using SPARQL ASK queries); AP is a set of access
privileges (CREATE, READ, UPDATE or DELETE); S denotes the subjects to be protected; R
represents the named graphs to be protected; and AEC is the evaluation context specified
using name value pairs (verified using SPARQL BINDINGS). In addition to the SPARQL
query that the user wishes to execute, the user provides their access credentials, in the form
of a SPARQL UPDATE query, which contains contextual data. The enforcement framework
stores the contextual data in a named graph and retrieves the authorisations that match the
query type. In order to determine if access is permitted, the ASK query and the BINDINGS,
that are specified in the authorisation, are executed against the users contextual graph. If
the ASK query returns true then the query is rewritten to include the corresponding named
graph.

Expanding views based on propagation rules and instance and range restrictions.
Li and Cheung (2008) propose a query rewriting strategy for views generated from onto-
logical relations. An access control policy is defined as a tuple 〈s, v, sign〉, where s denotes
the subject, v represents a set of concepts, relations and filters and sign is used to indi-
cate permissions and prohibitions. Both views and queries that are also generated from
sets of concepts, relations and filters are represented using rules. Propagation policies are
used to generate implicit authorisations from explicit authorisations, based on subsump-
tion relations between access control subjects and subsumption relations between concepts,
appearing in the body of the view. The proposed query rewriting strategy involves: (i) re-
trieving the policies applicable to the subject, taking into account the subject propagation
rules; (ii) expanding each of the concepts in the body of the view based on the concept
propagation policies; and (iii) applying the relevant range and instance restrictions to the
query based on the expanded view.
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3.4 Access Control Requirements for Linked Data
More recently, the focus has shifted to the specification and enforcement of access control for
Linked Data. Although Sacco et al. (2011) and Costabello et al. (2013) describe how their
frameworks can be used in conjunction with Linked Data, each of the access control mechanisms
we have examined thus far could potentially be used to enforce access control over Linked Data.
However, as it currently stands there is still no formal recommendation for access control over
Linked Data. Therefore, in this section we provide a summary of existing requirements, and
present an overview of the general policy languages presented in Section 3.2 and the different
access control strategies described in Section 3.3.
The requirements we use are derived from several papers that examine access control for RDF

from a number of perspectives. Yagüe et al. (2003) examine the different layers of the Semantic
Web and how the technologies and concepts can be applied to access control. Both Damiani
et al. (2005) and Weitzner et al. (2006b) focus on the access control mechanisms that are required
to support new access control paradigms where user privacy is a key requirement. De Coi et al.
(2008) and Bonatti and Olmedilla (2007) investigate the interplay between trust, access control
and policy languages. While, Ryutov et al. (2009) focus more on the data model, investigating
access control requirements from a graph perspective, as opposed to the traditional hierarchical
approach. In this section, we correlate and categorise the RDF access control requirements
identified by each of the aforementioned researchers.

3.4.1 Specification
Generally speaking, access control policy specification requirements relate to the types of policies
that can be expressed, and the interoperability of the chosen representation format. An overview
of each of the requirements relating to access control specification is presented below and a
summary of existing proposals is depicted in Table 3.1. One requirement, which we have chosen
not to include is monotonicity. According to Bonatti and Olmedilla (2007), the addition of
new evidences and policies should not negate any of the previous conclusions. However, given
the need to support negative access control policies, and also changes in contextual constraints,
we would argue that access control should in fact be non-monotonic.

Granularity (Ryutov et al., 2009; Amini and Jalili, 2010). Ryutov et al. (2009) adopt a
graph perspective, stating that it should be possible to specify access control rules for nodes
(entities) and edges (semantic relationships between entities). Whereas, Amini and Jalili
(2010) adopt an ontological view, stating that it is necessary to specify policies for both
ontology concepts and individuals. Existing access control strategies for RDF, resources are
specified at several different levels of granularity. Namely, triples (Dietzold and Auer, 2006;
Papakonstantinou et al., 2012; Sacco and Passant, 2011b), named graphs (Costabello et al.,
2012b; Gabillon and Letouzey, 2010; Sacco and Passant, 2011b), views (Li and Cheung,
2008), triple patterns (Jain and Farkas, 2006; Kim et al., 2008; Muhleisen et al., 2010; Red-
divari et al., 2005), graph patterns with filters (Abel et al., 2007; Chen and Stuckenschmidt,
2010) and graph patterns without filters (Flouris et al., 2010), classes and properties (Di-
etzold and Auer, 2006), ontology concepts (Bonatti and Olmedilla, 2007; Amini and Jalili,
2010; Ehsan et al., 2009; Javanmardi et al., 2006a; Kagal and Finin, 2003; Kolovski et al.,
2007; Oulmakhzoune et al., 2010; Qin and Atluri, 2003; Sacco and Passant, 2011b; Toninelli
et al., 2009; Uszok et al., 2003b), ontology individuals (Amini and Jalili, 2010; Ehsan et al.,
2009; Franzoni et al., 2007; Javanmardi et al., 2006a; Sacco and Passant, 2011b) and graph
nodes and edges (Ryutov et al., 2009). In the vast majority of cases, access is either granted
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or denied. However, a number of researchers have investigated returning partial results to
the users. Such strategies either involve dataset filtering (Dietzold and Auer, 2006) or
query rewriting using filters (Abel et al., 2007; Chen and Stuckenschmidt, 2010; Flouris
et al., 2010; Franzoni et al., 2007; Muhleisen et al., 2010) or named graphs (Costabello
et al., 2012b). In Table 3.1 the granularity of the authorisations and the different strategies
used to cater for partial query results are represented as Granularity and Partial Results
respectively.

Underlying Formalism (De Coi et al., 2008; Amini and Jalili, 2010; Bonatti and
Olmedilla, 2007). Access control languages should be based on formal semantics, as it
decouples the meaning of the policies from the actual implementation. The majority of re-
searchers either adopt formalisms based on logic programming (Bonatti and Olmedilla, 2007;
Kagal and Finin, 2003; Toninelli et al., 2009) or different flavors of description logic (Amini
and Jalili, 2010; Bao et al., 2007; Chen and Stuckenschmidt, 2010; Javanmardi et al., 2006a;
Kolovski et al., 2007; Toninelli et al., 2009). While, Kagal and Finin (2003) demonstrate
how logic programming can be combined with deontic logic, Amini and Jalili (2010) demon-
strate how description logic can be combined with deontic logic and Kolovski et al. (2007)
combine description logic and defeasible logic. Whereas, Ryutov et al. (2009) adopt a many
sorted first order logic formalism.

Reasoning (Damiani et al., 2005; Ryutov et al., 2009; Amini and Jalili, 2010). It
should be possible to propagate policies based on the semantic relations between authori-
sation subjects, objects and access rights. Using ontologies, rules or a combination of both,
it is possible to perform deductive reasoning and abductive reasoning over access control
policies (Amini and Jalili, 2010; Bonatti and Olmedilla, 2007; Chen and Stuckenschmidt,
2010; Kagal and Finin, 2003; Kolovski et al., 2007; Muhleisen et al., 2010; Toninelli et al.,
2009; Uszok et al., 2003b). In addition, a number of authors have proposed propagation
strategies based on RDFS entailment (Franzoni et al., 2007; Jain and Farkas, 2006; Kim
et al., 2008; Qin and Atluri, 2003; Reddivari et al., 2005) and hierarchies, partial orders or
ontological relations between RDF resources (Javanmardi et al., 2006a; Papakonstantinou
et al., 2012; Ryutov et al., 2009). Unlike the other authors, who use reasoning to either
infer or to propagate access control policies, Bao et al. (2007) demonstrates how it is pos-
sible to reason over restricted data without releasing any restricted information. However,
the interplay between the various reasoning strategies proposed, and the access control
requirements arising from concrete use cases remains an open issue.

Condition Expressiveness (De Coi et al., 2008; Bonatti and Olmedilla, 2007). When
it comes to access control, it should be feasible to specify conditions under which a request
will be permitted or prohibited. However, many of the general policy languages highlight
the need to also cater for obligation and dispensation policies (Amini and Jalili, 2010; Kagal
and Finin, 2003; Toninelli et al., 2009; Uszok et al., 2003b).

Attributes, Context & Evidences (Damiani et al., 2005; De Coi et al., 2008; Bonatti
and Olmedilla, 2007; Amini and Jalili, 2010). As the requester many be unknown to
the system prior to submitting a request, access should be based on properties pertaining
to the requester, commonly know as attributes, instead of traditional identities (Amini and
Jalili, 2010; Bonatti and Olmedilla, 2007; Costabello et al., 2012b; Franzoni et al., 2007;
Gabillon and Letouzey, 2010; Kagal and Finin, 2003; Kolovski et al., 2007; Reddivari et al.,
2005; Ryutov et al., 2009; Sacco and Passant, 2011b; Toninelli et al., 2009). It should also
be feasible to dynamically activate policies based on context (Abel et al., 2007; Amini and
Jalili, 2010; Bonatti and Olmedilla, 2007; Costabello et al., 2012b; Franzoni et al., 2007;
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Gabillon and Letouzey, 2010; Kagal and Finin, 2003; Papakonstantinou et al., 2012; Sacco
and Passant, 2011b; Toninelli et al., 2009; Uszok et al., 2003b). Context can relate to the
requester, the system or the environment. Attributes and context should be communicated
by means of digital certificates, known as evidences. The de facto standard for submitting
evidences is WebID (Muhleisen et al., 2010; Costabello et al., 2012b; Sacco and Passant,
2011b). However, a number of researchers have also proposed using OpenID (Bonatti and
Olmedilla, 2007; Muhleisen et al., 2010; Sacco and Passant, 2011b) .

Heterogeneity & Interoperability (Yagüe et al., 2003). Access control for open dis-
tributed environments, such as the web, needs to be able to support a wide variety of
disparate policies, resources and users. One of the primary goals of standardisation is to
maximize interoperability. As each of the access control strategies we examine use open
standards, such as RDF, RDFS, OWL and SPARQL, regardless of the specific use case they
are suitable for access control over Linked Data. Using ontologies it is possible to specify
access control vocabularies that can easily be adopted by others. In addition, OWL pred-
icates such as owl:sameAs and owl:disjointFrom can be used to merge different access
control vocabularies.

61



3.4. ACCESS CONTROL REQUIREMENTS FOR LINKED DATA

Ta
bl
e
3.
1:

Sp
ec
ifi
ca
tio

n
re
qu

ire
m
en
ts

G
ra
nu

la
rit

y
Pa

rt
ia
l

R
es
ul
ts

U
nd

er
ly
in
g

Fo
rm

al
is
m

R
ea
so
ni
ng

C
on

di
tio

n
E
xp

re
ss
iv
en

es
s

A
tt
rib

ut
es
,

C
on

te
xt

&
E
vi
de

nc
es

In
te
ro
pe

ra
bi
lit
y

A
be

le
t
al
.

gr
ap

h
pa

tt
er
ns

&
fil
te
rs

bi
nd

in
gs

&
fil
te
rs

-
-

pe
rm

is
si
on

s±
co
nt
ex
t

R
D
F

&
SP

A
R
Q
L

&
Se

R
Q
L

A
m
in
ia

nd
Ja

lil
i&

E
hs
an

et
al
.

on
to
lo
gy

co
nc
ep

ts
&

in
di
vi
du

al
s

-
D
L

&
de

on
tic

lo
gi
c

de
du

ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s±
ob

lig
at
io
n±

at
tr
ib
ut
es

&
co
nt
ex
t

O
W

L

B
ao

et
al
.

on
to
lo
gy

co
nc
ep

ts
-

D
L

SH
IQ

pr
iv
ac
y

pr
es
er
vi
ng

-
-

O
W

L

B
on

at
ti

an
d

O
lm

ed
ill
a

on
to
lo
gy

co
nc
ep

ts
-

LP
de

du
ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s±
at
tr
ib
ut
es

&
co
nt
ex
t

&
O
pe

nI
D

R
D
F

C
he

n
an

d
St
uc
k-

en
sc
hm

id
t

gr
ap

h
pa

tt
er
ns

&
fil
te
rs

bi
nd

in
gs

&
fil
te
rs

D
L

de
du

ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s±
-

O
W

L
&

SP
A
R
Q
L

C
os
ta
be

llo
et

al
.

na
m
ed

gr
ap

hs
na

m
ed

gr
ap

hs
-

-
pe

rm
is
si
on

s±
at
tr
ib
ut
es

&
co
nt
ex
t

&
W
eb

ID

R
D
F

&
SP

A
R
Q
L

D
ie
tz
ol
d
an

d
A
ue

r
tr
ip
le
s,

cl
as
se
s

&
pr
op

er
tie

s
da

ta
fil
te
rin

g
-

-
pe

rm
is
si
on

s
-

R
D
F

Fl
ou

ris
et

al
.

gr
ap

h
pa

tt
er
ns

bi
nd

in
gs

&
fil
te
rs

-
-

pe
rm

is
si
on

s±
-

R
D
F

&
SP

A
R
Q
L

Fr
an

zo
ni

et
al
.

on
to
lo
gy

in
di
vi
du

al
s

bi
nd

in
gs

&
fil
te
rs

-
R
D
FS

en
ta
ilm

en
t

pe
rm

is
si
on

s±
at
tr
ib
ut
es

&
co
nt
ex
t

R
D
FS

&
SP

A
R
Q
L

G
ab

ill
on

an
d

Le
to
uz
ey

na
m
ed

gr
ap

h
&

vi
ew

s
-

-
-

pe
rm

is
si
on

s±
at
tr
ib
ut
es

&
co
nt
ex
t

R
D
F

&
SP

A
R
Q
L

Ja
in

an
d
Fa

rk
as

tr
ip
le

pa
tt
er
ns

-
-

R
D
FS

en
ta
ilm

en
t

pe
rm

is
si
on

s±
-

R
D
FS

co
nt
in
ue

d
ov
er
le
af

62



3.4. ACCESS CONTROL REQUIREMENTS FOR LINKED DATA

Ta
bl
e
3.
1
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

G
ra
nu

la
rit

y
Pa

rt
ia
l

R
es
ul
ts

U
nd

er
ly
in
g

Fo
rm

al
is
m

R
ea
so
ni
ng

C
on

di
tio

n
E
xp

re
ss
iv
en

es
s

A
tt
rib

ut
es
,

C
on

te
xt

&
E
vi
de

nc
es

H
et
er
og
en

ei
ty

&
In
te
ro
pe

ra
bi
lit
y

Ja
va
nm

ar
di

et
al
.

on
to
lo
gy

co
nc
ep

ts
&

in
di
vi
du

al
s

-
D
L

SH
O

IN
su
bj
ec
ts
,

pr
ed

ic
at
es

&
ob

je
ct
s

su
bs
um

pt
io
n

pe
rm

is
si
on

s±
-

O
W

L

K
ag
al

an
d
Fi
ni
n

on
to
lo
gy

co
nc
ep

ts
-

LP
de

du
ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s±
ob

lig
at
io
n±

at
tr
ib
ut
es

&
co
nt
ex
t

O
W

L

K
im

et
al
.

tr
ip
le

pa
tt
er
n

-
-

R
D
FS

en
ta
ilm

en
t

pe
rm

is
si
on

s±
-

R
D
FS

K
ol
ov

sk
ie

t
al
.

on
to
lo
gy

co
nc
ep

ts
-

D
L

SH
O

IN
&

de
fe
as
ib
le

lo
gi
c

de
du

ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s±
at
tr
ib
ut
es

O
W

L

Li
an

d
C
he

un
g

vi
ew

s
pr
op

ag
at
io
n

-
-

pe
rm

is
si
on

s±
-

R
D
F

M
uh

le
is
en

et
al
.

tr
ip
le

pa
tt
er
ns

da
ta

fil
te
rin

g
-

de
du

ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s+
W
eb

ID
&

O
pe

nI
D

O
W

L

O
ul
m
ak

hz
ou

ne
et

al
.

on
to
lo
gy

co
nc
ep

ts
bi
nd

in
gs

&
fil
te
rs

-
-

pe
rm

is
si
on

s±
-

R
D
F

&
SP

A
R
Q
L

Pa
pa

ko
ns
ta
nt
in
ou

et
al
.

tr
ip
le
s

-
-

R
D
FS

en
ta
ilm

en
t

pe
rm

is
si
on

s±
co
nt
ex
t

R
D
FS

&
SP

A
R
Q
L

Q
in

an
d
A
tlu

ri
co
nc
ep

t
-

-
on

to
lo
gy

co
nc
ep

t
re
la
tio

ns

pe
rm

is
si
on

s±
-

R
D
F

R
ed

di
va
ri

et
al
.

tr
ip
le

pa
tt
er
ns

-
-

R
D
FS

en
ta
ilm

en
t

pe
rm

is
si
on

s±
at
tr
ib
ut
es

R
D
FS

R
yu

to
v
et

al
.

no
de
s

&
ed

ge
s

-
m
an

y
so
rt
ed

fir
st

or
de

r
lo
gi
c

su
bj
ec
t

&
ob

je
ct

su
bs
um

pt
io
n

pe
rm

is
si
on

s±
at
tr
ib
ut
es

R
D
F

co
nt
in
ue

d
ov
er
le
af

63



3.4. ACCESS CONTROL REQUIREMENTS FOR LINKED DATA

Ta
bl
e
3.
1
–
co
nt
in
ue

d
fr
om

pr
ev
io
us

pa
ge

G
ra
nu

la
rit

y
Pa

rt
ia
l

R
es
ul
ts

U
nd

er
ly
in
g

Fo
rm

al
is
m

R
ea
so
ni
ng

C
on

di
tio

n
E
xp

re
ss
iv
en

es
s

A
tt
rib

ut
es
,

C
on

te
xt

&
E
vi
de

nc
es

H
et
er
og
en

ei
ty

&
In
te
ro
pe

ra
bi
lit
y

Sa
cc
o
an

d
Pa

ss
an

t
re
so
ur
ce
,

tr
ip
le

&
gr
ap

h
-

-
-

pe
rm

is
si
on

s±
at
tr
ib
ut
es

&
co
nt
ex
t

&
W
eb

ID
&

O
pe

nI
D

R
D
F

&
SP

A
R
Q
L

To
ni
ne

lli
et

al
.

on
to
lo
gy

co
nc
ep

ts
-

D
L

&
LP

de
du

ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s±
ob

lig
at
io
n±

at
tr
ib
ut
es

&
co
nt
ex
t

O
W

L

U
sz
ok

et
al
.

on
to
lo
gy

co
nc
ep

ts
-

D
L

de
du

ct
io
n

&
ab

du
ct
io
n

pe
rm

is
si
on

s±
ob

lig
at
io
n±

co
nt
ex
t

O
W

L

64



3.4. ACCESS CONTROL REQUIREMENTS FOR LINKED DATA

3.4.2 Enforcement
Access control enforcement requirements refer to constraints that are placed on the policy lan-
guage or mechanisms that assist the requester to complete their request. An overview of the
requirements is presented below and a snapshot of existing support for said requirements is
presented in Table 3.2.

Negotiation (Damiani et al., 2005; De Coi et al., 2008; Bonatti and Olmedilla,
2007). In other to protect user privacy, it should be possible for both the service provider
and the requester to define polices and exchange credentials until and agreement has been
reached. The process is commonly known as negotiation. The P3P recommendation and the
APPEL vocabulary have been designed to support automatic negotiation between clients
and servers. The access control mechanisms proposed by Amini and Jalili (2010), Bonatti
and Olmedilla (2007) and Toninelli et al. (2009) all cater for access control negotiation.

Explanations (De Coi et al., 2008; Bonatti and Olmedilla, 2007). Rather than simply
granting or denying access, the policy should also provide details of how the decision was
reached. Such explanations would be of benefit to both the requester and the policy owner,
making it easier for the requester to understand what is required of them and for the policy
owner to troubleshoot potential problems. Bonatti and Olmedilla (2007), Ryutov et al.
(2009) and Toninelli et al. (2009) all provide policy explanations. However, both Ryutov
et al. (2009) and Bonatti and Olmedilla (2007) provide a means to execute queries over
policies in order to obtain additional information.

Conflict Resolution (Amini and Jalili, 2010). Conflicts between both explicit and im-
plicit policies should be resolved automatically. A number of different conflict resolution
strategies have been proposed. In the event of a conflict some authors simply default to
grant/deny (Abel et al., 2007; Costabello et al., 2012b; Flouris et al., 2010; Gabillon and
Letouzey, 2010; Papakonstantinou et al., 2012; Qin and Atluri, 2003), use priorities to de-
termine dominance (Kolovski et al., 2007) or use metapolicies as a flexible means to resolve
conflicts (Kagal and Finin, 2003; Reddivari et al., 2005). A number of authors propose
conflict resolution algorithms based on several different measures (Amini and Jalili, 2010;
Bao et al., 2007; Jain and Farkas, 2006; Javanmardi et al., 2006a; Kim et al., 2008; Ryutov
et al., 2009). Whereas, others try to isolate individual data items that are in conflict and
propose harmonisation strategies (Li and Cheung, 2008; Toninelli et al., 2009; Uszok et al.,
2003b).

3.4.3 Administration
In this section, we examine a number of access control requirements that are necessary to simplify
the specification and maintenance of access control policies. An overview of the requirements is
presented below and a summary of current support is presented in Table 3.3. Although a number
of researchers indicate that they provide some level of support for these requirements, generally
speaking research efforts seem to focus more on the specification and enforcement mechanisms,
and very little detail is supplied.

Delegation (Bonatti and Olmedilla, 2007). It should be feasible to temporarily transfer
access rights to other users. In relational databases, users are granted sole ownership
of the tables and views that they create. They can subsequently grant access rights to
other database users. Amini and Jalili (2010), Bonatti and Olmedilla (2007), Gabillon and
Letouzey (2010) and Kagal and Finin (2003) indicate that they support the delegation of
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Table 3.2: Enforcement requirements
Negotiation
support

Explanation Conflict
Resolution

Abel et al. - - default
Amini and Jalili &Ehsan et al. bidirectional

policies
- algorithm

Bao et al. - - algorithm
Bonatti and Olmedilla bidirectional

policies
queries -

Chen and Stuckenschmidt - - -
Costabello et al. - - default

Dietzold and Auer - - -
Flouris et al. - - default

Franzoni et al. - - -
Gabillon and Letouzey - - default

Jain and Farkas - - algorithm
Javanmardi et al. - - algorithm
Kagal and Finin - - meta

policies
Kim et al. - - algorithm

Kolovski et al. - - priorities
Li and Cheung - - harmonisation
Muhleisen et al. - - -

Oulmakhzoune et al. - - -
Papakonstantinou et al. - - default

Qin and Atluri - - default
Reddivari et al. - - meta

policies
Ryutov et al. - user

interface
algorithm

Sacco and Breslin - - -
Toninelli et al. bidirectional

policies
descriptions harmonisation

Uszok et al. - - harmonisation

access rights. However, the suitability of existing revocations strategies, for the RDF graph
model, warrants further research.

Consistency & Safety (Ryutov et al., 2009). In order to ensure the access control system
is complete and accurate, insertion and deletion of policies should be controlled. It should
not be possible to elevate your own privileges or to assign permissions that would make data
inaccessible to everyone. Although a number of researchers indicate that their frameworks
support consistency and safety constraints, very little information is provided. Amini and
Jalili (2010), Bao et al. (2007) and Jain and Farkas (2006) ensure consistency and safety as
part of their administration algorithms. Chen and Stuckenschmidt (2010) and Ryutov et al.
(2009) suggest that meta policies can be used to ensure consistency and safety. Given the
diversity of access control models, policies and reasoning strategies that have been proposed
for RDF, additional research is required in order to determine potential issues with access
control policies and propose suitable handling mechanisms.

Usability (Damiani et al., 2005; Amini and Jalili, 2010). The specification and the
maintenance of access control policies should be as simple as possible. Administration
facilities that support ease of both specification and maintenance of policies have been
provided by a number of researchers (Jain and Farkas, 2006; Ryutov et al., 2009; Sacco and
Passant, 2011b; Uszok et al., 2003b). Given the complexity associated with reasoning over
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Table 3.3: Administration requirements
Delegation Consistency

& Safety
Usability Understandability

Abel et al. - - - -
Amini and JaliliEhsan et al. case study algorithm - -

Bao et al. - algorithm - -
Bonatti and Olmedilla language - - ProtuneX

explanation
Chen and Stuckenschmidt - meta

policies
- -

Costabello et al. - - - -
Dietzold and Auer - - - -

Flouris et al. - - - -
Franzoni et al. - - - -

Gabillon and Letouzey construct &
describe

- - -

Jain and Farkas - algorithm RACL admin
module

-

Javanmardi et al. - - - -
Kagal and Finin speech acts - - -

Kim et al. - - - -
Kolovski et al. - - - analysis

services
Li and Cheung - - - -
Muhleisen et al. - - - -

Oulmakhzoune et al. - - - -
Papakonstantinou et al. - - - -

Qin and Atluri - - - -
Reddivari et al. - - - -

Ryutov et al. - meta
policies

RAW policy
editor

RAW
permission
check

Sacco and Breslin - - privacy
preference
manager

-

Toninelli et al. - - - -
Uszok et al. - - KAoS Policy

Admin Tool
policy
disclosure

graph data, advanced data analytics and visualisation techniques are needed to highlight
the effects of advanced policies, constraints and deduction rules.

Understandability (Ryutov et al., 2009; Amini and Jalili, 2010). It should be easy
to understand the interplay between policies. Earlier we saw that a handful of researchers
associate policy explanations with policies. Similarly, only a select few provide systems that
enable administrators to verify the interplay between policies (Bonatti and Olmedilla, 2007;
Kolovski et al., 2007; Ryutov et al., 2009; Uszok et al., 2003b). Given the dynamic nature of
context based access control and the various deduction and propagation strategies, further
research on automating the explanations and presenting the results in a manner which is
digestible by humans is necessary.

3.4.4 Implementation
Implementation requirements generally refer to non-functional requirements. As with any soft-
ware system, non-functional requirements hold the key to the adoption of a tool or technology.
Although a number of authors indicate that the solutions they propose are flexible or extensible,
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Table 3.4: Implementation requirements
Effectiveness Distributed

Use case
Flexibility &
Extensibility

Abel et al. query rewriting
performance

- SeRQL, Protune

Amini and Jalili &Ehsan et al. enforcement
performance

case study Prolog, GWT,
Jena, JIP, Protege

Bao et al. - - -
Bonatti and Olmedilla explanation

performance
demo Java, TuProlog

Chen and Stuckenschmidt Jena
Costabello et al. enforcement

performance
BSBM & BTC
datasets

mobile
use case

Java,
Corese-KGRAM

Dietzold and Auer - - RDF, SPARQL
Flouris et al. annotation

performance
- Java, Jena,

Sesame,
Progress

Franzoni et al. - - Java, SeRQL,
Sesame

Gabillon and Letouzey enforcement
performance

- Java, Tomcat,
Sesame

Jain and Farkas - - Java, Jena,
Jess

Javanmardi et al. policy reasoning - PELLET, SWRL
Kagal and Finin - use cases Java, Prolog

Kim et al. - - -
Kolovski et al. policy reasoning

Continue dataset
- Pellet

Li and Cheung - - -
Muhleisen et al. enforcement

performance
BSBM dataset

demo Joseki, Jena,
Pellet

Oulmakhzoune et al. -
discussion

- -

Papakonstantinou et al. enforcement
reasoning
performance

- PostgreSQL,
MonetDB

Qin and Atluri - - -
Reddivari et al. query

performance
- Java, Jena,

RDQL
Ryutov et al. - - Java

Sacco and Breslin enforcement
performance

mobile
use case

Java

Toninelli et al. - - -
Uszok et al. - use cases Java

seldom do researchers evaluate these claims. Table 3.4 provides an overview of the technologies
adopted and indicates the evaluations performed.

Effectiveness (Ryutov et al., 2009). In order to work in practice, access control enforcement
and administration needs to be efficient. A number of authors have presented performance
evaluations of their access control enforcement (Amini and Jalili, 2010; Costabello et al.,
2012b; Gabillon and Letouzey, 2010; Muhleisen et al., 2010; Reddivari et al., 2005; Sacco
and Passant, 2011b), query rewriting (Abel et al., 2007), annotation (Flouris et al., 2010) ,
explanation (Bonatti and Olmedilla, 2007) or reasoning (Javanmardi et al., 2006a; Kolovski
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et al., 2007; Papakonstantinou et al., 2012) algorithms. However, there is still no clear access
control benchmark, that can be used to compare different approaches. One suggestion would
be to build a set of access control scenarios and extend the BSBM dataset generator to cater
for solution benchmarking.

Distributed (Amini and Jalili, 2010). In order to ensure scalability, it should be possible
to cater for the distributed specification and enforcement of access control policies. A
number of researchers have examined how their proposed solution can be applied to use cases
requiring distributed access control mechanisms. Amini and Jalili (2010) describe a case
study on distributed semantic digital library. Bonatti and Olmedilla (2007) and Muhleisen
et al. (2010) developed demos in order to demonstrate how their policy languages can
be used in a distributed setting. Whereas, the access control languages and enforcement
frameworks proposed by Costabello et al. (2012b); Kagal and Finin (2003); Sacco and
Passant (2011b) and Uszok et al. (2003b) are motivated by distributed uses cases. However,
the adaption of current distributed query processing techniques to cater for access control
over Linked Data has not be explored to date.

Flexibility & Extensibility (Yagüe et al., 2003; Damiani et al., 2005; Bonatti and
Olmedilla, 2007). The system should be capable of handling frequent changes to policies,
user, access rights and resources. In addition, in order to provide support for different
scenarios and future enhancements, the enforcement frameworks should be flexible and
extensible. As each of the access control strategies we examined uses one or more open
standards (see Table 3.1), they are by design flexible and extensible. An overview of the
technologies used in each of the access control proposals we have examined, is presented in
Table 3.4.

3.5 Summary
In this chapter, we provided an overview of relevant access control models (MAC, DAC, RBAC,
VBAC, ABAC, CBAC) and standardisation efforts (XACML, WebID, WAC, P3P, APPEL), and
described how they have been either enhanced by/applied to RDF. We examined a number of
well known policy languages in detail, focusing in particular on ontology based, rule based and
combined ontology and rule based access control enforcement. We subsequently examined the
different strategies that have be used to specify access control over RDF (triple patterns, views,
named graphs and ontologies). In addition, we discussed the interplay between access control,
RDF and reasoning and described how query rewriting can be used to limit access to restricted
data. Finally, we derived a set of requirements for Linked Data, based on several papers that
examine access control for RDF from a number of perspectives. We subsequently used these
requirements to classify existing strategies for access control over RDF. Based on this analysis
we have identified a number of gaps with respect to access control for Linked Data, which is
address in this thesis:

• When it comes to access control specification, enforcement and administration, to date
much of the focus has been on using semantic technology to specify access control policies
or proposing policies languages, that can be used to specify and reason over access control
for RDF resources. Although considerable research has been conducted into the exposure
of relational data as RDF, using Relational Database to RDF (RDB2RDF) (Arenas et al.,
2012) and Relational Database to RDF Mapping Language (R2RML) (Das et al., 2012),
none of the authors investigate how access rights, that were placed on the original relational
data, can be lifted and enforced over the corresponding RDF data. In Chapter 4 we will
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demonstrate how RDB2RDF technology can be used not only to extract data from rela-
tional databases but also to extract permissions. Both the data and the permissions are
represented using an extension of the RDF data model that allows contextual data to be
associated with each triple, known formally as Annotated RDF.

• Although the delegation of access rights to others is a core access control administration
requirement, to date it has gained very little traction within the Semantic Web community.
As DAC allows users to delegate their permissions to others, it is particularly suitable for
managing access control over distributed data. Chapter 5 examines how the graph data
model differs from the relational and the tree data models, discusses how Discretionary
Access Control (DAC) can be applied to graph-based data and describes the implication
such structural differences have on access control in general.

• When it comes to access control administration and enforcement, a number of different cat-
egories of rules are necessary: to grant/deny access to data at multiple level of granularity;
to support reasoning over access control policies; to ensure both the consistency and safety
of the access control policies; and also to support conflict resolution. To date, a number of
different rules have been proposed in each of these categories. Given the diversity of the ex-
isting proposals, and the fact that when it comes to access control no one size fits all, there
is a need for a general rules framework, which can be used to cater for the specification, ad-
ministration and enforcements of access control policies over Linked Data. In Chapter 5 we
demonstrate how the hierarchical Flexible Authorisation Framework, proposed by Jajodia
et al. (2001), can be extended to provide DAC over graph data.

• Several authors propose access control strategies that can be used in conjunction with RDF
query languages, to return partial query results by filtering out unauthorised data. One
of the limitations of existing proposals is that they do not specifically consider complex
SPARQL 1.1 queries (such as, aggregates, negation, subqueries and property path) and
SPARQL 1.1 update queries. As such, there is a need for an access control mechanism which
can be used to rewrite such complex queries so that they behave as if the unauthorised data
is not present in the dataset. Chapter 6 investigates the security implications associated
with granting partial access to RDF data, via SPARQL 1.1 query rewriting.

• In order to work in practice, both access control enforcement and administration need to
be effective from both a performances and a correctness perspective. Although a number of
authors have conducted access control performances evaluations using the BSBM dataset,
when it comes to access control for RDF data there is currently no general access control
benchmark. In addition, there is a pressing need for a general mechanism, which can be used
to verify the correctness of proposed access control mechanisms. In Chapter 6 we propose a
benchmark, based on the BSBM dataset, that can be used to compare different strategies for
access control for Linked Data. In addition, we demonstrate how a set of correctness criteria,
which was originally used by Wang et al. (2007) to verify the correctness of relational access
control policies, can be adapted to ensure the correctness of access control over RDF.

• Given that RDF data can be served as RDF documents; embedded in HTML documents;
exposed via SPARQL endpoints; or translated from relational data; there is an need for
an authorisation architecture, which can be used to provide access control for Linked Data
irrespective of how the data is represented or consumed. In Chapter 6, we discuss how
together our Flexible Authorisation Framework and our Query Rewriting algorithms can
be used to enforce access control over Linked Data.
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Chapter 4

Using Annotated RDFS for Access
Control over Integrated RDF Data

Enterprises rely on stand-alone systems, commonly known as Line Of Business (LOB) appli-
cations, to perform day-to-day activities efficiently. For example, interactions with clients are
recorded in a Customer Relationship Management (CRM) application, employee information
is maintained in a Human Resources (HR) application and project documentation is stored in
a Document Management System (DMS). These systems, although independent, often contain
different information regarding the same entities. For example, if an organisation needs to know
the projects commissioned by a customer, the employees that worked on those projects and the
revenue that was generated, they need to obtain information across these systems. However, such
integration is not a simple task, not only due to the heterogeneity of the systems, but also due to
the presence of access control mechanisms in each system. In fact, since much of the information
within the enterprise is highly sensitive, this integration step could result in information leakage
to unauthorised individuals. RDF is a flexible format which can be used to represent integrated
data, however it does not provide any mechanisms to safeguard against information leakage.
In this chapter, we demonstrate how RDB2RDF technology, which can be used to extract

information from relational databases into RDF, can be used to extract access control information
from LOB applications. We define a mechanism to enforce access control over the resulting RDF
graph, which we implement via logic programming. The solution we present builds upon an
extension of the RDF data model (called Annotated RDF), which supplements the RDF model
with context information, while providing backwards compatibility. Our approach provides a
representation for the access control policies at a triple level and also caters for permission
propagation, via logic inference rules. In order to cater for situations where information is
represented directly as RDF we examine the suitability of the proposed access control mechanism
for the specification of new access control policies. For this task we adopt a bottom up approach,
examining the access control requirements based on existing software engineering and database
access control models.
In relation to access control for integrated RDF data, we make the following contributions.

We: (i) define an annotation domain that models access control permissions in RDF; (ii) discuss
how RDB2RDF technology can be used to extract both data and permissions from relational
databases; (iii) propose a set of rules that are necessary for the enforcement of existing access
control models over RDF; and (iv) present a data integration and access control enforcement
framework for RDF. In addition, we detail our implementation of the proposed enforcement
framework and examine the overall performance of our prototype over real enterprise data.
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The remainder of the chapter is structured as follows: in Section 4.1 we provide the necessary
background information on the annotated RDF (aRDF) model. Section 4.2 formalises the access
control annotation domain and details our implementation of the domain in logic programming.
Section 4.3 examines the predominant software engineering and database access control models
and details the rules necessary to propagate access control policies over RDF data, based on
these access control models. The framework and our specific implementation are described and
evaluated in Section 4.4. Finally, we discuss the related work in Section 4.5 and we summarise
and present future directions in Section 4.6.

4.1 aRDFS Background
In this section we provide the necessary background information regarding the semantics of
Annotated RDFS. We start by presenting the data model, giving an overview of RDF and its
extension towards Annotated RDFS which draws inspiration from Annotated Logic Program-
ming (Kifer and Subrahmanian, 1992). We then present the extension of the RDF Schema
(RDFS) inference rules for the annotated case and the extension of the SPARQL query language
for querying Annotated RDFS, AnQL. Finally, we present the current Annotated RDFS and
AnQL prototype which is implemented in SWI-Prolog.

4.1.1 The aRDFS Data Model
An RDF triple has the intuitive meaning that the subject is connected to the object by the pred-
icate relation (Definition 2.1). Several extensions were proposed to introduce meta-information
into the RDF data model. For example, Gutierrez et al. (2007) define temporal RDF, which al-
lows for the allocation of a validity interval to an RDF triple. Whereas, Straccia (2009) presents
fuzzy RDF in order to attach a confidence or membership value to a triple. These and other ap-
proaches can be represented within a common framework, called Annotated RDF (Udrea et al.,
2010) and further extended to include RDFS inference rules by Zimmermann et al. (2012). An-
notated RDFS introduces the notion of an annotation domain into the RDF model and defines
an extension of the RDFS inference rules that, by relying on the ⊗ and ⊕ operations defined by
the annotation domain (Definition 4.1), can be specified in a domain independent fashion.

Definition 4.1 (Annotation domain)
Let L be a non-empty set, whose elements are considered the annotation values. We
say that an annotation domain for RDFS is an idempotent, commutative semi-ring D =
〈L,⊕,⊗,⊥,>〉 , where ⊕ is >-annihilating. That is, for λ, λ1, λ2, λ3 ∈ L: ⊕ is idempo-
tent, commutative, associative; ⊗ is commutative and associative; ⊥ ⊕ λ = λ, > ⊗ λ = λ,
⊥⊗λ = ⊥, and >⊕λ = >; ⊗ is distributive over ⊕, i.e. λ1⊗(λ2⊕λ3) = (λ1⊗λ2)⊕(λ1⊗λ3);
An annotation domain D = 〈L,⊕,⊗,⊥,>〉 induces a partial order � over L defined as:
λ1 � λ2 iff λ1 ⊕ λ2 = λ2 .

Example 4.1 (Annotation domain)
The Fuzzy Annotation domain is defined as
D[0,1] = 〈[0, 1],max,min, 0, 1〉. Using this domain we can specify that :joeBloggs is a part-
time employee of :westportCars as follows:

(:joeBloggs, :worksFor, :westportCars) : 0.5
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For the definitions of other domains, such as the temporal and provenance domains, the reader
is referred to Zimmermann et al. (2012). Further to the above annotation domain definition, we
extend RDF towards annotated RDFS:

Definition 4.2 (Annotated triple, annotated graph)
An annotated triple is an expression τ : λ, where τ is an RDF triple and λ is an annotation
value. An annotated RDFS graph is a finite set of annotated triples.

The entailment between two Annotated RDFS graphs, G |= H is defined by a model-theoretic
semantics presented in Zimmermann et al. (2012).

4.1.2 Inference Rules
RDF Schema (RDFS) consists of a predefined vocabulary that assigns specific meaning to certain
IRIs, allowing a reasoner to infer new triples from existing ones. A set of inference rules can be
used to provide a sound and complete reasoner for RDFS (Ter Horst, 2005). These rules can be
extended to support Annotated RDFS reasoning, in a domain-independent fashion, simply by
relying on the ⊗ and ⊕ operations (presented in Definition 4.1). Such rules can be represented
by the following meta-rules:

Rule 4.1 (⊗ Domain operator)
If a classical RDFS triple τ can be inferred by applying an RDFS inference rule to triples
τ1, . . . τn (denoted {τ1, . . . , τn} `RDFS τ), the same triple can be inferred in the annotated
case with annotation term

⊗
i λi, where λi is the annotation of triple τi.

τ1 : λ1, . . . , τn : λn, {τ1, . . . τn} `RDFS τ

τ :
⊗

i λi
.

Rule 4.2 (⊕ Domain operator)
The ⊕ operation is in turn used to combine information about the same statement. If the
same triple is inferred from different rules or steps in the inference, the following rule is
applied:

τ : λ1, τ : λ2

τ : λ1 ⊕ λ2
.

It is also possible to specify a custom set of rules in order to provide application specific infer-
encing. A number of custom rules for managing permissions in the access control domain are
presented in Section 4.3.

4.1.3 AnQL: Annotated Query Language
The proposed query language for Annotated RDFS, AnQL (Lopes et al., 2010), is an extension of
SPARQL, the W3C recommended query language for RDF, which also takes into consideration
features from the SPARQL 1.1 language revision. In Definition 2.1, I, B and L, are used to
represent IRIs, blank nodes and literals respectively. Consider V a set of variables disjoint
from (I ∪B ∪ L). In SPARQL, a triple pattern consists of an RDF triple with optionally a
variable v ∈ V as the subject, predicate and/or object. Sets of triple patterns are called basic
graph patterns (BGP) and BGPs can be combined to create generic graph patterns. The semantics
of SPARQL is based on the notion of basic graph pattern matching, where a substitution is a
partial function µ : V→ (I ∪B ∪ L).
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For the extension of SPARQL towards the AnQL query language, we propose a specific an-
notation domain instance of D of the form 〈L,⊕,⊗,⊥,>〉. Let A denote the set annotation
variables, disjoint from (I ∪B ∪ L ∪V) and λ be an annotation value from L or an annotation
variable from A, called an annotation label. For a SPARQL triple pattern τ , we call τ : λ an
annotated triple pattern and sets of annotated triple patterns are called basic annotated pat-
terns (BAP). Similar to SPARQL, BAPs can be combined to create an annotated graph pattern
and for further details we refer the reader to (Lopes et al., 2010).

Definition 4.3 (AnQL query)
An AnQL query is defined as a triple Q = (P,G, V ) where: (i) P is an annotated graph
pattern; (ii) G is an annotated RDF graph; and (iii) V ⊆ VA is the set of variables
to be returned by the query. Given an annotated graph pattern P , we further denote by
var(P ) ⊆ V and avar(P ) ⊆ A the set of variables and annotation variables respectively
present in a graph pattern P .

As presented in Example 4.2, the annotated graph pattern P is specified following the WHERE
keyword, while the variables are specified after the SELECT keyword.

Example 4.2 (AnQL query)
Considering the fuzzy domain presented in Example 4.1, we can pose the following query:
SELECT ?v ?av WHERE { ?v a : Company ?av }

where ?v is a variable from V and ?av is an annotation variable from A.

The semantics of AnQL BAP matching is defined by extending the notion of SPARQL basic graph
pattern matching to cater for annotation variables and their mapping to annotation values. For
any substitution µ and variable v, µ(v) corresponds to the value assigned to v by µ. For a
BAP P , µ(P ) represents the annotated triples that correspond to P except that any variable
v ∈ vars(P ) ∪ avars(P ) is replaced with µ(v).

Definition 4.4 (BAP matching)
Let P be a BAP and G an Annotated RDFS graph. We define the evaluation of P over
G, denoted [[P ]]G, as the list of substitutions that are solutions of P , i.e. [[P ]]G = {µ | G |=
µ(P )}, according to the model-theoretic definition of entailment presented by Zimmermann
et al. (2012).

The semantics of arbitrary annotated graph patterns is defined by an algebra that is built on
top of this BAP matching. For further details we refer the reader to (Lopes et al., 2010). A
combined overview of Annotated RDFS and AnQL is provided by Zimmermann et al. (2012).

4.1.4 Implementation
The system architecture of our prototype implementation, based on SWI-Prolog’s Semantic Web
library (Wielemaker et al., 2008), is sketched in Figure 4.1. The main component of the sys-
tem consists of the Reasoner / AnQL Query Engine, which is composed of a forward-chaining
reasoner engine with a fix-point semantics that calculates the closure of a given Annotated RDF
Graph (Zimmermann et al., 2012) and an implementation of the AnQL query language. This
main component can be tailored to a specific Annotation Domain and to include different In-
ference Rules describing how triples and their annotation values are propagated. Such inference
rules can be specified, in domain independent fashion, by using a high-level language that ab-
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Reasoner / AnQL 
Query Engine

Annotation Domain

Temporal FuzzyAccess control
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RDFS Custom Rules
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Figure 4.1: Annotated RDFS implementation schema

stracts the specific details of each domain. An example of an Annotated RDFS rule is presented
below.

Example 4.3 (Annotated RDFS inference rule)
The following rule provides subclass inference in the RDFS ruleset:
rdf(O, rdf:type , C2 , V) <== rdf(O, rdf:type , C1 , V1),

rdf(C1 , rdfs:subClassOf , C2 , V2),
infimum (V1 , V2 , V).

where the rdf/4 predicate is used to represent the annotated triples and the infimum/3
predicate corresponds to the implementation of the ⊗ domain operation (Definition 4.1).

More information and downloads of the prototype implementation can be found at http://
anql.deri.org/.

4.2 Access Control Annotation Domain
Following the definitions presented in Section 4.1 , in this section we formalise our access control
annotation domain. We start by defining the entities and annotation values and then present
the ⊗ and ⊕ domain operations. Finally, we describe the implementation of the presented access
control annotation domain.

4.2.1 Entities and Annotations
For the modelling of the Access Control Domain (ACD) consider, in addition to the previously
presented sets of IRIs I, blank nodes B, and literals L, a set of credential elements C. The
elements of C are used to denote usernames, roles, and groups. To denote attributes, we propose
a set T of pairs of form (k, v), represented as key–value pairs where k ∈ U and v ∈ L. For
example, “(:age, 30)” or “(:institute,DERI)” are elements of T.1 We allow shortcuts to repre-
sent intervals of integers, for example, “(:age, [25, 30])” is used to indicate that all entities with
attribute “:age” between 25 and 30 are allowed access to the triple.
Considering an element e ∈ (C ∪T), e and ¬e are access control elements, where e is called a

positive element and ¬e is called a negative element. Here we are using ¬e to represent strong
negation. In our access control domain representation, ¬e indicates that e will be specifically
denied access. An access control statement S consists of a set of access control elements and
an Access Control List (ACL) consists of a set of access control statements. An access control
statement S is consistent if and only if, for any element e ∈ (C ∪T), only one of e and ¬e may
appear in S. This restriction avoids conflicts, where a statement is attempting to both grant
and deny access to a triple. Furthermore, we can define a partial order between access control

1In these examples, the default URI prefix is http://urq.deri.org/enterprise#.
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statements S1 and S2, as S1 ≤ S2 iff S1 ⊆ S2. This partial order can be used to eliminate
redundant access statements within an ACL. If a user is granted access by statement S2, he
will also be granted access by statement S1 (and thus S2 can be removed). Finally, an ACL
is consistent if and only if all statements therein are consistent and not redundant. In our
domain representation, only consistent ACLs are considered as annotation values. Intuitively,
an annotation value specifies which entities have read permission to the triple, or are denied
access when the annotation is preceded by ¬.

Example 4.4 (Access control list)
Assume a set of entities C = {jb, js, hr, it}, where jb and js are employee usernames
and hr and it are shorthand for humanResources and informationTechnology, respectively.
The following annotated triple:

τ : [[it], [hr,¬js]]

states that the entities identified with it or hr (except if the js credential is also present)
have read access to the triple τ .

An ACL A can be considered as a non-recursive Datalog with negation (nr-datalog¬) program,
where each of the access control statements S ∈ A corresponds to the body of a rule in the
Datalog program. The head of each Datalog rule is a reserved element access 6∈ (C ∪T) and the
evaluation of the Datalog program determines the access permission to a triple given a specific set
of credentials. The set of user credentials is assumed to be provided by an external authentication
service and consists of elements of (C ∪T) which equates to a non-empty ACL representing the
entities associated with the user. As expected, we assume that this ACL consists of only one
positive statement, i.e. the ACL will contain one statement with all the entities associated with
the user and does not contain any negative elements.

Example 4.5 (Datalog representation of an ACL)
Taking into account the annotation example presented above. The nr-datalog¬ program
corresponding to the ACL [[it], [hr,¬js]] is:

access← it.
access← hr,¬js.

The set of credentials of the user session, provided by the external authentication system
eg. [[js, it]], are facts in the nr-datalog¬ program.

Further domain specific information, for example, the encoding of hierarchies between the cre-
dential elements, can be encoded as extra rules within the nr-datalog¬ program. These extra
rules can be used to provide implicit credentials to a user, allowing the access control to be
specified based on credentials that the authentication system does not necessarily assign to a
user.
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Example 4.6 (Credential hierarchies)
If the entity emp represents all the employees within a specific company, and that jb and js
correspond to employee usernames (as presented in Example 4.4), the following rules can
be added to the nr-datalog¬ program from Example 4.5:

emp← js.
emp← jb.

These rules ensure that both jb and js are given access when the credential emp is required
in an annotation value.

Although in the above example we use these rules to express hierarchies between entities in
reality any form of nr-datalog¬ rules are allowed. In Section 4.3, we demonstrate how rules can
be used to provide support for a number of traditional access control models.

4.2.2 Operations
We now turn to the annotation domain operations ⊗ and ⊕, that as presented in Section 4.1.2,
that allow for the combination of annotation values catering for RDFS inferences. A naive
implementation of these domain operations may produce ACLs that are not consistent (and
would not be considered valid annotation values). To avoid such invalid ACLs, we rely on a
normalisation step that ensures the result is a valid annotation value, by checking for redundant
statements and applying a conflict resolution policy if necessary. If an annotation statement
contains a positive and negative access control element for the same entity, e.g [jb,¬jb], there
is a conflict. There are two different ways to resolve conflicts in the annotation statements:
(i) apply a brave conflict resolution strategy (allow access); or (ii) safe conflict resolution strategy
(deny access). This is achieved during the normalisation step, through the resolve function,
by removing the appropriate element: ¬jb for brave conflict resolution or jb for safe conflict
resolution. In our current modelling, we are assuming safe conflict resolution. The normalisation
process is defined as follows:

Definition 4.5 (Normalise)
Let A be an ACL. We define the reduction of A into its consistent form, denoted norm(A),
as:

normalise(A) = {resolve(Si) | Si ∈ A and 6 ∃Sj ∈ A, i 6= j such that Si ≤ Sj} .

⊕ac Operator. The ⊕ operation is used to combine annotations when the same triple is deduced
from different inference steps (Rule 4.1). For the access control domain, the ⊕ac operation
involves the union of the annotations and the subsequent normalisation operation. The result
of this operation intuitively creates a new nr-datalog¬ program consisting of the union of all the
rules from the original nr-datalog¬ programs. Formally the ⊕ operation is defined as follows:
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Definition 4.6 (⊕ac Operator)

A1 ⊕ac A2 = normalise (A1 ∪A2) .

The Following example demonstrates how the ⊕ac operation can be used to combine two ACLs:

Example 4.7 (⊕ac Operator)
Consider the following triples:

τ1 = (:johnSmith, :salary, 40000) : [[js]].

τ2 = (:johnSmith, :salary, 40000) : [[hr]].

Combining these triples with the ⊕ac operation (by applying Rule 4.1) would result in access
being granted to all the entities that are allowed to access the premises:

(:johnSmith, :salary, 40000) : [[js], [hr]] .

⊗ac Operator. The ⊗ operation is in turn used to derive new annotations when new triples are
inferred (Rule 4.2). The ⊗ac operation involves the merge of both annotations, normalisation
and conflict resolution. This equates to restricting access to inferred statements to only those
entities that have access to the both the original statements. Thus, the ⊗ operation corresponds
to:

Definition 4.7 (⊗ac Operation)

A1 ⊗ac A2 = normalise ({S1 ∪ S2 | S1 ∈ A1 and S2 ∈ A2}) ,

where S1 ∪ S2 represents the set theoretical union.

Unlike the ⊕ac operation, the ⊗ac may produce conflicts in the annotation statements. For
example, the application of the ⊗ac operation with the Annotated RDFS dom rule is as follows:

Example 4.8 (⊗ac Operation)
Given the following triples:

τ1 = (:westportCars, :netIncome, 1000000) : [[hr,¬jb]].

τ2 = (:netIncome, rdfs:domain, :Company) : [[it, jb]].

The annotation resulting from applying the ⊗ac operation should provide access to the re-
sulting triple only to entities which are allowed to access all the premises. Thus we can
infer, not only that :westportCars is of type :Company, but also the appropriate annotation
value:

(:westportCars, rdf:type, :Company) : [[hr, it,¬jb]] .

Please note that the aforementioned conflict resolution mechanism simplifies [¬jb, jb] to [¬jb].
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Top and Bottom Annotations. The smallest and largest annotation values in the access control
domain, ⊥ac and >ac respectively, correspond in turn to an empty nr-datalog¬ program and
another that provides access to all entities e ∈ (C ∪T): ⊥ac = [] and >ac = [[]]. The ⊥ac

annotation value element indicates that the annotated triple is not accessible to any entity, since
no annotation statements will provide access to the triple, and an annotation value of >ac states
that the triple is public, since any credential contained in the user session will trivially provide
access to the triple. Intuitively, the >ac annotation is translated into the nr-datalog¬ program
containing only the “access” fact, while ⊥ac corresponds to an empty program. However, for
practical reasons, it might be necessary to assume a “super-user” role, for instance, represented
as the reserved element “su”, which will be allowed access to all triples and therefore would be
used as the ⊥ac annotation.

Access Control Annotation Domain. The access control annotation domain is formally defined
as follows:

Definition 4.8 (Access control annotation domain)
Let F be the set of annotation values over (C ∪T), i.e. consistent ACLs.
Dac = 〈F,⊕ac,⊗ac,⊥ac,>ac〉 .

The presented access control domain modelling can be easily extended to handle other permis-
sions, like update, and delete by representing the annotation as an n-tuple of ACL 〈P,Q, . . .〉,
where P specifies the formula for read permission, Q for update permission, etc. In this extended
domain modelling, the domain operations can also be extended to operate over the corresponding
elements of the annotation tuple. A create permission has a different behaviour as it can not be
attached to any specific triple as it is a graph-wide permission and thus is out of scope for this
modelling. Support for graph based access control is presented in Chapter 5.

4.2.3 Prolog Implementation
Given the annotated RDFS implementation described in Section 4.1.4, the access control annota-
tion domain implementation consists of a Prolog module that is imported by the reasoner. This
module defines the domain operations ⊗ac and ⊕ac, represented as the predicates infimum/3 and
supremum/3 respectively. Although it is possible to represent the annotations using reification,
which requires four statements to represent the triple (one to assign an identifier to a statement
and three additional statements to associate a subject, predicate and object with the identifier)
and an additional statement to associate an annotation with the identifier, such an approach
would increase the size of the database making both querying and reasoning more expensive
from a performance perspective. An alternative approach is to represent annotation values using
lists (in this case lists of lists), following the notions presented in the previous section.
The implementation of the ⊕ac operation involves concatenating the list representation of

both annotations and then performing the normalisation operation. As for the ⊗ac operation,
we follow a similar procedure to the ⊕ac operation, with the additional step of applying either
the brave or the safe conflict resolution method. The evaluation of the nr-datalog¬ program
can be performed based on the representation of the annotation values, by checking if the list of
credentials of a user is a superset of any of the positive literals of the statements of our annotation
values and also that it does not contain any of the negative literals of the statement.
An example of RDF data annotated with access control information is presented in Figure 4.2,

where the salary information is only available to the respective employee. In this figure we are

79



4.3. REPRESENTING TRADITIONAL ACCESS CONTROL MODELS

@prefix : <http :// urq.deri.org/ enterprise #> .
: westportCars rdf:type : Company "[[ jb ]]".
: westportCars : netIncome 1000000 .
: joeBloggs : worksFor : westportCars .
: joeBloggs : salary 80000 "[[ jb ]]".
: johnSmith : worksFor : westportCars .
: johnSmith : salary 40000 "[[ js ]].

Figure 4.2: RDF triples annotated with access control permissions

representing the RDF triples and annotation element using the nquads RDF serialisation.2 Using
AnQL, the extension of the SPARQL query language described in Section 4.1.3, it is possible to
perform queries that take into consideration the access control annotations. An example of an
AnQL query over this data is presented in the following example:

Example 4.9 (AnQL query)
This query specifies that we are interested in the salary of employees that someone with the
permissions [[jb, hr, it]] is allowed to access.
SELECT * WHERE { ?p : salary ?s "[[jb , hr , it ]]" }

The answers for this query (when matched against the data from Figure 4.2) under SPARQL
semantics, i.e. if the annotation was omitted, would be:

{{?p→ :joeBloggs, ?s→ 80000} , {?p→ :johnSmith, ?s→ 40000}} .

However, when the domain annotations are present, an AnQL query engine must also per-
form the following check: [[jb, hr, it]] satisfies the nr-datalog¬ program λ, where λ is the
program represented by the annotation of each matched triple, thus yielding only the follow-
ing answer:

{{?p→ :joeBloggs, ?s→ 80000}} .

4.3 Representing Traditional Access Control Models
To date Semantic Web researchers have adopted a top-down approach to RDF access control
specification, modelling access control based on RDF data structures. Our approach is rather
to extract, model and enforce existing access control mechanisms over RDF data. Therefore, we
adopt a bottom up approach examining the access control requirements of existing software sys-
tems. In Section 4.3.1 we provide an overview of access control terminology and in Section 4.3.2
we describe several prominent access control models. In addition, we examine how existing access
control models can be used to protect RDF data. We propose a set of access control rules that
are required in order to propagate and enforce access control policies, based on these models,
over RDF data.

4.3.1 Access Control Terminology
An Access Control Model provides guidelines on how access to system resources and data should
be restricted. Whereas an Access Control Policy (ACP) details the actual authorisations and

2http://sw.deri.org/2008/07/n-quads/
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Figure 4.3: Components of an access control statement

Table 4.1: Categorisation of access control models
Enterprise Data Models Distributed Systems

MAC VBAC ABAC
DAC OBAC
RBAC

access restrictions to be enforced. Such permissions and prohibitions are specified as individ-
ual Access Control Statements (ACS), represented as a tuple: 〈S,R,AR〉 where S denotes the
subject, R denotes the resource and AR represents the access rights. Figure 4.3 depicts
the relationship between the access control terms that are used in this chapter. A Resource
is used to denote the information to be protected (for example, database records, application
objects, website IRIs). Users represent individuals requesting access to resources. We note that
such individuals may or may not be known in advance of the information request. Groups are
collections of users or roles with common features (for example, contributors, supervisors and
management). Roles are used to assign a set of access rights to a set of individuals and groups,
such as by department (for example, human resources, sales and marketing) or by task (for ex-
ample, insurance claim processing, reporting and invoicing). The term Subject is an umbrella
term used to collectively refer to users, roles and groups. Access rights are generally defined
as permissions and prohibitions applied to resources and granted to subjects.

4.3.2 Traditional Access Control Models
A high level categorisation of the models discussed in this section is presented in Table 4.1.
In keeping with our enterprise data integration use case, we focus on access control models
commonly used in enterprises; models applicable to other data representation formats; and
those that are relevant for distributed systems. An overview of the models is presented below.
As the models will be discussed in the next section we label them Mx where x is the name of
the access control model.

MMAC : Mandatory Access Control (MAC) (Samarati and de Vimercati, 2001). In this
model access to resources is restricted through mandated policies determined by a central
authority (for example, mainframes and lightweight directory services).

MDAC : Discretionary Access Control (DAC) (Samarati and de Vimercati, 2001). Similar to
MAC, access to resources is constrained by a central access control policy, however in
contrast to MAC users are allowed to override the central policy (for example, employees
may be allowed to grant others access to their own resources).
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MRBAC : Role Based Access Control (RBAC) (Sandhu, 1998). Generally speaking, RBAC in-
volves grouping a set of access rights that describe the responsibilities or tasks that can
be performed by a role (for example, manager, sales person and clerk). RBAC is the most
commonly used access control model in enterprise applications.

MV BAC : View-based Access Control (VBAC) (Griffiths and Wade, 1976). In relational
database systems VBAC is used to simultaneously grant access to one or more tables, tuples
or fields. A similar approach is used in Object Oriented Access Control (OBAC) (Evered
and Bögeholz, 2004) where access rights are granted to application objects.

MABAC : Attribute Based Access Control (ABAC) (McCollum et al., 1990). In distributed
environments where the requester is unknown prior to the submission of the request,
an alternative means of granting access is required. In ABAC (McCollum et al., 1990),
access control decisions are based on attributes (for example, employer=storm, policyNum-
ber=565656 ), in the form of digitally signed documents that are sent by the requester to
the server.

4.3.3 Support for Existing Access Control Models
In this section we discuss how each of the access control models, presented in Section 4.3.2 can
be supported.

MMAC and MDAC . Given both models relate to the entire ACP as opposed to an ACS, a
permission management module is necessary to enable system administrators to specify
standard access control policies. In the case of DAC users are allowed to manage access
control policies and to delegate their permissions to others. Whereas in the case of MAC
all policies are set by a central authority. Given the former is more suitable for distributed
environments, such as the web, in Chapter 5 we examine however DAC is applied to the
relational and the XML data models and discuss how it can be used in conjunction with
the RDF data model.

MRBAC . RBAC can be represented using a single value element notation. The following quad
demonstrates how a single annotation can be used to simultaneously cater for users, roles
and groups.
: WestCars1 a : Project "([[: mary , :manager , : salesDept ]])"

MABAC . A key–value pair element representation is needed to support attributes. The annota-
tion elements outlined below are used to demonstrate how a user’s current employer can be
represented using key–value pairs.
: WestCars1 a : Project "([[(: employer ,: storm)]])"

MV BAC . In RDB2RDF it is common to transform each database record into several triples that
share a common subject. In our data integration scenario MV BAC can be catered for by
using RDB2RDF to apply the access control directly to each triple generated during the
translation. For example, the following two triples could be generated from two separate
columns of a database table:
: WestCars1 a : Project "([[: employee ]]) ".
: WestCars1 : Client : WestCarsLtd "([[: employee ]]) ".

4.3.4 Simplifying Administration using Rules
Table 4.2 provides an overview of the rules required by each of the models. The table also includes
a column labelled CRUD. Although access rights are not a model per se, we have included them
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Table 4.2: Overview of access control rules
MMAC MDAC MRBAC MV BAC MABAC CRUD

Rule 4.3
√

Rule 4.4
√

Rule 4.5
√ √ √ √ √

Rule 4.6
√ √ √ √ √

Rule 4.7
√

here as a specific rule is required to infer access rights based on permission hierarchies.
These rules can be used to associate permissions with data, that may or may not be extracted

from existing systems. Propagation chains can be broken by explicitly specifying permissions
on a particular triple. However, the rules may need to be extended to consider provenance as it
may not be desirable to propagate permissions to related data from different sources.
In each of the rules, we represent variables with the ? prefix. In general ?S, ?P , and ?O refer

to data variables while ?λ and ?E refer to annotation variables and annotation element variables
respectively. The premises (represented above the line) correspond to a conjunction of quads,
possibly with variables for any position. Whereas the conclusion (represented below the line)
corresponds to a single quad where the variables are instantiated from the premises. We also
assume the premises may include functions, for example, the member function is true, if and
only if, an access control element is included in a provided access control list. The ⊕ac operation
is used to combine the access control information associated with two triples. This operation is
used to combine complete lists as well as to combine single access control elements with access
control lists, which intuitively adds the new element to the list.

Resource Based Access. The most basic access control rule involves granting a subject access
rights to a resource. Normally the access is explicit and therefore no inference is required.
However in order to provide support for MV BAC we need the ability to associate access
rights with several triples. As such, we need a rule to propagate access rights to all triples
with the same RDF subject. Given the following triples:
: Invoice1 a : Document "([[: john ]])"
: Invoice1 : located "/ dms/projs/docs"

we can infer that:
: Invoice1 a : Document "([[: john ]])"
: Invoice1 : located "/ dms/projs/docs" "([[: john ]])"

Rule 4.3 (Propagation based on the subject)
Assuming that we have access rights associated with one triple. We can use this rule
to propagate λ1 access rights to all triples with the same subject.

?S ?P1 ?O1 ?λ1, ?S ?P2 ?O2 ?λ2

?S ?P2 ?O2 (?λ2⊕ac?λ1)

Hierarchical Subjects Inheritance. In MRBAC access control subjects are organised hierarchi-
cally and lower-level subjects inherit the access rights of higher-level subjects. For example,
in a role hierarchy access rights allocated to the manager role will be inherited by all indi-
viduals in the organisation that have been granted the manager role.
Given the following triples:
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: Invoice1 a : Document "([[: manager ]])"
:john : inheritsFrom : manager

we can infer that:
: Invoice1 a : Document "([[: manager ],[: john ]])"

Rule 4.4 (Propagation based on subject hierarchies)
If ?E1 and ?E2 are access rights and ?E2 inherits from ?E1 then triples with access
rights ?E1 should also have ?E2.

?S ?P ?O ?λ1, ?E2 :inheritsFrom ?E1,member(?E1, ?λ1)
?S ?P ?O (?λ1⊕ac?E2)

Hierarchical Subjects Subsumption. Like Rule 4.3, access control subjects can be organised to
form a hierarchy. However in this instance we are talking about an organisation structure
as opposed to a role hierarchy, in which case higher-level subjects will subsume the access
rights of lower-level subjects. For example, managers implicitly gain access to resources
that their subordinates have been explicitly granted access to. Given the following triples:
: Invoice2 a : Document "([[: john ]])"
:mary : hasSubordinate :john

we can infer that:
: Invoice2 a : Document "([[: john], [: mary ]])"

If an ?E2 has subordinate ?E1, then ?E2 will be granted access to any triples ?E1 has access
to. Since this format of rule differs from Rule 4.3 only in the vocabulary that connects the
resources, the same rule can be reused if we replace :inheritsFrom with :hasSubordinate.

Hierarchical Resources Inheritance. Similar principles can also be applied to resources. In sev-
eral of the access control models resources are organised into a hierarchy and lower-level
resources inherit the access rights of higher-level resources. For example, document libraries
are often organised into a hierarchy. Given the following triples:
: dmsProjs a : DocumentLibrary "([[: employee ]])"
: dmsProjsRpts a : DocumentLibrary
: dmsProjsRpts : isPartOf : dmsProjs

we can infer that:
: dmsProjRpts a : DocumentLibrary "([[: employee ]])"

Rule 4.5 (Propagation based on resource hierarchies)
Here the rule states that if an ?S2 is part of ?S1 then the access rights of triples with
?S1 i.e. λ1 should be propagated to ?S2.

?S1 ?P1 ?O1 ?λ1, ?S2 ?P2 ?O2 ?λ2, ?S2 :isPartOf ?S1

?S2 ?P2 ?O2 (?λ2⊕ac?λ1)

Resources Categorisation. However resources can also be categorised by type, for example,
views or objects in MV BAC , and all resources of a particular type can inherit the access
rights that have been assigned to that type. Access rights placed on a report object can be
propagated to all objects of type report. Given the following triples:
: Report a : Document "([[: employee ]])"
: Report1 a : Report
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Figure 4.4: RDF data integration and access control enforcement framework

we can infer that:
: Report1 a : Report "([[: employee ]])"

Rule 4.6 (Propagation based on resource typing)
Below the rule states that if ?O2 is a type of ?O1 then the access rights of triples with
?O1 i.e. λ1 should be propagated to ?O2.

?S1 ?P1 ?O1 ?λ1, ?S2 ?P2 ?O2 ?λ2, ?O2 a ?O1

?S2 ?P2 ?O2 (?λ2⊕ac?λ1)

Hierarchical Access Rights Subsumption. The access rights themselves can form a hierarchy
whereby each permission level can include the access rights of the permission level below it.
For example, we can assume update access from delete access and read access from update
access. Given the following triples:
: Invoice3 a : Document "([[]] , [[: john ]], [[]])"

we can infer that:
: Invoice3 a : Document "([[: john ]], [[: john ]], [[]])"

Rule 4.7 (Propagation based on permission hierarchies)
Assuming that the ACL is a 3-tuple (R,U,D) and the permission hierarchy is stored as
RDF. This rule states that if Update is part of Delete and Read is part of Update then
the delete access rights should be propagated to the update annotation and the update
access rights to the read annotation.

?S ?P ?O (?λ1, ?λ2, ?λ3)
?S ?P ?O ((?λ1⊕ac?λ2⊕ac?λ3), (?λ2⊕ac?λ3), ?λ3)

4.4 Framework, Implementation and Evaluation
This section describes a set of components that are necessary for a data integration and access
control enforcement framework, which caters for reasoning over both data and access control
policies. It provides an overview of our implementation and presents an experimental evaluation
of our prototype, which focuses on: (i) the RDB2RDF converter ; (ii) the reasoning engine;
and (iii) the query engine. The aim of this evaluation is simply to show the feasibility of our
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approach and, although we present different dataset sizes, at this point we are not looking to
improve scalability and thus do not propose any kind of optimisations.

4.4.1 Access Control Enforcement Framework
An overview of the proposed framework is depicted in Figure 4.4, which is composed of two main
modules: Data Integration and Access Control Enforcement. The Data Integration module is
responsible for the conversion of existing RDB data and access control policies to RDF. Whereas
the Access Control Enforcement module caters for the management of access rights and enables
authenticated users to query their RDF data. We do not claim that this is an exhaustive list
of the system components but rather the minimal components any access control framework
requires. Noticeably, one missing component is the authentication component, which we do not
focus on in this thesis. Authentication can be achieved by relying on WebID and self-signed
certificates, working transparently over HTTPS.

Data Integration. The Data Integration module is responsible for the extraction of data and
associated access rights from the underlying relational databases (RDBs). The information
extracted is subsequently transformed into RDF and persisted in the RDF Data and Access
Rights stores. Ideally, the data integration step would be carried out in conjunction with a
domain expert, for example, to assist in defining an R2RML (Das et al., 2012) mapping that
extracts and converts the relational data into RDF. In a pure Lined Data scenario, the data
integration module is optional, in which case the data and access rights need to be populated
manually or from specialised software systems.

Storage. The integrated data, retrieved from the original relational databases, is stored in the
RDF Data store. Whereas, the access control policies over the RDF data are stored in the Access
Rights store. A link between the two stores is necessary so that access policies can be related
to existing graphs, triples, or resources. Any RDF store can be used as a back-end for storing
this data. We do not restrict the representation format used for the Access Rights store which
may be stored as quads, associated with reified triples or triple hash-codes.

Reasoning. For this component, we consider two distinct forms of inference: (i) data inference,
where new triples are deduced from existing ones; and (ii) access rights inference, where new
permissions are deduced from existing ones. For data inferencing we rely on well established
forms of inference in the Semantic Web such as RDFS or OWL. However, if access control
policies have been assigned to the data we also need a mechanism to propagate these policies
when we infer new triples from existing ones. Another form of permission reasoning is required
to support both permission management and data querying based on access control policies over
RDF. Either backward or forward chaining could be used for both the data and the access rights
inference.

Querying. SPARQL is the standard query language for RDF however the language itself does
not provide any form of access control. It thus needs to be extended to ensure access is only
given to the RDF triples that the user has been granted access to either explicitly or implicitly.

4.4.2 Implementation
In our prototype the data integration is performed using XSPARQL (Lopes et al., 2011), a
transformation and query language for XML, RDB, and RDF, that allows data to be extracted
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from existing RDBs. Whereas the access control enforcement framework is a Prolog implemen-
tation of the Annotated RDF (Zimmermann et al., 2012) framework which enables reasoning
over annotated triples.

RDB2RDF. XSPARQL was chosen over other alternative RDB2RDF approaches as both RDB
and XML data formats are used extensively in organisations and also it has built-in support for
the nquad format. In this chapter, we focus on relational databases but the ability to extract
XML, from files or web-services, is desirable. The sample query presented in Query 4.1 is used
to retrieve the GroupTitle, ScopeUrl, RoleTitle attributes from the WebSiteView relation
and translate them into nquads. In this instance, the query is performed over a view that is
used to combine data and permissions, however XSPARQL can also be used to extract data from
multiple relations.

Query 4.1 (Sample XSPARQL query)
prefix ent: <http :// urq.deri.org/ enterprise #>

FOR GroupTitle , ScopeUrl , RoleTitle
FROM WebSiteView
CONSTRUCT {
entx :{ $ScopeUrl } a entx:Web { $GroupTitle };

entx: FullUrl { $ScopeUrl } { $GroupTitle };
entx:Group { $GroupTitle } { $GroupTitle };
entx:Role { $GroupTitle } { $GroupTitle };

}

For additional detail on XSPARQL, the reader is referred to Lopes et al. (2011).

Annotated RDF. Our Prolog Annotated RDF (Zimmermann et al., 2012) implementation,
allows domain specific meta-information in the form of access rights to be attached to RDF
triples. An overview of our annotated RDF access control domain model, presented in (Lopes
et al., 2012), was provided in Section 4.2.2. The reasoning component is implemented by an
extension of the RDFS inference rules. It allows the Annotated RDF reasoning engine to auto-
matically determine the annotation values for any inferred triples based on the annotations of the
premises. As such, we are actually performing data and annotation reasoning in the same step.
We also support reasoning over the access rights alone, allowing information to be propagated
according to the rules presented in Section 4.3.4. With the exception of Rule 4.7 our prototype
provides for the presented rules, either in the form of inference rules or by explicit rules in the
domain modelling. Our prototype currently does not cater for Rule 4.7 because the existing
implementation only handles read permissions.

AnQL. Our query engine relies on an extension of SPARQL, AnQL (Lopes et al., 2010), which
allows the annotated RDF data to be queried. AnQL extends SPARQL to consider also a fourth
element in the query language. However, for the enforcement of access rights, the end user
must not be allowed to write AnQL queries as this would pose a security risk, thus we rely
on a translation step from SPARQL into AnQL. The Query Engine takes a SPARQL query
and transparently expands it into an AnQL query, using the list of credentials provided by the
authentication module. As authentication is outside the scope of this thesis, we simply extract
end user credentials from the RDB applications, and maintain a mapping between the enterprise
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Table 4.3: Dataset description
DS1 DS2 DS3 DS4

database records 9990 17692 33098 63909
triples 62296 123920 247160 493648
file size (MB) 7.6 14.9 29.9 59.6

Table 4.4: Prototype evaluation
DS1 DS2 DS3 DS4

RDB2RDF (sec) 39 52 92 179
Import (sec) 3 5 10 19
Inference engine (sec) 3218 11610 32947 58978
Inferred triples 59732 117810 237569 473292

employee and their usernames and roles. The AnQL query is subsequently executed against the
Annotated RDF graph, which guarantees that the user can only access the triples annotated
with their credentials.

4.4.3 Performance Evaluation
The benchmark system is a virtual machine, running a 64-bit edition of Windows Server 2008 R2
Enterprise, located on a shared server. The virtual machine has an Intel(R) Xeon(R) CPU X5650
@ 2.67GHz, with 4 shared processing cores and 5GB of dedicated memory. For the evaluation
we use XSPARQL to extract both the data and the access rights from two separate software
application databases: a document management system (DMS) and a timesheet system (TS).
We subsequently use the rules specified in Section 4.3.4 to propagate the permissions to relevant
triples. In the case of the TS we only assigned existing access rights to one triple and let Rule 4.3
propagate the permissions to all triples with the same subject. As for the DMS we extracted
the existing IRI hierarchy and the associated permissions and used Rule 4.5 to propagate the
permissions to all data extracted depending on their location in the hierarchy. Existing type
information was extracted from both systems and propagated using Rule 4.6. Finally we input
the organisation structure as facts in the Prolog application and used Rule 4.4 to propagate
permissions based on this hierarchy. As our prototype only supports read access we did not
consider Rule 4.7 in our evaluation. The different datasets (DS1, DS2, DS3, and DS4) use the
same databases, tables, and XSPARQL queries and differ only on the number of records that are
retrieved from the databases. Table 4.3 provides a summary of each dataset, stating the number
of database records queried, the number of triples generated, and the size in MegaBytes (MB)
of the nquads representation of the triples.

RDB2RDF and Inference. Table 4.4, includes the time the data extraction process took in
seconds (sec), the time it took to import the data into Prolog (sec), the evaluation time (sec)
of the access control rules detailed in Section 4.3.4, and the number of triples inferred in this
process. Figure 4.5a provides a high level overview of the times for each of the datasets. Based
on this simple experiment we have hints that the extraction process and the loading of triples
into Prolog behave linearly.
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Table 4.5: Query execution time in seconds
DS1 DS2 DS3 DS4

1TP
∅ 0.0000 0.0003 0.0013 0.0042
∃ 0.0065 0.0159 0.0300 0.0654
6 ∃ 0.0081 0.0189 0.0316 0.0670

2TP
∅ 0.0247 0.0544 0.1497 0.2679
∃ 0.0228 0.0638 0.0898 0.1845
6 ∃ 0.0094 0.0198 0.0338 0.0690

3TP
∅ 0.0169 0.0482 0.1322 0.2213
∃ 0.0241 0.0593 0.0943 0.1741
6 ∃ 0.0101 0.0192 0.0316 0.0609

Query Engine. For the evaluation of the AnQL engine we created three separate query sets
1TP , 2TP and 3TP . The query sets were each composed of three queries with: one triple
pattern 1TP ; two triple patterns 2TP ; or three triple patterns 3TP . Each query was run
without annotations (∅), with a credential that appears in the dataset (∃) and with a credential
that does not appear in the dataset ( 6 ∃). The results displayed in Table 4.5 were calculated
as an average of 20 response times excluding the two slowest and fastest times. Based on this
experiment we can see that there is an overhead for the evaluation of annotations when you query
using a single triple pattern Figure 4.5b. However queries with a combination of annotations
and either two or three triple patterns, Figure 4.5c and Figure 4.5d respectively, out perform
their non annotated counterparts. Such behaviour is achieved in our implementation by pushing
the filters into the triple patterns as opposed to querying the data and subsequently filtering
the results. The results do not show a significant performance increase over the four datasets,
between queries with annotations (Figure 4.5e) and those without annotations (Figure 4.5f).
Furthermore we can see that there is no overhead associated with queries where the annotation
is not present in the dataset. In fact such queries are actually more efficient when the query is
made up of two or three triple patterns.

4.5 Related Work
A number of authors propose access control models for RDF graphs and focus on policy propaga-
tion and enforcement based on semantic relations. Concept-Level Access Control (CLAC) (Qin
and Atluri, 2003), Semantic-Based Access Control (SBAC) (Javanmardi et al., 2006b) and the
semantic network access control models proposed by Ryutov et al. (2009) and Amini and Jalili
(2010), are well known works in this area. The policy language proposed by Javanmardi et al.
(2006b) is not based on well defined semantics and no implementation details are provided. Ryu-
tov et al. (2009) propose a path-based approach to policy composition. Amini and Jalili (2010)
state that they use an analytical tableaux system, however they do not provide a mechanism
for merging or for inference of permissions based on RDF structure. Qin and Atluri (2003)
propose policy propagation of access control based on the semantic relationships among con-
cepts. Javanmardi et al. (2006b), Ryutov et al. (2009) and Amini and Jalili (2010) enhance the
semantic relations by allowing policy propagation based on the semantic relationships between
the subjects, objects, and permissions.
Dietzold and Auer (2006) describe the requirements needed by an RDF store, from a Semantic

Wiki perspective. Apart from efficiency and scalability, the authors refer to the need for access
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Figure 4.5: Load and query times across 4 datasets

control on a triple level and to integrate the structure of the organisation in the access control
methods. The described system relies on a query engine (SPARQL is mentioned but no details
are given) and a rule processor to decide the access control enforcement at query time. The
system we propose in this chapter caters for both of these requirements and also integrates the
access control into the annotation query language.
Hollenbach et al. (2009) present the possibility of maintaining metadata for RDF to enforce

access control and touch upon of the work presented here, such as using rules for specifying
access control, as possible extensions of their model. Providing access control on a resource level
is also left as an open question, one we are tackling by the specification of rules.
Some work on extending query languages was presented by Abel et al. (2007), however this

work pre-dates the SPARQL query language. In a similar fashion to the work presented in this
chapter, their policy enforcement is also done by a query rewriting step however, their query

90



4.6. SUMMARY AND FUTURE DIRECTIONS

rewriting does not involve including the user credentials but rather replicating the access policies
within the query. They also take into account policies which allow or deny access to data.
Knechtel and Stuckenschmidt (2010) and Baader et al. (2009) also attach access control an-

notations to axioms in ontology, in order to allow access to subsets of the ontology to specific
users. However the primary focus is on determining the minimal set of axioms that are neces-
sary to support a certain conclusion. Although the setting is different to the one presented in
this chapter, some of the algorithms for efficient annotation calculation may be ported to our
modelling.
Costabello et al. (2012a) propose a lightweight vocabulary which defines fine-grained access

control policies for RDF data. They focus specifically on modelling and enforcing access control
based on contextual data. Sacco et al. (2011) present a privacy preference ontology which
allows for the application of fine-grained access control policies to an RDF file. Both Costabello
et al. (2012a) and Sacco et al. (2011) propose frameworks that rely on SPARQL ASK queries to
determine access to resources based on the defined vocabularies.
In contrast to existing proposals the solution we present is tightly coupled with the corner-

stone Semantic Web technologies (RDF, RDFS and SPARQL). We propose an integrated solu-
tion which extracts data and access rights from the enterprise software systems into RDF and
an enforcement framework which handles reasoning over both the data and the access control
statements. Approaches to date can be summarised as top-down approaches where the authors
model access control based on RDF data structures and the access control requirements of open
systems. We adopt a bottom up approach showing how existing access control models can be
applied to RDF data.

4.6 Summary and Future Directions
RDF is a flexible data representation format that can be used for large scale integration of
information from existing LOB applications. RDF can greatly benefit an enterprise, not only
as a self-describing data model for their existing public data, but also as a means of extending
internal data with RDF data freely available on the Web. The introduction of access control
policies and enforcement over RDF, also allows organisations to selectively and securely share
information with third parties (business partners, supplier or clients), using the existing web
infrastructure.
In this chapter, we demonstrated how the Annotated RDF framework can be used to attach

access control information to RDF data. Our model caters for access control at the triple
level i.e. each RDF triple can contain different annotation values. Domain operators allow the
annotations associated with identical triples to be combined and new annotations based on RDFS
rules to be inferred. As access control policies for LOB applications are often stored in relational
database tables, we discussed how RDB2RDF technology can be used to extract both the data
and associated access rights from relational databases and how they can be represented as triples
and annotations respectively. However, it is also feasible to specify annotations for information,
which has not be extracted from existing systems and to update existing annotations directly.
Although, on very large datasets, access control policy specification and administration at the
triple level, would not be sustainable. To tackle this issue we proposed the management of
permissions using domain specific inference rules. Based on our analysis of the predominant
access control models found in the literature, we presented a set of rules, that can be used to
simplify access control specification and administration. We also proposed a data integration
and access control enforcement framework and described a possible implementation. In our
implementation access control is enforced by transforming SPARQL queries into Annotated
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SPARQL (AnQL) queries, using user credentials, which we assume have been verified by an
external authentication service. A preliminary performance evaluation of the prototype, over
enterprise data supplied by our project partner, was presented. As expected there is an overhead
associated with access control for queries containing a single triple pattern. However, as a side
effect of the query rewriting, from the user perspective queries with two or three patterns appear
to run faster.
Nonetheless, the proposed solution is not without its drawbacks. From a performance perspec-

tive, given annotations are stored as lists of lists, for systems with many users and credentials, the
proposed query rewriting and annotation matching will suffer from scalability issues. Whereas,
from a modelling perspective, one of the major drawbacks of the proposed solution is that the
existing modelling does not cater for access control at the graph level. As such, it cannot sup-
port graph wide permissions in general and the create permission in particular. A more flexible
solution would be to cater for access control at multiple levels of granularity. Also although we
identified the need for a permission management module and indicated that DAC is particularly
suitable for managing access control over distributed data, further analysis is required in order
to determine it suitability for the LDW.
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Chapter 5

Applying Discretionary Access Control to
Distributed RDF Data

In the early days, the web of documents was primarily used as a medium for sharing and linking
static information. It wasn’t until challenges with respect to data confidentiality, authenticity
and integrity were addressed that electronic business became common place. It is not surprising
that the Linked Data Web (LDW) is following a similar evolution. With the advent of SPARQL
1.1, it is possible for the LDW to evolve from a medium for publishing and linking data to a
dynamic read/write distributed data source, that can support not only large scale data analytics
but also the next generation of electronic business applications.
An important requirement for any data management system is the ability to protect data from

unauthorised access. Traditionally data models, such as the relational and the XML data models,
influenced the implementation of the corresponding access control mechanisms. A data model
is an abstraction used to represent real world entities, the relationship between these entities
and the operations that can be performed on them. Data models can be broadly categorised
as relational, tree-based and graph-based. As Discretionary Access Control (DAC) allows users
to delegate their permissions to others it is particularly suitable for managing access control
over distributed data. Therefore, in this chapter, we examine how DAC can be used to restrict
access to RDF data. We base our work on the DAC model as it has been successfully adopted by
several relational DBMS vendors; because of its inherent flexibility; and its potential for handling
context based authorisations in the future.
In Chapter 4, we demonstrated how together RDB2RDF technology and Annotated RDF can

be used to securely integrated data from multiple LOB applications. The solution we presented
also caters for the derivation of new annotations based on RDFS inference rules. We discussed
how access control specification and maintenance can be simplified by using propagation rules
based on resource types and hierarchies of subjects, access rights and resources. Given there is
also a need for access control over RDF data in a broader web context, in this chapter we examine
the specification, derivation and delegation of access control over distributed RDF data. Our
research is guided by DAC principles and experiences applying these principles to the relational
and tree-based data models. We discuss the need for additional rules to support DAC over the
RDF data model, and demonstrate how authorisations based on graph patterns can be used to
specify access control policies at different levels of granularity. In addition we demonstrate how
the hierarchical Flexible Authorisation Framework (Jajodia et al., 2001) can be adapted, to cater
for the specification, administration and enforcements of DAC policies over Linked Data.
In relation to access control for distributed RDF data, we make the following contributions.
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We: (i) discuss how DAC principles can be used to restrict access to RDF data; (ii) propose a set
of rules that are necessary for derivation of authorisations based on RDFSchema; (iii) describe
how together pattern matching and propagation rules can be used to specify access control poli-
cies at multiple levels of granularity; (iv) demonstrate how the hierarchical Flexible Authorisation
Framework (Jajodia et al., 2001) can be adapted to work with graph data; and (v) show how
conflict resolution policies and integrity constraints can be used to ease maintenance and ensure
the integrity of authorisations and propagation rules. Together these contributions provide a
solid building block for DAC policy enforcement over distributed RDF data.
The remainder of the chapter is structured as follows: Section 5.1 describes how DAC is used

to restrict access to the relational and tree-based data models. Section 5.2 discusses potential
issues when we apply DAC to graph data and proposes possible handling mechanisms. Section 5.3
describes how the hierarchical Flexible Authorisation Framework (Jajodia et al., 2001) can be
extended to cater for the RDF graph data model. Section 5.4 details how graph patterns,
propagation rules, integrity constraints and conflict resolution policies can be used to specify and
enforce access control over data represented using the RDF data model. Section 5.5 demonstrates
how the proposed framework can be used to enforce access control over Linked Data exposed via
SPARQL endpoints, and details the results of our performance evaluation of our authorisation
enforcement and administration algorithms. Section 5.6 examines alternative approaches to the
enforcement and administration of access control over RDF data. Finally Section 5.7 summarises
the contributions and outlines directions for future work.

5.1 DAC Background
DAC policies limit access to data resources based on access rules that state the actions that can be
performed by a subject. The term subject is an umbrella term used to collectively refer to users,
roles, groups and attribute-value pairs. In DAC, access to resources is constrained by a central
access control policy, however users are allowed to override the central policy and can pass their
access rights on to other users (Sandhu and Samarati, 1994), known formally as delegation. Over
the years the DAC model has been extended to consider: constraint based authorisations (e.g.
time, location); access to groups of users, resources and permissions; support for both positive
and negative authorisations; and conflict resolution mechanisms (Samarati and de Vimercati,
2001). In this section we describe how DAC is used to protect relational and tree-based data
models.

5.1.1 Applying DAC to the Relational Model
In the relational model (Figure 5.1), data items are grouped into n-ary relations. A relation
header is composed of a set of named data types known as attributes. The relation body is in
turn made up of zero of more tuples (i.e. sets of attribute values). A primary key, composed of
one or more attributes that uniquely identify each tuple, is defined for each relation. Relations
are connected when a foreign key (i.e. one or more attributes) in one relation are linked to a
primary key (i.e. one or more attributes) in another relation. Relations can be categorised as
base relations or views. Base relations are actually stored in the database whereas views are
virtual relations derived from other relations. Views are commonly used to: (i) provide access
to information from multiple relations; (ii) restrict access to particular attributes or tuples; and
(iii) derive data (for example sum, average, min and max).
In relational databases access is restricted both at a schema level (database, relations and

attributes) and a data level (tuples and values). The access rights themselves are tightly coupled
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Figure 5.1: Relational data model

with database operations such as SELECT, INSERT, UPDATE, DELETE and DROP. In addition the
GRANT privilege allows users to grant access to others based on their own privileges. Griffiths
and Wade (1976) describe how DAC is implemented in System R (Astrahan et al., 1976), an
experimental DBMS developed to carry out research on the relational data model. Two of the
underpinning principles of DAC are: (i) the derivation of implicit authorisations from explicit
authorisations; and (ii) the delegation of access rights.
Authorisations explicitly defined at the schema level are implicitly inherited by other database

entities. For example, (i) database authorisations are inherited by all database resources; (ii) re-
lation authorisations are inherited by all tuples; and (iii) attribute authorisations are inherited
by all attribute values. Aside from schema level derivations, Griffiths and Wade (1976) describe
how views can be used to implicitly grant access to one or more tables, attributes or tuples
spanning multiple relations. Under DAC, database users are granted sole ownership of the ta-
bles and views that they create. They can subsequently grant access rights to other database
users. Griffiths and Wade (1976) and Bertino et al. (1997) discuss how the revocations process
is complicated due to recursive delegation of permissions and propose algorithms which are used
to revoke access rights.

5.1.2 Applying DAC to the Tree Model
In the tree data model information is organised into a hierarchical structure with a single root
node. Each data item, represented as a node, is composed of one or more attributes. Relations
are connected via parent-child links, whereby each parent can have many children, however each
child can have only one parent. Both object-oriented databases and the Extensible Markup
Language (XML) are examples of the tree data model. In the remainder of this section we focus
on XML, however it is worth noting that the core derivation and delegation principles can also
be applied to other instances of the tree data model.
In an XML data model (Figure 5.2) relations are represented as elements that can contain

textual information and zero or more attribute-value pairs. Simple elements contain data values
whereas complex data types are constructed from other elements and/or attributes, giving XML
its hierarchical structure. A Document Type Definition (DTD) or an XMLSchema can be used
to describe the structure of an XML document. In contrast to the relational model, XML data
is not necessarily an instance of some schema.
Bertino et al. (2001) describe how DAC is implemented in Author-X, a prototype developed

to demonstrate how access control policies can be applied to XML documents, that may or may
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Figure 5.2: XML tree model

not conform to a DTD/XMLSchema. Similar to the relational model, tree-based access control
can also be specified at both schema and data levels. From a schema perspective, access can
be restricted based on the structure of the document/data item, a DTD or an XMLSchema.
Whereas, data level restrictions can be applied to specific elements and attributes. Similar to
the relational model, the access rights reflect the operations commonly performed on an XML
document, for example READ, APPEND, WRITE, DELETE and INSERT.
Propagation of authorisations based on the is-part-of relationship between documents, ele-

ments, sub-elements and attributes, is one of the key features of DAC for XML (Bertino and
Sandhu, 2005). Although implicit authorisations simplify access control administration, a knock
on effect is that exceptions need to be catered for. In XML inheritance chains can be broken
by explicitly specifying authorisations for leaf nodes. In addition, a combination of positive
and negative authorisations are used to grant access in the general case, and to deny access
for specific instances. The introduction of negative authorisations brings with it the need for
conflict resolution mechanisms (for example, denial takes precedence). Gabillon (2004) describes
how delegation of privileges can be adapted to work for XML databases. The author defines a
security policy language for XML which incorporates SQL GRANT and REVOKE commands.

5.2 Applying DAC to the RDF Model
In this section, we describe how the graph data model differs from the tree data model. We
discuss how DAC can be applied to graph-based data and detail the implication such struc-
tural differences have on access control in general. Although in this chapter we focus on RDF
specifically, a number of observations could potentially be applied to other graph data models.

5.2.1 Graph and Schema Based Authorisations
The first step in the identification of access control requirements for RDF data is to identify the
resources that need to be protected, and the access rights required. The graph data model alone
is quite limiting when it comes to the management of access rights. Therefore, vocabularies such
as RDFS and OWL are required in order to cater for more expressive authorisations.

RDF Resources. From a data perspective, access can be restricted to a node (subject or ob-
ject), an arc (property), two connected nodes (triple), a collection of nodes and edges (multiple
triples that share a common subject) or arbitrary views of the data (named graphs). Whereas,
from a schema perspective authorisations can be applied to classes and properties. Given the

96



5.2. APPLYING DAC TO THE RDF MODEL
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Figure 5.3: RDF graph model

1 foaf: Person rdf:type rdfs:Class.
2 foaf: givenName rdf:type rdf: Property .
3 foaf: givenName rdfs: domain foaf: Person .
4 foaf: lastName rdf:type rdf: Property .
5 foaf: lastName rdfs: domain foaf: Person .

Figure 5.4: Subset of FOAF vocabulary

tight coupling between schema and data items, authorisations based on classes (for instance,
foaf:person) and properties (for instance, foaf:givenName) would need to be derived using
schematic vocabularies such as RDFS or OWL1. In Section 5.2.2, we examine how permissions
can be derived based on both the graph structure and RDFS.

Access Rights. The access rights of both the relational and XML data models are very similar
and differ primarily by vocabulary. SPARQL proposes several operations similar to those that
exist for relational and XML data (SELECT, INSERT, DELETE/INSERT, DELETE and DROP). However
SPARQL also defines a number of additional query operations (CONSTRUCT, ASK and DESCRIBE)
and a number of operations specifically for graph management (CREATE, COPY, MOVE and ADD).
Notable omissions from the list of SPARQL operations are the GRANT and REVOKE commands
which allows users to grant access to or revoke access from others based on their own privileges.
In Section 5.2.3, we discuss how the grant and revoke operations could be accommodated in
SPARQL.

Access Control Policy. An Access Control Policy details the actual authorisations and access
restrictions to be enforced. Each authorisation is represented as a quad 〈Sub,Acc, Sign,Res〉
where Sub denotes the subject (not to be confused with an RDF triple subject), Acc the access
rights, Sign indicates if the user is granted or denied access and Res represents the resource to
be protected (i.e. rdf quad with optional variables, represented using a ? prefix, in any position).
A matrix outlining the access rights that are appropriate for each operation (represented by an
X) is provided in Table 5.1. For conciseness Con denotes two connected nodes, Col denotes a
collection of nodes and edges and Prop denotes RDF properties. A sample access control policy
is presented in Table 5.2. Each authorisation is labelled (An) to ease referenceability. (A1),
(A2) and (A3) grant access rights SELECT, INSERT and DELETE to the graph entx:G1. (A4)

1OWL, http://www.w3.org/TR/owl2-overview/

97

http://www.w3.org/TR/owl2-overview/


5.2. APPLYING DAC TO THE RDF MODEL

1 entx:G1 {
2 entx: salary rdf:type rdf: Property .
3 entx: salary rdfs: domain foaf: Person .
4 entx: JoeBloggs rdf:type foaf: Person .
5 entx: JoeBloggs foaf: givenName "Joe ".
6 entx: JoeBloggs foaf: lastName " Bloggs ".
7 entx: JoeBloggs entx: salary "40000".
8 entx: MayRyan rdf:type foaf: Person .
9 entx: MayRyan foaf: givenName "May ".

10 entx: MayRyan foaf: lastName "Ryan ".
11 entx: MayRyan entx: salary "80000".
12 }

Figure 5.5: Snapshot of enterprise employee data

Table 5.1: Relationship between access rights and resources
Rights Node Arc Con. Col. View Prop. Class
SELECT X X X X X X X
CONSTRUCT X X X X X X X
ASK X X X X X X X
DESCRIBE X X X X X X X
INSERT X
DELETE X
DROP X
CREATE X
COPY X
MOVE X
ADD X
GRANT X X X X
REVOKE X X X X

Data Model Schema

grants access to a particular class and (A5) denies access to the salary property. If no explicit or
implicit policy exists, it is possible to adopt either a safe conflict resolution policy (deny access
by default) or an brave conflict resolution policy (grant access by default).

5.2.2 Derivation of Authorisations
In both the relational model and the tree model, authorisations can be derived based on the
data schema. When it comes to the RDF data model, similar derivations are highly desirable
as they simplify authorisation administration. Existing RDF database vendors adopt a view
based approach to derivation, organising triples into named graphs based on the access control
requirements and granting access to the entire graph. Although similar to views in relational
databases, in this instance the graph is materialised. An alternative approach would be to derive
permissions based on the graph structure. However, as it isn’t possible to distinguish between
schema and instance data such an approach alone is quiet limited. Therefore we propose an
additional layer of derivations based on a vocabulary, such as RDFS, to define rules that leverage
the semantic relations between nodes and edges. In the following rules, both the premises (above
the line) and the conclusion (below the line) are represented as a 5 tuple 〈S, P,O, γ, λ〉. Where:
(i) S represents a subject, P a predicate and O an object (together they represent a triple); (ii) γ
is used to denote a named graph (which may or may not be the same for each triple); and (iii) λ
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Table 5.2: Sample access control policy
Sub Rights Sign Res

(A1) :Mgr SELECT + ?S ?p ?o entx:G1
(A2) :Mgr INSERT + ?S ?p ?o entx:G1
(A3) :Mgr DELETE + ?S ?p ?o entx:G1
(A4) :Emp SELECT + ?S rdf:type rdf:Class entx:G1
(A5) :Emp SELECT - entx:salary rdf:type rdf:Property entx:G1

is used to represent permissions (i.e. authorisation subject, access rights and sign attributes,
represented as a tuple 〈Sub,Acc, Sign〉). By including the named graph in the derivation rules,
it is possible to constrain the derivation to a particular graph, or alternatively to span multiple
graphs. Such graphs in turn can be distributed across multiple data sources.
Similar to the tree model, we could assign permissions to a node and recursively derive authori-

sations for all nodes connected to it by arcs. Another approach would be to derive authorisations
for all nodes along a particular path. Existing graph search algorithms, such as those proposed
by Tarjan (1972), could potentially be used to recursively traverse the graph and assign per-
missions to the nodes. However, one limitation of the RDF data model is that it isn’t possible
to distinguish between schema and instances from the graph structure alone. For example, to
restrict access to attributes we would need a means to derive permissions for all instances of
a particular property type. Likewise, to restrict access to a relation we would need to derive
permissions for all properties that are instances of a particular class. To accommodate schema
based derivation, a combined data approach to derivation is warranted. The following rules can
be used to derive access rights based on the RDFSchema vocabulary.

Rule 5.1 (Propagation from classes to instances)
Using this rule we can derive λ, which has been assigned to a class, for all instances of that
class.

?X rdf:type rdf:Class γ λ, ?Z rdf:type ?X γ, ?Z ?Y ?A γ

?Z ?Y ?A γ λ

Rule 5.2 (Propagation from properties to instances)
In this rule, λ which has been assigned to a property of a class, is derived for all instances
of that property.

?X rdf:type rdf:Class γ, ?Y rdf:type rdf:Property γ λ,

?Y rdfs:domain ?X γ, ?Z ?Y ?A γ

?Z ?Y ?A γ λ

Rule 5.3 (Propagation from instances to properties)
The following rule propagates λ, assigned to an instance of a class, to property values
associated with that instance.

?X rdf:type rdf:Class γ, ?Z rdf:type ?X γ λ,

?Y rdfs:domain ?X γ, ?Z ?Y ?A γ

?Z ?Y ?A γ λ

Given a snapshot of the FOAF ontology, presented in Figure 5.4, a subset of an enterprise RDF
dataset, presented in Figure 5.5, and a sample access control policy depicted in Table 5.2, we
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Table 5.3: Snapshot of derived authorisations
Sub Rights Sign Obj

(DA1) :Emp SELECT + entx:JoeBloggs rdf:type foaf:Person entx:G1
(DA2) :Emp SELECT + entx:JoeBloggs foaf:givenName "Joe" entx:G1
(DA3) :Emp SELECT + entx:JoeBloggs foaf:lastName "Bloggs" entx:G1
(DA4) :Emp SELECT + entx:JoeBloggs entx:salary "40000" entx:G1
(DA5) :Emp SELECT + entx:MayRyan rdf:type foaf:Person entx:G1
(DA6) :Emp SELECT + entx:MayRyan foaf:givenName "May" entx:G1
(DA7) :Emp SELECT + entx:MayRyan foaf:lastName "Ryan" entx:G1
(DA8) :Emp SELECT + entx:MayRyan entx:salary "80000" entx:G1
(DA9) :Emp SELECT - entx:JoeBloggs entx:salary "40000" entx:G1
(DA10) :Emp SELECT - entx:MayRyan entx:salary "80000" entx:G1

can derive additional authorisations such as those summarised in Table 5.3. (DA1) to (DA8) are
derived by applying Rule 5.1 to (A4). Whereas, (DA9) and (DA10) are inferred from Rule 5.2
and (A5).
Two additional rules, which use rdfs:subclass (Rule 5.4) and rdfs:subproperty (Rule 5.5),

are proposed to demonstrate the flexibility that can be gained from RDFS. More expressive rules
based on richer vocabularies such as OWL could also be used. The database should be flexible
enough to allow derivations to be turned on and off on a case by case basis.

Rule 5.4 (Propagation from class to subclass)
In this rule we use the RSFS subclass inheritance mechanism to derive the permissions λ
assigned to a class for all subclasses.

?X rdf:type rdf:Class γ λ, ?Y rdf:type rdf:Class γ, ?Y rdfs:subClassOf ?X γ

?Y rdf:type rdf:Class γ λ

Rule 5.5 (Propagation from property to subproperty)
In this instance we use the subproperty inheritance to derive the permissions λ assigned to
a property for all subproperties.

?X rdf:type rdf:Property γ λ, ?Y rdf:type rdf:Property γ,

?Y rdfs:subPropertyOf ?X γ

?Y rdf:type rdf:Property γ λ

5.2.3 Delegation of Access Rights
In both relational and XML databases, GRANT and REVOKE commands are used to manage dele-
gation of access rights. The SPARQL 1.1 update language does not currently support the GRANT
and REVOKE commands. It thus needs to be extended to cater for authorisation administration
and delegation of access rights. We propose an adapted version of the SQL GRANT (Definition 5.1)
and REVOKE (Definition 5.2) commands that cater for named graphs. We adopt the USING NAMED
clause from other SPARQL 1.1 operations.
( USING ( NAMED )? IRIref )*

In addition in keeping with standard SPARQL we adapt the syntax of the GRANT OPTION replac-
ing surrounding [] with () and a ? which indicates cardinality.
( WITH GRANT OPTION )?

100



5.2. APPLYING DAC TO THE RDF MODEL

Privilege_name denotes the privileges identified in Section 5.2.1 (SELECT, CONSTRUCT, ASK,
DESCRIBE, INSERT, DELETE/INSERT, DELETE, DROP, COPY, MOVE, ADD). Resource_name represents
one or more instances of the following RDF resources (NAMED GRAPH, CLASS, PROPERTY, TRIPLE).
User_name, role_name, attribute_value are used to identify users, roles and attributes re-
spectively and a reserved word PUBLIC is used to assign access to all users. Finally the WITH
GRANT OPTION is used to provide users with the ability to delegate the access right(s) to others.

Definition 5.1 (GRANT command)
GRANT privilege_name

( USING ( NAMED )? IRIref )*
ON resource_name
TO { user_name | PUBLIC | role_name | attribute_name }
(WITH GRANT OPTION )?;

Definition 5.2 (REVOKE command)
REVOKE privilege_name

( USING ( NAMED )? IRIref )*
ON resource_name
FROM { user_name | PUBLIC | role_name | attribute_value_pair }

As revocation is not dependent on the data model existing approaches, such as cascading (Fagin,
1978; Griffiths and Wade, 1976) and non-cascading (Bertino, Elisa and Samarati, Pierangela
and Jajodia, Sushil, 1993), devised for relational databases would also work for RDF databases
(datastores).

5.2.4 Conflict Resolution
Conflicts can occur as a result of inconsistent explicit, derived and delegated policies. Samarati
and de Vimercati (2001) discuss the need for different conflict resolution strategies depending
on the situation. Earlier in this section, we proposed a number of derivation rules to ease
RDF access control administration and stated that implicit authorisations should be overridden
by explicit authorisations. It is important that the conflict resolution strategy proposed is in
keeping with both the derivation rules and overriding mandate. In this chapter, we propose three
complementary approaches to conflict resolution that fit well with DAC:

(i) Explicit policies override implicit policies (ensures that positive explicit authorisations will
always prevail over negative implicit authorisations);

(ii) Most specific along a path takes precedence (allows users to grant access in the general case
and deny access for specific instances); and

(iii) Denial takes precedence (caters for scenarios where we have a conflict between two explicit
or two implicit authorisations).

In Section 5.2.2, we saw how derivation rules can result in conflicting authorisations, for example
Table 5.3 (DA4) and (DA9) or (DA8) and (DA10). As both policies are implicit the explicit
policies override implicit policies strategy is not applicable. In this instance the negative autho-
risation would prevail based on the most specific along a path takes precedence conflict resolution
rule, as a policy assigned to a property is more specific than one applied to a class.
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5.3 From a Hierarchical to a Graph Data System
The hierarchical Flexible Authorisation Framework, proposed by (Jajodia et al., 2001), was de-
signed to address the need for a single authorization framework that could be used to restrict
access to different classes of data objects. In this section, we introduce the hierarchical Flexible
Authorisation Framework (Jajodia et al., 2001), henceforth referred to as H-FAF, and demon-
strate how it can be extended to cater for DAC over the RDF graph data model, which we
intuitively name G-FAF. We start by providing an overview of the original H-FAF data system
and authorisation framework. Following on from this, we describe the individual G-FAF data
system components in the context of RDF and extend the original formal definition of a data
system to cater for graph data structures. Throughout the chapter, we use examples from the
Berlin SPARQL Benchmark (BSBM) Dataset2. Prefixes are used as a shorthand notation for
each vocabulary (for example, rdf, rdfs, bsbm) and variables are represented using a ? prefix.
The following default prefix is used to increase readability:
(http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/dataFromVendor1).

5.3.1 H-FAF Data System and Authorisation Architecture
H-FAF was designed to address the need for a single authorization framework that could be used
to restrict access to different classes of data objects (e.g. files, relations, objects, images), with
different access control requirements. To this end, the authors provided a general definition for
a data system and devised a modular architecture, which together with declarative rules, can be
used to ease administration of access control policies, by exploiting the hierarchical structure of
the data system components.

Data System Components. An authorisation framework describes the items to be pro-
tected (data items), to whom access is granted (users, groups, roles collectively known as
authorisation subjects) and the operations that need to be protected (access rights).
Together these components are known as a data system, which is formally defined by Jajodia
et al. (2001) as follows.

Definition 5.3 (Data system)
A Data System (DS) is a 5-tuple
〈OTH,UGH,RH,A,Rel〉 where: OTH is an object-type hierarchy (i.e. data items); UGH
is a user-group hierarchy; RH is a role-hierarchy; A is a set whose elements are called Access
Rights and Rel is a set of n-ary Relationships over the different elements of DS.

Authorisation Architecture. In addition to the formal data system definition Jajodia et al.
(2001) propose a number of distinct components (authorisations, propagation policies, conflict
resolution rules and integrity constraints) that together provide support for different access
control policies.

• Authorisations are rules that dictate the access rights that authorisation subjects are
allowed/prohibited to perform on data items.

• Propagation policies are used to derive implicit authorisations from explicit authorisations
and the hierarchical data structure.

• Conflict resolution rules are used to support multiple conflict resolution strategies.
2Berlin SPARQL Benchmark (BSBM) - Dataset Specification, http://wifo5-03.informatik.uni-
mannheim.de/bizer/berlinsparqlbenchmark/spec/Dataset/.
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• Integrity constraints are used to specify restrictions on authorisation specification, thus
decreasing the potential for runtime errors.

All components are specified using declarative rules, made up from explicit authorisations, his-
torical authorisations, the hierarchical structure of, or the relationship between the different data
system components. The conclusion differs depending on the rule type. As both the hierarchical
structure of and the relationship between the data system components can be recorded as RDF,
in this chapter we adapt and extend the original data system and rule definitions to work with
the RDF Graph data model.

5.3.2 Individual Data System Components
In our graph based authorisation framework, which we call G-FAF, authorisation subjects
are granted access rights to data items represented as one or more graphs that may or may
not be disjoint.

Authorisation Subjects. Subject is an umbrella term used to collectively refer to user creden-
tials. As we propose the verification of access based on credential matching we make no distinc-
tion between a user playing a role as opposed to belonging to a group. Therefore we merge both
the user-group and role hierarchies, and refer to them simply as authorisation subjects. Such
a merge does not impact the specification or enforcement of authorisations, and in fact affords a
greater degree of flexibility with respect to the inclusion of additional types of user credentials.
Also, as RDF is a web based distributed data model, we extend the subject definition to include
user attributes. Users, groups, roles and attributes are often organised hierarchically, which
means that access can be granted to a number of subjects simultaneously, simplifying permission
management. Combined users, groups, roles and attributes are represented as one or more RDF
graphs possibly disjoint.

Access Rights. Like databases and file systems access can be restricted based on the opera-
tions that a user attempts to execute on the data items. In the case of RDF, these operations
take the form of: graph query operations (SELECT, CONSTRUCT, ASK and DESCRIBE); graph up-
date operations (INSERT, DELETE, DELETE/INSERT); and a number of operations specifically
for graph management (DROP, COPY, MOVE and ADD). Three additional access rights are required
to facilitate the administration of access control, namely GRANT, REVOKE and FULL ACCESS. The
GRANT privilege allows users to grant access to others based on their own privileges. The REVOKE
privilege allows users to revoke the access rights they have granted to others. Whereas, FULL
ACCESS is a super access right that subsumes all other access rights. We model the operations
as one or more RDF graphs, and although we use vocabularies such as RDFS to define a partial
order over the operations that can be used to infer implicit authorisations, we do not define how
these are specified.

Data Items. In the Linked Data Web, information is represented as RDF triples used to make
statements about resources in the form of subject-predicate-object expressions. An RDF graph
is a finite set of RDF triples. Named graphs are used to collectively refer to a number of RDF
statements. In this chapter, data items are represented as a set of nquads.
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Figure 5.6: Authorisation framework

Definition 5.4 (RDF quad)
An RDF Quad is formally defined as a 4-tuple 〈S, P,O,G〉 ∈ (U ∪B)×U×(U ∪B ∪ L)×U,
where S is called the subject, P the predicate, O the object and G the named graph. U, B
and L, are in turn used to represent URIs, blank nodes and literals respectively.

Example 5.1 (RDF quad)
The following quad states that there exists a triple in the Graph2013 dataset stating that
Vendor1 is a type of Vendor.
:Vendor1 rdf:type bsbm:Vendor :Graph2013

5.3.3 Extending the Original Data System Definition
We formally extend the original general definition of a data system to consider components that
are represented as graphs as opposed to hierarchies. As the relationship between data items,
access rights and authorisation subjects can also be represented as RDF, it is is not
necessary to define a set of relations over the different elements of the data system. Although in
this chapter we focus specifically on RDF, the extended data system definition is more general
than the original and therefore it can be applied to both hierarchical and graph data models.

Definition 5.5 (Graph data system)
A Data System (DS) is defined as a 3-tuple 〈DIG,ASG,ARG〉 where: DIG represents one
or more data graphs, that may be disjoint; ASG denotes one or more subject graph (nodes
are use to represent users, groups, roles and attributes and edges represent the corresponding
relations); and ARG stands for the graph of operations used to query and manipulate the
data items in DIG.

5.4 G-FAF Authorisation Enforcement and Administration
Given an arbitrary but fixed Graph Data System, we describe the individual G-FAF components
(Figure 5.6) and demonstrate how together these components can be used to deliver dynamic
query results based on user credentials and to cater for the secure manipulation of RDF graph
data (Section 5.5). We extend the original framework to include the RDF Data Table, which is
necessary to infer new access control policies based on a combination of RDF data items and
rules. Although we do not examine the role of the History Table in this thesis, it is worth noting
that historical information is important for accountability, and also to cater for contextual access
control policies that rely on historical data.
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5.4.1 Specifying Authorisations using Quad Patterns
Authorisations are rules that dictate the access rights that authorisation subjects are
allowed/prohibited to perform on data items. An RDF Quad Pattern is an RDF quad with
optionally a variable V in the subject, predicate, object and/or graph position. A Quad Pattern
is a flexible mechanism which can be used to grant/restrict access to an RDF quad, a collection
of RDF quads (multiple quads that share a common subject), a named graph (arbitrary views
of the data) or specific classes or properties.

Example 5.2 (RDF quad pattern)
A single quad pattern containing variables in both the subject and graph positions is used to
match all quads with RDF type product.
?s rdf:type bsbm:Product ?g.

More expressive authorisations can be achieved using RDF Graph Patterns, which is composed
of multiple quad patterns.

Example 5.3 (RDF graph pattern)
The following pattern, which contains variables in both the subject and graph positions is
used to match all quads with RDF type Product where the producer is Producer1.
?s rdf:type bsbm:Product ?g1.
?s bsbm:producer bsbm-inst:Producer1 ?g2.

In order to cater for certain conflict resolution strategies, and for the delegation of permissions,
we extend the original authorisation definition to include TYPE and BY attributes. The TYPE
attribute is necessary to differentiate between explicit and inferred authorisations, whereas the
BY attribute is used to record information pertaining to the delegation of permissions. By default,
the TYPE attribute is set to E for explicit and the BY attribute defaults to a reserved literal OWNER.

Definition 5.6 (Authorisation)
An authorisation is represented as a 6-tuple 〈Sub,Acc, Sign,Res, Type,By〉. Sub represents
the authorisation subject. Acc is used to denote access rights. Sign indicates if the
user is granted or denied access. Res symbolises the data items (i.e. Resources) to be
protected, denoted by one or more RDF Quad Patterns known as an RDF Graph Pattern.
Type is used to indicate if the authorisation is explicit (E) or implicit (I). Whereas, By
represents the person who delegated the permission.

Example 5.4 (Authorisation)
Using the following authorisation an Admin can grant all Partners UPDATE access to all
triples in the Graph2008 graph.
〈 bsbm:Partner, UPDATE, +, 〈 ?s, ?p, ?o, : Graph2008〉, E, bsbm:Admin 〉

5.4.2 Propagation Policies
Propagation policies can be used to simplify authorisation administration, by allowing for the
derivation of implicit authorisations from explicit ones. For example, we can derive new autho-
risations based on the logical organisation of authorisation subjects, access rights and
data items (Section 4.3) or the RDFS vocabulary (Section 5.2.2). We provide a formal defini-
tion for a propagation rule which can be used as a blueprint for the specification of both general
and specific derivation rules (Definition 5.7). In addition, we present a propagation algorithm
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(Algorithm 5.1) which can be used to either evaluate the propagation policy at query time or
alternatively to materialise implicit authorisations when authorisations are added or removed.

Definition 5.7 (Propagation rule)
A Propagation Rule is a a rule of the following format:
〈?Suby, ?Accy, ?Signy, 〈?Sy, ?Py, ?Oy, ?Gy〉, ?Typey, ?Byy〉 ←
〈?Subx, ?Accx, ?Signx, 〈?Sx, ?Px, ?Ox, ?Gx〉, ?Typex, ?Byx〉 , [〈S1, P1, O1, G1〉
∧... ∧ 〈?Sx, ?Px, ?Ox, ?Gx〉 ∧ ... ∧ 〈?Sy, ?Py, ?Oy, ?Gy〉 ∧ ... ∧ 〈?Sn, ?Pn, ?On, ?Gn〉]
The premise is composed of an Authorisation and an RDF Graph Pattern . If the Autho-
risation exists in the Authorisations and the RDF Quad Pattern exists in the RDF Data
then we can infer the conclusion.

Example 5.5 (Subject hierarchy inheritance)
Using the following rule we can derive access rights assigned to employees for all managers.
〈 bsbm:Mgr, ?Acc, ?Sign, 〈?S, ?P, ?O, ?G〉, I, ?By〉 ←
〈 bsbm:Emp, ?Acc, ?Sign, 〈?S, ?P, ?O, ?G〉, ?Type, ?By〉 ,
[〈 bsbm:Mgr, rdf:type, bsbm:Emp, ?G〉 ∧ 〈?S, ?P, ?O, ?G〉]

Example 5.6 (Class to instance propagation)
The following rules propagates the access rights assigned to a bsbm:Product class to all
instances of the class.
〈?Sub, ?Acc, ?Sign, 〈?Z, ?Y, ?A, ?Gx〉, I, ?By〉 ←
〈?Sub, ?Acc, ?Sign, 〈 bsbm:Product, rdf:type, rdf:Class, ?Gy〉, ?Type, ?By〉 ,
[〈?Z, rdf:type, bsbm:Product, ?Gz〉 ∧ 〈?Z, ?Y, ?A, ?Gx〉]

〈?Sub, ?Acc, ?Sign, 〈?Z, ?Y, ?A, ?Gx〉, I, ?By〉 ←
〈?Sub, ?Acc, ?Sign, 〈 bsbm:Product, rdf:type, rdf:Class, ?Gy〉, ?Type, ?By〉 ,
[〈?Z, rdf:type, bsbm:Product, ?Gz〉 ∧ 〈?A, ?Y, ?Z, ?Gx〉]

5.4.3 Conflict Resolution Rules
Rather than propose a particular conflict resolution strategy, we provide a formal definition for
a conflict resolution rule (Definition 5.8), that can be used to determine access given several
different conflict resolution strategies. For example, conflict resolution policies based on the
structure of the different graph data system components; the sensitivity of the data requested;
or contextual conditions pertaining to the requester. As multiple conflict resolution rules may
be applicable, each rule should be assigned a priority, and rules should be evaluated in order
until the conflict has been resolved. The default rule, which matches everything, is assigned the
lowest priority thus ensuring that a conclusion of grant or deny can always be drawn.
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Data: Authorisations, PropPolicy, RDFData
Result: Authorisations
forall the Pol in PropPolicy do

if Authorisations CONTAINS Pol.Premise.Auth then
if RDFData CONTAINS Pol.Premise.GraphPattern then

Authorisations += Pol.Conclusion.Auth
end

end
end
return Authorisations

Algorithm 5.1: Applying the propagation rules

Definition 5.8 (Conflict resolution rule)
A Conflict Resolution Rule is a rule of the following format:
〈?Subx, ?Accx, ?Signx, 〈?Sx|VAR|CON, ?Px|VAR|CON, ?Ox|VAR|CON, ?Gx|VAR|CON〉, ?Typex, ?Byx〉
←
〈?Subx, ?Accx, ?Signx, 〈?Sx|VAR|CON, ?Px|VAR|CON, ?Ox|VAR|CON, ?Gx|VAR|CON〉, ?Typex, ?Byx〉
>
〈?Suby, ?Accy, ?Signy, 〈?Sy|VAR|CON, ?Py|VAR|CON, ?Oy|VAR|CON, ?Gy|VAR|CON〉, ?Typey, ?Byy〉
where > indicates the authorisation to the left of the > symbol takes precedence over the
authorisation to the right; ?Sub, ?Acc, ?Type and ?By match authorisation subjects, access
rights, type and by attributes. ?S, ?P , ?O and ?G denote RDF subjects, predicates, objects
and named graphs; ? indicates the ability to specify either constants or variables; CON and
VAR are reserved words used match constants and variables respectively; | symbolises logical
disjunction;

Example 5.7 (Most specific takes precedence)
The following rule states that authorisations assigned to specific subject, predicate and ob-
jects in a graph override authorisations assigned to the whole graph.
〈?Subx, ?Accx, ?Signx, 〈CON, CON, CON, CON〉, ?Typex, ?Byx〉 ←
〈?Subx, ?Accx, ?Signx, 〈CON, CON, CON, CON〉, ?Typex, ?Byx〉 >
〈?Suby, ?Accy, ?Signy, 〈VAR, VAR, VAR, CON〉, ?Typey, ?Byy〉

Example 5.8 (Explicit overrules implicit)
Using the following rule it is possible to state that explicit authorisations override implicit
authorisations.
〈?Subx, ?Accx, ?Signx, 〈?Sx, ?Px, ?Ox, ?Gx〉, E, ?Byx〉 ←
〈?Subx, ?Accx, ?Signx, 〈?Sx, ?Px, ?Ox, ?Gx〉, E, ?Byx〉 >
〈?Suby, ?Accy, ?Signy, 〈?Sy, ?Py, ?Oy, ?Gy〉, I, ?Byy〉

5.4.4 Integrity Constraints
Integrity constraints are used to restrict the type of authorisations that can be specification
based on existing relationships between SPARQL operations and RDF data items. For example,
INSERT and DELETE can only be applied to an RDF quad, whereas DROP, CREATE, COPY, MOVE
and ADD should only be associated with a named graphs. We provide a formal definition of
an integrity constraint (Definition 5.9) and demonstrate how general rules and type checking in
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Figure 5.7: Authorisation architecture

particular can be used to constrain the specification of the INSERT (Example 5.9) and the CREATE
(Example 5.10) access rights.

Definition 5.9 (Integrity constraint)
An Integrity Constraint is a rule of the following format:
error ←
[¬] 〈?Sub, ?Acc, ?Sign, 〈?S|VAR|CON, ?P |VAR|CON, ?O|VAR|CON, ?G|VAR|CON〉, ?Type, ?By〉

where square brackets [] are used to denote the optional classical negation prefix
(¬); ?Sub, ?Acc, ?Type and ?By match authorisation subjects, access rights, type and by
attributes. ?S, ?P , ?O and ?G denote RDF subjects, predicates, objects and named graphs;
? indicates the ability to specify either constants or variables; CON and VAR are reserved
words used match Constants and Variables respectively; | symbolises logical disjunction;

Example 5.9 (INSERT constraint)
Using an integrity constraint we can ensure that the INSERT operation can only be applied
to RDF quads.
error ← ¬〈?Sub, INSERT, ?Sign, 〈CON, CON, CON, CON〉, ?Type, ?By〉

Example 5.10 (CREATE constraint)
The following integrity constraint ensures that the CREATE graph management operation
is only be applied to Named Graphs.
error ← ¬〈?Sub, CREATE, ?Sign, 〈VAR, VAR, VAR, CON〉, ?Type, ?By〉

5.5 Application and Evaluation
Although the architecture we propose will work with any query language, in this chapter we
describe how it can be used in conjunction with SPARQL. First we discuss how the framework
can be used to enforce and administer access control over Linked Data sources. Next we examine
the performance of our Java implementation of the framework.

5.5.1 Applying the G-FAF Framework to Linked Data
RDF data is mostly exposed on the web via SPARQL endpoints. Figure 5.7 depicts how G-
FAF can be used for the enforcement and administration of access control policies over Linked
Data sources. We do not focus on authentication in this thesis, and thus we assume that the
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Data: AuthRequest, AuthHashMap, ConflictPolicy
Result: grant/deny
domAuth = false
key = AuthRequest.subj + AuthRequest.acc
authHashSet = getKeyAuthHashSet(key)
quadHashMap = createQuadAuthHash(AuthHashSet)
if quadHashMap CONTAINS AuthReq.res then

authMatches += quadHashMap.Auth
domAuth = quadHashMap.Auth

end
if authMatches CONTAINS true and authMatches CONTAINS false then

domAuth = applyConflictRes(authMatches, ConflictPolicy)
end
return domAuth.Sign

Algorithm 5.2: Authorisation enforcement algorithm

Data: AuthRequest, AuthHashMap, IntegrityPolicy
Result: true/false
newAuth = AuthRequest + Sign.Grant + Type.E + By.Owner
if AuthRequest.OPER = INSERT or AuthRequest.OPER = ADD or
AuthRequest.OPER = COPY then

if IntegrityCheck(AuthRequest, IntegrityPolicy) = true then
AuthHashMap += newAuth
AuthHashMap += applyPropRules(Authorisations, PropRules)
return true

end
end
else if AuthRequest.OPER = DELETE or AuthRequest.OPER = DROP or
AuthRequest.OPER = MOVE then

AuthHashMap -= newAuth return true
end
return false

Algorithm 5.3: Authorisation administration algorithm

credentials supplied by the requester have been successfully authenticated via alternative means,
for example WebID and self-signed certificates, working transparently over HTTPS.

Enforcement of Authorisations. In addition to the usual SPARQL query, the requester must
submit their credentials, which are verified by an external authentication system. The Au-
thorisation Interface will map the SPARQL query to an Authorisation Request of the form
〈Sub,Acc,Res〉 (a subset of Definition. 5.6) and submit it to the Authorisation Framework (Fig-
ure 5.7). The authorisation algorithm (Algorithm 5.2) will check if the Authorisation Request
can be derived using the Authorisations and the Conflict Resolution Policies. If the algorithm
manages to successfully derive the authorisation, access to the requested data will be granted.
Otherwise the request will be denied. If the authorisation framework grants access, the Autho-
risation Interface will pass the SPARQL query to the Query Engine, which in turn processes
the query in the normal way. Finally, the query results are returned to the Requester via the
Authorisation Interface. In the current implementation, the subject must be granted access to
each triple in order to be permitted to execute the query. In Chapter 6, we investigate the data
integrity implications of granting access to subsets of the graph pattern through query rewriting.
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Table 5.4: Dataset and authorisations description
DS1 DS2 DS3 DS4 DS5

quads 250223 500258 1000109 2000164 4000936
scale factor 830 1689 3402 6830 13780
file size (MB) 24.5 49 98 195 391

QS1 QS2 QS3 QS4 QS5

authorisations 60000 120000 240000 480000 960000
file size (MB) 6.5 13 26 53 105

Table 5.5: Queries over increasing datasets
DS1 DS2 DS3 DS4 DS5

QSS

∅ 345 657 1432 2604 5005
∃ 429 700 1164 2549 5149

QSU

∅ 8 8 9 8 9
∃ 9 9 9 9 9

Administration of Authorisations. We propose an ownership model, whereby the data producer
is granted FULL ACCESS to the data items they create. When a user issues a graph update or
graph management query, access is verified using the authorisation algorithm (Algorithm 5.2).
If authorisation succeeds, the SPARQL query is passed to the Query Engine. For INSERT, ADD
or COPY operations, if the query succeeds the administration algorithm (Algorithm 5.3) ensures
it adheres to the integrity constraints prior to creating a new authorisation. For DELETE, DROP
or MOVE operations, if the query succeeds the administration algorithm (Algorithm 5.3) simply
deletes relevant authorisations from the access control policy. In both instances, the update of
both the RDF graph and the authorisations should be wrapped in a transaction to ensure that
either both or neither succeed.

Delegation of Access Rights. In order to cater for delegation of access control, a number of
administration modules are required, for example the ability to: grant/revoke access rights to
others and list your own access rights and those assigned to others. As data producers are
granted FULL ACCESS to the data items they create, they have the ability to GRANT and REVOKE
access to/from others. As neither the grant nor the revoke algorithms are dependent on the data
model, traditional revocation approaches such as cascading (Fagin, 1978; Griffiths and Wade,
1976) and non-cascading (Bertino, Elisa and Samarati, Pierangela and Jajodia, Sushil, 1993)
could be used in conjunction with the proposed framework.

5.5.2 Performance Evaluation
For the evaluation of G-FAF we created three separate experiments to:

(i) examine the overhead associated with access control over different data sets;

(ii) deduce the impact given an increasing number of authorisations; and

(iii) determine the performance increase for several propagation rules (the most expensive ad-
ministration operation).

110



5.5. APPLICATION AND EVALUATION

Table 5.6: Queries over increasing authorisations
AS1 AS2 AS3 AS4 AS5

QSS query time (ms) 5056 4801 4861 4892 4869
QSU query time (ms) 9 8 9 8 9

Table 5.7: Propagation rules performance
DS1 DS2 DS3 DS4 DS5

AS5 query time (ms) 98531 104894 107017 106823 106248
AS1 AS2 AS3 AS4 AS5

DS5 query time (ms) 6248 12733 24257 51339 112887

Evaluation Setting. The benchmark system has an Intel(R) Xeon(R) CPU 8 core 2.13GHz
processor, 64 GB of memory and runs Debian 6.0.3. The authorisation framework is written in
Java and is evaluated over an in memory store using Jena ARQ. Both the datasets (Table 4.3) and
the queries are generated from the Berlin SPARQL Benchmark (BSBM) dataset. Two separate
query sets are created:

(i) QSS which contained 10 SELECT queries; and

(ii) QSU which contained 5 INSERT and 5 DELETE queries.

In both instances the queries are composed of a combination of one, two and three triple patterns.
Access is granted or restricted to: all quads (?s ?p ?o ?g); a particular graph (?s ?p ?o G1);
all quads of type offer (?s rdf:type bsbm:Offer ?g); all classes (?s rdf:type rdf:Class); and all
properties (?s rdf:type rdf:Property). Users are either assigned ( SELECT; SELECT & INSERT;
SELECT, INSERT & DELETE) or denied ( DELETE; INSERT & DELETE; SELECT,INSERT & DELETE)
access to single quad patterns. The integrity constraints presented in Examples 5.9 and 5.10
are added, to ensure that INSERT and DELETE operations are only applied to RDF quads. The
conflict resolution rules presented in Examples 5.7 and 5.8, along with an additional denial
takes precedence rule, are executed in the event of a conflict. The datasets, queries and the
conflict resolution, integrity and propagation rules used in the experiments can be found at
http://gfaf.sabrinakirrane.com/. All calculations presented were based on an average of 20
response times, excluding the two slowest and fastest times.

Evaluation Results. In order to evaluate the enforcement algorithm we ran both the select
(QSS) and the update (QSU ) query sets, without access control (∅) and with access control
for users who were granted access (∃), over an authorisation set containing 588,000 grant and
402,001 deny authorisations. As expected, the results indicate that select query execution times
are not impacted when we increase the dataset (Table 5.5). However, the marginal increase in
performance times over increasing authorisations (Table 5.6) was unexpected. Such behaviour
can be attributed to the fact that all authorisations are indexed by a combined subject and
access right key and subsequently by graph pattern (Algorithm 5.2). For the evaluation of
the propagation rules, we examined the impact associated with three schema based derivations
from:

(i) classes to all instances of that class;

(ii) properties to all instances of that property;

(iii) an instance to property values associated with that instance.
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Figure 5.8: Query and propagation times

Again we ran the experiment over increasing datasets and authorisations (Table 5.7). Based on
the results we can see that reasoning behaves linearly when the number of authorisations are
increased, while there is little or no impact when the number of quads are increased. Given
that the five different authorisation types are very general (all quads, all classes, all properties, a
particular graph, a particular type), and scaling involves adding authorisations for new subjects,
the number of rules that are triggered increases linearly with the number of authorisations. In
turn, the negligible impact on performance times over increasing data can be attributed to the
fact that the number of propagation rules is not dependent on the size of the dataset.

5.6 Related Work
Initially Semantic Web researchers focused on the modelling and the enforcement of access
control over RDF stores. A number of authors have proposed access control models for RDF
that define access control policies based on RDF patterns that can be mapped to one or more
RDF triples (Reddivari et al., 2005; Jain and Farkas, 2006; Dietzold and Auer, 2006; Abel
et al., 2007). Reddivari et al. (2005) define a set of actions required to manage an RDF store,
and demonstrate how query based access control can be used to permit or prohibit requested
actions. The authors propose default and conflict preferences that can simply be set to either
permit or deny. Jain and Farkas (2006) propose a data level security model which can be used
to protect both explicit and inferred triples. They provide a formal definition for each of the
RDF security objects and define an algorithm to generate security labels for both explicit and
inferred triples based on a security policy and a conflict resolution strategy. Limited details of
the implementation are supplied and no evaluation is performed. Abel et al. (2007) propose
the evaluation of access control policy constraints at both the query layer and the data layer.
Contextual conditions that are not depended on RDF data are evaluated by a policy engine.
While the query is expanded to include the contextual conditions that are dependent on RDF
data. Such an approach requires the substitution of variables to ensure uniqueness. However,
in doing so they are able to leverage the highly optimized query evaluation features of the RDF
store. The authors adopt a denial by default conflict resolution strategy.
Gabillon and Letouzey (2010) highlight the possible administration burden associated with

the maintenance of access control policies that are based on triple patterns. They propose the
logical distribution of RDF data into SPARQL views, and the subsequent specification of access
control policies based on existing RDF Graphs or predefined views. They describe a query based
enforcement framework whereby each user defines a security policy for the RDF graph/views
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that they own. The authors acknowledge the need for conflict resolution, however they do not
propose a conflict resolution strategy.
More recently, the focus has shifted to the specification and enforcement of access control over

web resources. Costabello et al. (2012a) and Sacco et al. (2011) both propose access control
ontologies and enforcement frameworks that rely on SPARQL ASK queries to determine if the
requester possesses the attributes necessary to access the resource. Costabello et al. (2012a) use
context data supplied by the requester to limit the scope of the SPARQL query to authorised
named graphs. The authors propose the disjunctive evaluation of policies, thus circumventing
the need for a conflict resolution mechanism. Whereas, Sacco et al. (2011) provide a filtered view
of a data providers FOAF profile based on a matching between data provider privacy preferences
and requester attributes. Policies can be specified for an entire graph, one or more triples or
individual subjects, predicates and objects. The authors do not propose any conflict resolution
strategy. Neither Costabello et al. (2012a) nor Sacco et al. (2011) perform any reasoning over
the access control policies they propose.
Other researchers adopt a rule based approach to access control. Dietzold and Auer (2006)

define access control requirements from a Semantic Wiki perspective. The authors propose a
filtered data model using a combination of SPARQL queries and SWRL rules. Li et al. (2005)
also adopt a rule based approach providing users with a more intuitive way to specify access
control policies. Both Dietzold and Auer (2006) and Li et al. (2005) use rules to give a more
explicit meaning to the access control policies, as opposed to authorisation derivation in our
case.
Several researchers propose access control models for RDF graphs and focus on policy prop-

agation and enforcement based on semantic relations (Qin and Atluri, 2003; Javanmardi et al.,
2006b; Ryutov et al., 2009; Amini and Jalili, 2010). None of the authors examine access control
from either a data model or a database perspective. Like us, Jain and Farkas (2006) derive
authorisations and propose conflict resolution mechanisms. They adopt a multilevel label-based
approach to access control where policies are specified in terms of RDF patterns associated with
an instance, a schema and a security classification. However, the derivations they propose are
limited to RDFS entailment rules.
Only Jain and Farkas (2006) and Javanmardi et al. (2006b) actually mention DAC, and even

then they just describe DAC and do not examine how their approach compares or contrasts. A
number of authors who use Semantic Technology for access control, however do not apply their
approach to the RDF data model, detail their support for DAC (Kodali et al., 2003; Damianou
et al., 2001; Weitzner et al., 2006a). However to the best of our knowledge to date no one has
investigated the application of DAC to the RDF data model. We fill this gap by examining
how DAC has been used to protect the relational and tree data models, and by proposing
strategies that allow us to apply DAC to the RDF graph model. We identify the resources to
be protected and the access rights required, based on the RDF data model and SPARQL the
predominant query language for RDF. In addition, we propose mechanisms to assist with access
control administration through derivation of authorisation, delegation of permissions and conflict
resolution
In Chapter 4, we demonstrated how annotated RDF could be used to assign permissions to

triples and to infer annotations based on RDFS entailment rules. In this chapter, we provide
a general mechanism for the administration and enforcement of access control policies using
a combination of propagation rules, integrity constraints and conflict resolution policies. In
addition, we allow for the specification of authorisations based on quad patterns, thus catering
for authorisation at multiple levels of granularity, for example one or more graphs, triples, classes
or properties.
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5.7 Summary and Future Directions
With the introduction of RDF update languages, such as SPARQL 1.1, it is now feasible to both
query and manage distributed and linked RDF data. However, like web applications and web
services, SPARQL endpoints need to protect the security of the data source and the privacy
and the integrity of the data therein. Although the RDF data model has been around for
over a decade, little research has been conducted into the application of existing access control
administration techniques to RDF data. In this chapter, we discussed how the DAC model can
be applied to RDF, a distributed graph-based data model. We identified the resources to be
protected and the access rights required based on the graph data model and SPARQL query
operations respectively. We proposed a layered approach to authorisation derivation based on
the graph structure and RDFS. We subsequently identified a number of rules that can be used
to manage authorisations in an intuitive manner.
Given the dynamic nature of RDF, we identified the need for a framework that was capable of

supporting a variety of authorisations, derivation, delegation and conflict resolution policies. The
hierarchical Flexible Authorisation Framework, proposed by Jajodia et al. (2001), was designed
to address the need for a single authorization framework that could be used to restrict access to
different classes of data objects. Although originally designed to work with hierarchical data, we
adapted the framework to cater for DAC over graph data. We provided a formal definition of
authorisations, propagation rules, conflict resolution policies and integrity constraints, within the
context of RDF. In addition, we described how together these components can simultaneously
provide access control over interlinked RDF graphs. The results of our initial performance eval-
uation are very promising, as in general they show only a negligible increase in query processing
time in light of increasing datasets and authorisations, and an linear increase in derivation over
increasing authorisations.
However, the existing proposal has a number of limitations. If the requester is denied access to

a single quad pattern they are denied access to the entire query. An alternative approach would
be to rewrite the query to filter out the data which has been restricted, thus allowing partial
results to be returned to the requester. Also, as only basic graph pattern matching is supported,
in its current form the solution presented is not able to cater for complex SPARQL 1.1 queries.
Therefore, additional analysis is required in order to determine a query rewriting strategy for
complex SPARQL queries, that include aggregates, negation, subqueries and property path.

114



Chapter 6

Enforcing Access Control via
Query Rewriting

The term Linked Data Web (LDW) is used to describe a World Wide Web where data is directly
linked with other relevant data using machine-accessible formats. Many of the technologies
required to realise the LDW vision are already in place, for example RDF, RDFS, OWL and
SPARQL (O’Hara et al., 2013; Heath and Bizer, 2011). Although the LDW has seen considerable
growth in recent years, the focus continues to be on linking public data. This can partially be
attributed to the fact that no formal recommendations exist for the secure querying of the LDW.
Several researchers have proposed access control frameworks for RDF, which could be applied

to Linked Data. Broadly speaking, access control frameworks for RDF data enforce access control
either at the data layer (Dietzold and Auer, 2006; Muhleisen et al., 2010), the query layer (Abel
et al., 2007; Franzoni et al., 2007; Chen and Stuckenschmidt, 2010; Oulmakhzoune et al., 2010;
Costabello et al., 2012a) or a combination of both (Li and Cheung, 2008). Enforcement of
access control at the data layer is concerned with removing unauthorised data from the dataset.
Whereas, enforcement at the query layer relies on query rewriting techniques to ensure that
the query results are restricted to those that are permitted by an access control policy. As we
saw in Chapter 3, regardless of the proposed enforcement mechanisms, in the vast majority of
cases researchers conduct performance evaluations of their solutions as opposed to verifying the
correctness of the security algorithms they propose.
In Chapter 5, we demonstrated how access control based on graph patterns can be used to

grant/deny access at multiple levels of granularity. However, using the proposed enforcement
strategy, if access is denied to a single graph pattern the entire query is denied. In this chapter, we
demonstrate how SPARQL 1.1 queries and updates can be rewritten so that they behave as if the
unauthorised data is not present in the dataset. In order to verify the effectiveness of our query
rewriting strategy, we define a set of criteria that can be used to examine the correctness of our
query rewriting algorithms. This criteria can be used to compare the results obtained when the
query is executed over a dataset where all unauthorised data has been removed, and the results
obtained when a query is rewritten and executed over a dataset which contains both authorised
and unauthorised data. With a view to examining the efficiency of our query rewriting strategy,
we automatically generate a set of queries and authorisations, based on the BSBM dataset, and
use this data to compare the performance of queries executed with and without access control.
Finally, we discuss how the proposed access control framework fits with the LDW infrastructure.
The query results presented throughout this chapter are based on the sample data presented

in Figure 6.1 and Figure 6.2. As per previous chapters, we assume the foaf prefix to denote the
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FOAF Vocabulary http://xmlns.com/foaf/0.1/ 1 and the entx prefix to refer to our sample
enterprise vocabulary http://urq.deri.org/enterprisex#.
The contributions of the chapter can be summarised as follows: We (i) adapt a set of criteria

from relational databases and demonstrate how they can be used to ensure the correctness of
access control over RDF data; (ii) propose query rewriting algorithms for the SPARQL 1.1
query and update languages; (iii) verify the correctness of our access control algorithms using
the adapted correctness criteria; (iv) present the results of our performance evaluation that can
serve as a benchmark for other researchers; and (v) describe an authorisation architecture for
the LDW, which we call LinDAA.
The remainder of the chapter is structured as follows: Section 6.1, presents a set of correctness

criteria, which allows for access control via query rewriting to be compared to access control via
data filtering. Section 6.2 and Section 6.3 describe query rewriting strategies for the SPARQL
1.1 query and update languages respectively. In Section 6.4 our query rewriting algorithms
are evaluated against the adapted correctness criteria. In Section 6.5 we discuss how together
the G-FAF framework, which was introduced in Chapter 5, and the proposed query rewriting
strategy can be used to enforce access control for the LDW. Finally, we describe the related work
in Section 6.6 and present conclusions and directions for future work in Section 6.7.

6.1 Access Control Correctness Criteria
According to Wang et al. (2007) a secure query processing algorithm should be secure, sound
and maximum. An algorithm is secure if it does not return information which has not been
authorised. An algorithm is sound if it it does not return invalid results. Furthermore, an
algorithm is maximum if it returns as much information as possible without violating the secure
and sound constraints. In this section, we present the access control correctness criteria, which
is used by Wang et al. (2007) to evaluate access control over relational data. We subsequently
discuss how this criteria can be adapted to allow for the verification of access control over RDF
data via SPARQL query rewriting.

6.1.1 Correctness Criteria for Relational Databases
Wang et al. (2007) use the following criteria to evaluate their relational access control algorithm.
An algorithm is deemed secure, if a given query executed over two different database states, that
are deemed equivalent by some access control policy, returns equivalent results. An algorithm is
sound, if a given query constrained by an access control policy returns equivalent results, or less
results, than the same query executed without access control. Whereas, an algorithm is maximum
if there is no other query, that is semantically equivalent to the given query, which will return
additional results.

1FOAF vocabulary Specification, http://xmlns.com/foaf/spec/.
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The correctness criteria is formally defined by Wang et al. (2007) as follows:

Definition 6.1 (Query correctness criteria)
An access control policy P specifies what information a database D may disclose in answer
to a query Q. A secure query processing algorithm is defined as R = A(D,P,Q), where R
is the result set authorised by P when Q is executed on D.

Secure. As P defines an equivalence relation among all database states, if A(D,P,Q)
does not depend on information not allowed by P, then one should not be able to tell
the difference among database states that are equivalent under P. It follows that, a query
processing algorithm is secure if and only if:

∀P∀Q∀D∀D′ [(D ≡P D′) =⇒ A(D,P,Q) = A(D′, P,Q)].

Sound. Let S denote a query processing algorithm without access control and let S(D,Q)
represent the results returned when query Q is executed on database D without access control.
Given P restricts access to D, then A(D,P,Q) may return less information than S(D,Q)
however it should not return invalid results. A query processing algorithm is sound if and
only if:

∀P∀Q∀DA(D,P,Q) v S(D,Q).

Maximum. A trivial algorithm which does not return any results would be both secure
and sound however it would not satisfy the maximum constraint. Therefore it follows, that
A(D,P,Q) should return at least as much information as any R which is an acceptable
answer for Q given D and P . As such, a query processing algorithm is maximum if and only
if:

∀P∀Q∀D

and
∀D′ [(D ≡P D′) =⇒ (R v S(D′, Q))]

we have
∀P∀Q∀D[R v A(D,P,Q)]

6.1.2 Correctness Criteria for the SPARQL Query Language
In its current form, the correctness criteria proposed by Wang et al. (2007), is unsuitable for
the verification of access control over RDF data. Although it is possible to use the secure and
maximum criteria to verify that a secure query processing algorithm holds over different database
states, it cannot be used to verify that the algorithm is infact secure. Also, as SPARQL queries
that include MINUS and FILTER NOT EXISTS may in fact be less restrictive than the corresponding
query without access control, the sound criteria is not valid for RDF data.
Therefore in this section, we redefine each of the criteria to cater for a comparison between

the result sets returned when: (i) a query is executed against a dataset which is generated by
removing the unauthorised data (filtering); and (ii) when the same query is updated so that
unauthorised data will not be returned and subsequently executed over the unmodified dataset
(rewriting). As RDF data does not necessarily reside in a database, the term database is taken
to mean an arbitrary but fixed RDF dataset composed of one or more RDF graphs.
Assuming that we have two datasets, one that contains all of the data and another that

only contains authorised data, which we will refer to as the filtered dataset. A query rewriting
algorithm is deemed secure, if it is not possible to differentiate between the results returned

117



6.1. ACCESS CONTROL CORRECTNESS CRITERIA

when access control is enforced using a query rewriting approach and the results returned when
access control is enforced using data filtering. The algorithm is sound, if all of the results returned
by the algorithm are also present in the result set which is generated when the same query is
executed, without access control, over the filtered dataset. The algorithm is maximum if the data
returned by the algorithm is equivalent to the data returned when the query is simply executed
over the filtered dataset.
First we provide a definition for a secure RDF subgraph:

Definition 6.2 (Secure RDF subgraph)
Let D denote a database and P an access control policy. Given D and P , let DG denote the
set of quads in D where access is granted by P and DD the set of quads in D where access
is denied by P . Assuming that DG is disjoint from DD, then DG is the RDF subgraph of
D, which is authorised by P .

Next, we formally redefine the correctness criteria as follows:

Definition 6.3 (RDF query correctness criteria)
Given our definition for a secure RDF subgraph, if S denotes a query processing algorithm
without access control, when query Q is executed on DG the result set returned by S(DG,Q)
only contains authorised data.

Let A(D,P,Q) represent a secure query processing algorithm, which returns the re-
sult set authorised by P when query Q is executed on D.

Secure. For A(D,P,Q) to be deemed secure, each resource r ∈ A(D,P,Q) must be
contained in the RDF subgraph, which is accessible under P. It follows that a query
processing algorithm is secure if and only if:

∀P∀Q∀D∀DG∀r[r ∈ A(D,P,Q) =⇒ r ∈ DG].

Sound. To be deemed sound, A(D,P,Q) may return less information than S(DG,Q), how-
ever it should not return invalid results. Therefore, a query processing algorithm is sound
if and only if:

∀P∀Q∀D∀DG[A(D,P,Q) v S(DG,Q)].

Maximum. In order to be deemed maximum the results returned by A(D, P, Q) should be
equivalent to those returned by S(DG,Q). A query processing algorithm is maximum if and
only if:

∀P∀Q∀D∀DG[A(D,P,Q) ≡ S(DG,Q)].

6.1.3 Correctness Criteria for the SPARQL Update Language
As our access control framework can also be used in conjunction with the SPARQL 1.1 update
language, we also define correctness criteria for both the DELETE and the INSERT operations, that
can be used to verify the correctness of any SPARQL 1.1 update query. Assuming that we have
three datasets, one that contains all of the data, another that only contains authorised data,
which we will refer to as the filtered dataset, and another which contains unauthorised data. We
use the term merged filtered dataset to refer to the merge of both the filtered dataset and the
unauthorised data.
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A delete query processing algorithm is deemed secure, if it does not delete any unauthorised
data. Every resource that is in the merged filtered dataset, is in the rewritten dataset. The
algorithm is sound, if it only deletes relevant data. The rewritten dataset should not contain
less resources than the merged filtered dataset. The algorithm is maximum, if all of the relevant
data is deleted. The rewritten dataset should be equivalent to the merged filtered dataset.
An insert query processing algorithm is deemed secure, if all of the data contained in the

rewritten dataset is also in the filtered dataset. The algorithm is sound, if only relevant data
is inserted. The rewritten dataset should not contain more resources than the merged filtered
dataset. The algorithm is maximum, if all of the relevant data is inserted. The rewritten dataset
should be equivalent to the merged filtered dataset.

Definition 6.4 (RDF update correctness criteria)
Given our definition for a secure RDF subgraph, if U denotes an update query processing
algorithm without access control, when query Q is executed on DG, the dataset generated
by U(DG,Q) only contains authorised data.

Let UD denote a secure delete processing algorithm, where UD(D,P,Q), produces a
new database state D′, when Q is executed on the subset of D which is authorised by P .

Secure. For UD(D,P,Q) to be deemed secure, D′ must contain all of the data that
is present in the merged filtered dataset. It follows that a query processing algorithm is
secure if and only if :

∀P∀Q∀D∀DG∀r[r ∈ (U(DG,Q) ∪DD) =⇒ r ∈ UD(D,P,Q)].

Sound. For UD(D,P,Q) to be deemed sound, D′ must not contain less data than the
filtered dataset. It follows that a query processing algorithm is sound if and only if :

∀P∀Q∀D∀DG∀DD[UD(D,P,Q) w (U(DG,Q) ∪DD)].

Maximum. In order for UD(D,P,Q) to be deemed maximum D′ should be equivalent to
the merged filtered dataset. A query processing algorithm is maximum if and only if :

∀P∀Q∀D∀DG∀DD[UD(D,P,Q) ≡ (U(DG,Q) ∪DD)].

Let UI denote a secure insert processing algorithm, where UI(D,P,Q), produces a
new database state D′′, when Q is executed on the subset of D, which is authorised by P .

Secure. For UI(D,P,Q) to be deemed secure, all of the data in D′′ must also be
present in the filtered dataset. It follows that a query processing algorithm is secure if and
only if :

∀P∀Q∀D∀DG∀DD∀r[r ∈ UI(D,P,Q) =⇒ r ∈ (U(DG,Q) ∪DD)].

Sound. For UI(D,P,Q) to be deemed sound, D′′ must not contain more data than the
filtered dataset. It follows that a query processing algorithm is sound if and only if :

∀P∀Q∀D∀DG∀DD[UI(D,P,Q) v (U(DG,Q) ∪DD)].

Maximum. In order for UI(D,P,Q) to be deemed maximum D′′ should be equivalent to
the merged filtered dataset. A query processing algorithm is maximum if and only if :

∀P∀Q∀D∀DG∀DD[UI(D,P,Q) ≡ (U(DG,Q) ∪DD)].

119



6.2. ACCESS CONTROL FOR SPARQL 1.1 QUERIES

1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 entx:MRyan rdf:type foaf: Person .
7 entx:MRyan foaf:name "May Ryan" .
8 entx:MRyan entx: salary 33000 .
9 entx:MRyan foaf:phone "222 -2222" .

10 entx: JSmyth rdf:type foaf: Person .
11 entx: JSmyth foaf:name "John Smyth" .
12 entx: JSmyth entx: salary 33000 .
13 entx: JSmyth foaf:phone "333 -3333" .
14 }

Figure 6.1: Employee named graph

1 entx: OrgStructure {
2 entx:MRyan entx: worksFor entx: JBloggs .
3 entx: JSmyth entx: worksFor entx:MRyan .
4 }

Figure 6.2: Organisation structure named graph

6.2 Access Control for SPARQL 1.1 Queries
In Chapter 5 we discussed how RDF quad patterns can be used to specify authorisations at
different levels of granularity. The RDF quad pattern is an extension of the RDF triple pattern
with optionally a variable V in the graph position. In addition to a standard SPARQL query,
the requester submits credentials that are used to determine if they are permitted to execute
the query. After the credentials are verified by an external authentication system, the authori-
sation algorithm checks if the authorisation request can be derived using the authorisations. If
the algorithm manages to successfully derive the authorisation, access to the requested data is
granted, otherwise the request is denied. If access is granted the enforcement framework passes
the SPARQL query to the query engine, which in turn processes the query in the normal way
and returns the query results to the requester.
The access control strategy presented in Chapter 5 has a number of limitations. Firstly, the

requester needs to be granted access to each triple in order to be permitted to execute the
query. Secondly, the current framework does not support complex queries composed of filters or
subqueries. As such it is necessary to devise a strategy where access can be granted to partial
query results.

• One approach is to use a filtering algorithm to generate a dataset which does not contain
any prohibited data, and to subsequently execute the query against the filtered dataset.

• An alternative is to develop a query rewriting algorithm that can be used to ensure that
unauthorised data is not returned by the query.

Given the potential scalability issues associated with results filtering, we adopt a query rewriting
approach to access control. As we are only concerned with rewriting the query to filter out
the data which has been restricted, we assume that an authorisation framework has already
determined the unauthorised quads.
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1 〈?sub, SELECT, −, 〈entx:MRyan, entx:salary, ?o, ?g〉, E, bsbm:Admin〉
2 〈?sub, SELECT, −, 〈entx:MRyan, entx:worksFor, ?o, ?g〉, E, bsbm:Admin〉

Figure 6.3: SPARQL query authorisations

6.2.1 SPARQL 1.1 Queries
Prior to proposing a query rewriting algorithm, we examine the different query rewriting strate-
gies for SPARQL graph patterns, based on the correctness criteria identified in the previous
section. The query results presented in this section are based on the data depicted in Figure 6.1
and Figure 6.2. In addition, we use the quad patterns, presented in Figure 6.3 to restrict the
query results. The quad pattern, entx:MRyan entx:salary ?o ?g, denies access to May Ryan’s
salary. Whereas, entx:MRyan entx:worksFor ?o ?g, restricts access to information pertaining
to the people that May Ryan works for.
As we saw in Section 2.2.1, the SPARQL query language supports four distinct query types

(SELECT, ASK, CONSTRUCT and DESCRIBE). In each case, SPARQL graph pattern matching is used
in order to determine the output of the query. Although the examples presented in this section
are limited to SELECT queries, the proposed query rewriting strategy is effective for all four query
types.

Basic Graph Patterns. When we execute Query 6.1 without any access restrictions the identi-
fiers, names and the salaries of all persons are returned.

Query 6.1 (Basic graph pattern)
Given the following query:
SELECT ?id ?name ? salary
WHERE { GRAPH entx: EmployeeDetails {
?id foaf:name ?name. ?id entx: salary ? salary } }

The output is as follows:
?id ?name ?salary

entx:JBloggs "Joe Bloggs" 60000
entx:MRyan "May Ryan" 33000
entx:JSmyth "John Smyth" 33000

However, if the requester is denied access to the salary pertaining to entx:MRyan, by authorisa-
tion 1 in Figure 6.3, we need to filter out the restricted data. A naive implementation might:

(i) replace the variables in the authorisation with the corresponding variables in the query;
and

(ii) construct a FILTER NOT EXISTS expression from the derived quad pattern.

A filter of this nature, which is presented in Query 6.2, will bind the variables based on the filter
clause, which will remove all of the salaries that are the same as the salary for entx:MRyan,
instead of simply removing the salary for entx:MRyan. Clearly such an approach is secure and
sound, however it fails to meet the maximum correctness criteria.
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Query 6.2 (Basic graph pattern restricted using pattern)
Given the following query:
SELECT ?id ?name ? salary
WHERE { GRAPH entx: EmployeeDetails {
?id foaf:name ?name. ?id entx: salary ? salary
FILTER NOT EXISTS {GRAPH entx: EmployeeDetails {
entx:MRyan entx: salary ? salary } } } }

The output is as follows:
?id ?name ?salary

entx:JBloggs "Joe Bloggs" 60000

The correct approach would be rewrite the filter so that it eliminates the pattern specified in
the authorisation from the result set. For each graph pattern group:

(i) A FILTER NOT EXISTS expression is generated for each quad in the graph pattern group
that matches an authorisation. If the named graph in the query is a variable and the named
graph in the authorisation is a constant, then a new graph pattern group is constructed
using the named graph from the authorisation and the graph pattern from the query.
Otherwise the unchanged graph pattern group is added to the filter.

(ii) The constants in the subject, predicate and object positions of the authorisation are bound
to the variables in the query using a FILTER = expression. If multiple bindings exists the
FILTER is generated using the conjunction of the bindings.

(iii) Finally, the FILTER NOT EXISTS is added to the relevant graph pattern group.

The expanded SPARQL query (see Query 6.3) limits the result set to the identities, names and
salaries of authorised persons.

Query 6.3 (Basic graph pattern restricted using binding)
Given the following query:
SELECT ?id ?name ? salary
WHERE { GRAPH entx: EmployeeDetails {
?id foaf:name ?name. ?id entx: salary ? salary
FILTER NOT EXISTS {GRAPH entx: EmployeeDetails {
?id foaf:name ?name. ?id entx: salary ? salary
FILTER ( ?id = entx:MRyan ) } } } }

The output is as follows:
?id ?name ?salary

entx:JBloggs "Joe Bloggs" 60000
entx:JSmyth "John Smyth" 33000

Aggregates. Aggregates are functions that are applied to groups of solutions, for example
COUNT, SUM, MIN, MAX, AVG, GROUP_CONCAT and SAMPLE. Although in the following example
we use COUNT and AVG, the proposed query rewriting strategy can also be used with SUM, MIN,
MAX, GROUP_CONCAT and SAMPLE. A query which returns the average salary of all foaf:persons
is presented in Query 6.4. When this query is run over our sample data the average salary
returned is 42000.
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Query 6.4 (Aggregates)
Given the following query:
SELECT ( COUNT (?id) AS ? numEmployees ) ( AVG (? salary ) AS ? avgSalary )
WHERE { GRAPH ?g {
?id rdf:type foaf: Person . ?id entx: salary ? salary } }

The output is as follows:
?numEmployees ?avgSalary

3 42000

As before when access is restricted using authorisation 1 in Figure 6.3, we construct the FILTER
NOT EXISTS expression and add it to each graph pattern group containing data which should
be restricted (see Query 6.5). As the salary for entx:MRyan is not accessible, the query returns
46500 which is the average of the two remaining salaries.

Query 6.5 (Aggregates restricted with binding)
Given the following query:
SELECT ( COUNT (?id) AS ? numEmployees ) ( AVG (? salary ) AS ? avgSalary )
WHERE { GRAPH ?g {
?id rdf:type foaf: Person . ?id entx: salary ? salary
FILTER NOT EXISTS { GRAPH ?g {
?id rdf:type foaf: Person . ?id entx: salary ? salary
FILTER ( ?id = entx:MRyan ) } } } }

The output is as follows:
?numEmployees ?avgSalary

2 46500

Subqueries and Filters. In SPARQL 1.1, negation can be achieved by filtering query results
using FILTER EXISTS, FILTER NOT EXISTS or MINUS expressions. Although subqueries are not
classified under negation, such queries are used to limit the result set, based on the results of an
embedded query. The following queries are constructed using an inner SELECT query, however
the query rewriting strategy is the same for queries that contain FILTER EXISTS, FILTER NOT
EXISTS and MINUS expressions. Query 6.6 returns the names of all people and the names of the
people that they work for.

Query 6.6 (Subqueries)
Given the following query:
SELECT DISTINCT ? employee ? manager
WHERE { GRAPH ?g {
?x foaf:name ? employee . ?y foaf:name ? manager
{ SELECT ?x ?y WHERE { GRAPH ?g { ?x entx: worksFor ?y } } } } }

The output is as follows:
?employee ?manager

"John Smyth" "May Ryan"
"May Ryan" "Joe Bloggs"
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If authorisation 2 in Figure 6.3 denies access to a quad in the outer query, we construct the
FILTER NOT EXISTS expression and add it to each graph pattern group containing data which
should be restricted. As the authorisation also matches a quad in the inner query we also add a
FILTER NOT EXISTS to the relevant graph pattern group in the subquery or filter (see Query 6.7).
Such an approach results in the filtering of May Ryan and her manager from the result set.

Query 6.7 (Subqueries restricted with binding)
Given the following query:
SELECT DISTINCT ? employee ? manager
WHERE { GRAPH ?g {
?x foaf:name ? employee . ?y foaf:name ? manager
{ SELECT ?x ?y WHERE { GRAPH ?g { ?x entx: worksFor ?y
FILTER NOT EXISTS {
GRAPH ?g { ?x entx: worksFor ?y
FILTER ( ?x = entx:MRyan ) } } } } }

} }

The output is as follows:
?employee ?manager

"John Smyth" "May Ryan"

Property Paths. A property path is used to match a path of arbitrary length between two
graph nodes. Using property paths it is possible to devise a query (see Query 6.8) which returns
details of all employees, that are either directly or indirectly connected using the entx:worksFor
property. Using this query we can see that entx:JSmyth works for entx:MRyan who in turn works
for entx:JBloggs.

Query 6.8 (Property paths)
Given the following query:
SELECT DISTINCT ? employee ? manager
WHERE { GRAPH ?g1 { ? employee entx: worksFor + ? manager } }

The output is as follows:
?employee ?manager

entx:JSmyth entx:MRyan
entx:MRyan entx:JBloggs
entx:JSmyth entx:JBloggs

Given authorisation 2 in Figure 6.3, which denies access to information relating to the persons
that entx:MRyan works for, it is possible to employ a query rewriting strategy to filter out the
unauthorised data. As per basic graph patterns, we generate a FILTER NOT EXISTS expression
and add it to the query (see Query 6.9). As a result it is not possible to see who entx:MRyan
works for. However, such a rewriting strategy is neither secure nor sound, as it is still possible
to see that entx:JSmyth works for entx:JBloggs.
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Query 6.9 (Property paths with binding)
Given the following query:
SELECT DISTINCT ? employee ? manager
WHERE { GRAPH ?g1 { ? employee entx: worksFor + ? manager
FILTER NOT EXISTS {
GRAPH ?g1 { ? employee entx: worksFor + ? manager
FILTER ( ? employee = entx:MRyan ) } } } }

The output is as follows:
?employee ?manager

entx:JSmyth entx:MRyan
entx:JSmyth entx:JBloggs

An alternative strategy is to removed the FILTER = binding, however this would result in no
bindings being returned (see Query 6.10), thus failing to meet the maximum correctness criteria.

Query 6.10 (Property paths without binding)
Given the following query:
SELECT DISTINCT ? employee ? manager
WHERE { GRAPH ?g1 { ? employee entx: worksFor + ? manager
FILTER NOT EXISTS {
GRAPH ?g1 { ? employee entx: worksFor + ? manager } } } }

The output is as follows:
?employee ?manager

In the case of property paths, when a binding exists for the subject a FILTER NOT EXISTS
expression does not restrict access to the path data. Further analysis is thus required in order
to determine an appropriate rewriting strategy for these corner cases.

6.2.2 Query Rewriting Algorithm
Based on the query rewriting strategies presented in the previous section, we propose a query
rewriting algorithm, which ensures that only authorised data is returned by SPARQL 1.1 queries
(see Algorithm 6.1). The algorithm takes as input a query, and a set of quads that need to be
filtered out of the query results, and checks each of the SPARQL graph patterns recursively.

(i) If any of the graph patterns in the outer query matches any of the unauthorised quads, a
FILTER NOT EXISTS element is generated. If the named graph in the query is a variable
and the named graph in the authorisation is a constant, then a new graph pattern group is
constructed using the named graph from the authorisation and the graph pattern from the
query. Otherwise the unchanged graph pattern group is added to the filter. In addition,
the constants in the subject, predicate and object positions of the authorisation are bound
to the variables in the query using FILTER = expression. If multiple bindings exists the
FILTER is generated using the conjunction of the bindings.

(ii) If any of the graph patterns in an inner SELECT, EXISTS FILTER, NOT EXISTS FILTER or a
MINUS matches any of the unauthorised quads, a FILTER NOT EXISTS element is generated
as described above and subsequently added to the relevant graph pattern group in the
SELECT, EXISTS FILTER, NOT EXISTS FILTER or the MINUS expression.
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Algorithm rewriteQuery
Data: query, authPatterns
Result: query
for GraphPattern gp in query do

newgp = checkGP(gp, authPatterns)
if gp != newgp then

replace(gp, newgp)
end

end
return query

Procedure checkGP
Data: gp, authPatterns
Result: gp
for Element subElement in gp do

if (subElement instanceOf Subquery) || (subElement instanceOf ExistsFilter) ||
(subElement instanceOf NotExistsFilter) || (subElement instanceOf
ElementMinus) then

for GraphPattern qpSub in subElement do
checkGP(qpSub, authPatterns)

end
end

end
gp = checkAuth(gp, authPatterns)

return gp

Procedure checkAuth
Data: gp, authPatterns, negFilter
Result: notExistsFilter
for QuadPattern quad in gp do

for Quad auth in authPatterns do
if match(auth, quad) then

NotExistsFilter filter = new NotExistsFilter(auth, quad)
gp.add(filter)

end
end

end
return gp

Algorithm 6.1: Query rewriting algorithm

6.3 Access Control for SPARQL 1.1 Updates
SPARQL 1.1 update caters for a number of update operations (CLEAR, LOAD, INSERT DATA,
DELETE DATA and DELETE/INSERT) and a number of graph management operations (CREATE,
DROP, MOVE, COPY and ADD). In this section, we examine several of scenarios where access to graph
data is partially restricted. In the examples that follow, we use the authorisations presented in
Figure 6.4, to restrict access to SPARQL update operations, over the sample data presented
in Figure 6.1 and Figure 6.2. The quad pattern, entx:JBloggs ?p ?o ?g denies access to all
information pertaining to entx:JBloggs. Whereas, ?s entx:salary ?o entx:EmployeeDetails
restricts access to entx:salary information in the entx:EmployeeDetails graph.
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1 〈?sub, ?oper, −, 〈 entx:JBloggs, ?p, ?o, ?g〉, E, bsbm:Admin〉
2 〈?sub, ?oper, −, 〈 ?s, entx:salary, ?o, entx:EmployeeDetails〉, E, bsbm:Admin〉

Figure 6.4: SPARQL update authorisations

6.3.1 SPARQL 1.1 Updates
For SPARQL update operations, three distinct query rewriting strategies are required. The
DELETE/INSERT operation uses graph patterns in order to determine the data which should be
inserted, deleted or updated. Therefore, the query rewriting strategy proposed in the previous
section can be used to filter out unauthorised data. Given, that the INSERT DATA and DELETE
DATA operations are used to insert and delete specific quads, any unauthorised quads need to
be removed from the query. Finally, given the CLEAR, DROP, ADD, LOAD, COPY, MOVE and CREATE
operations work at the graph level, when the requester does not have access to the entire graph
these queries need to be rewritten so that they operate at the triple level. In the case of update
queries there are two possible options:

(1) The system should inform the requester that the query cannot be completed and provide a
list of the triples that cannot be deleted, inserted etc.

(2) The system should behave as if the unauthorised data is not present.

If we adopt the first option, the requester will be aware that data exists which they do not have
access to, and could potentially infer unauthorised information by issuing one or more additional
queries. As a result we adopt the second option. For a discussion on explanations and the
potential issues see Section 7.4.

DELETE, INSERT, DELETE/INSERT. Any quads in the query WHERE clause that match
an authorisation, which denies access for that requester and the INSERT operation, the DELETE
operation or both should be filtered out of the query results. As per the query rewriting strategy
proposed for the SPARQL query language (Section 6.2.1): When no access control is present,
as long as the query is well formed (even if the data specified in the query does not exist) the
query simply returns success.
Query 6.11 is used to delete all information pertaining to entx:JBloggs from the employee

graph. If authorisation 2 in Figure 6.4 is used to prohibit the requester from deleting salary
information from the entx:EmployeeDetails graph, we need to filter the restricted data from
the query.

Query 6.11 (DELETE/INSERT authorised data)
Given the following query:
WITH entx: EmployeeDetails
DELETE { ?s ?p ?o }
WHERE { GRAPH entx: EmployeeDetails {
?s ?p ?o
FILTER (?s = entx: JBloggs ) } }

continued overleaf ->
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If authorisation 2 in Figure 6.4 denies access to all salary information the query is rewrit-
ten as follows:

WITH entx: EmployeeDetails
DELETE { ?s ?p ?o }
WHERE { GRAPH entx: EmployeeDetails {
?s ?p ?o
FILTER (?s = entx: JBloggs )
FILTER NOT EXISTS {
GRAPH ?g {?s ?p ?o
FILTER (?p = entx: salary ) } } } }

After the rewritten query is executed over the dataset presented in Figure 6.1, the new state
of the dataset is as follows:

1 entx: EmployeeDetails {
2 entx: JBloggs entx: salary 60000 .
3 entx:MRyan rdf:type foaf: Person .
4 entx:MRyan foaf:name "May Ryan" .
5 entx:MRyan entx: salary 33000 .
6 entx:MRyan foaf:phone "222 -2222" .
7 entx: JSmyth rdf:type foaf: Person .
8 entx: JSmyth foaf:name "John Smyth" .
9 entx: JSmyth entx: salary 33000 .

10 entx: JSmyth foaf:phone "333 -3333" .
11 }

DELETE DATA. Any quads in the query that match an authorisation quad pattern, which
denies access for that requester and the DELETE DATA operation, should be removed from the
query. The query presented in Query 6.12 is used to delete all data relating to Joe Bloggs and
May Ryan from the entx:EmployeeDetails graph.

Query 6.12 (DELETE authorised data )
Given the following query:
DELETE
WHERE { GRAPH entx: EmployeeDetails {
entx: JBloggs rdf:type foaf: Person .
entx: JBloggs foaf:name "Joe Bloggs " .
entx: JBloggs entx: salary 60000 .
entx: JBloggs foaf:phone "111 -1111" .
entx:MRyan rdf:type foaf: Person .
entx:MRyan foaf:name "May Ryan" .
entx:MRyan entx: salary 33000 .
entx:MRyan foaf:phone "222 -2222" .
} }

continued overleaf ->
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If authorisation 1 in Figure 6.4 is used to prohibit the requester from deleting information
pertaining to entx:JBloggs, the query is rewritten as follows:

DELETE
WHERE { GRAPH entx: EmployeeDetails {
entx:MRyan rdf:type foaf: Person .
entx:MRyan foaf:name "May Ryan" .
entx:MRyan entx: salary 33000 .
entx:MRyan foaf:phone "222 -2222" .
} }

After the rewritten query is executed over the dataset presented in Figure 6.1, the new state
of the dataset is as follows:

1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 entx: JSmyth rdf:type foaf: Person .
7 entx: JSmyth foaf:name "John Smyth" .
8 entx: JSmyth entx: salary 33000 .
9 entx: JSmyth foaf:phone "333 -3333" .

10 }

INSERT DATA. When it comes to the INSERT DATA operation, any quads in the query that
match an authorisation quad pattern, which denies access for that requester and the INSERT
DATA operation, should be removed from the query. The query presented in Query 6.13 is used
to insert data relating to Mike Murphy into the entx:EmployeeDetails graph.

Query 6.13 (INSERT authorised data)
Given the following query:
INSERT DATA
{ GRAPH entx: EmployeeDetails {
entx: MMurphy rdf:type foaf: Person .
entx: MMurphy foaf:name "Mike Murphy " .
entx: MMurphy entx: salary 45000 } }

If authorisation 2 in Figure 6.4 is used to prohibit the requester from inserting salary in-
formation into the entx:EmployeeDetails graph, the query is rewritten as follows:

INSERT DATA
{ GRAPH entx: EmployeeDetails {
entx: MMurphy rdf:type foaf: Person .
entx: MMurphy foaf:name "Mike Murphy " } }

continued overleaf ->
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After the rewritten query is executed over the dataset presented in Figure 6.1. The new
state of the dataset is as follows:

1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 entx:MRyan rdf:type foaf: Person .
7 entx:MRyan foaf:name "May Ryan" .
8 entx:MRyan entx: salary 33000 .
9 entx:MRyan foaf:phone "222 -2222" .

10 entx: JSmyth rdf:type foaf: Person .
11 entx: JSmyth foaf:name "John Smyth" .
12 entx: JSmyth entx: salary 33000 .
13 entx: JSmyth foaf:phone "333 -3333" .
14 entx: MMurphy rdf:type foaf: Person .
15 entx: MMurphy foaf:name "Mike Murphy " .
16 }

CLEAR. The CLEAR operation removes all of the data from the target graph. When the re-
quester does not have access to the entire graph, the DELETE operation can be used to clear
the authorised data from the target graph. Query 6.14 is used to demonstrate how the CLEAR
operation can be represented using a DELETE operation.

Query 6.14 (CLEAR authorised data )
Given the following query:
CLEAR GRAPH entx: EmployeeDetails

If authorisation 1 in Figure 6.4 is used to prohibit the requester from clearing information
pertaining to entx:JBloggs, the query is rewritten as follows:

DELETE { GRAPH entx: EmployeeDetails { ?s ?p ?o } }
WHERE { GRAPH entx: EmployeeDetails {
?s ?p ?o
FILTER NOT EXISTS {
GRAPH entx: EmployeeDetails {?s ?p ?o
FILTER (?s = entx: JBloggs ) } } } }

After the rewritten query is executed over the dataset presented in Figure 6.1, the new state
of the dataset is as follows:

1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 }
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DROP. The DROP operation removes all of the data from the target graph, and afterwards
deletes the target graph. When access control is present the DELETE operation can be used to
delete authorised data from the target graph. When access is restricted to some of the graph
data, the DROP operation would be equivalent to the CLEAR operation (i.e. the graph cannot be
deleted as it contains data), and thus the same rewriting strategy applies.

ADD. The ADD operation, copies data from a source graph to a destination graph. This oper-
ation can be supported by using the INSERT operation to insert this data into the destination
graph. However, this operation should only be permitted if the requester has INSERT permissions
for all of the data that is returned by the select query. The query presented in Query 6.15 is
used to demonstrate how the ADD operation can be catered for using the INSERT operation.

Query 6.15 (ADD authorised data )
Given the following query:
ADD GRAPH entx: EmployeeDetails TO GRAPH entx: Management

If authorisation 1 in Figure 6.4 is used to prohibit the requester from adding information
pertaining to entx:JBloggs, the query is rewritten as follows:

INSERT { GRAPH entx: Management { ?s ?p ?o } }
WHERE { GRAPH entx: EmployeeDetails {
?s ?p ?o
FILTER NOT EXISTS {
GRAPH entx: EmployeeDetails {?s ?p ?o
FILTER (?s = entx: JBloggs ) } } } }

continued overleaf ->

131



6.3. ACCESS CONTROL FOR SPARQL 1.1 UPDATES

After the rewritten query is executed over the dataset presented in Figure 6.1. The new
state of the dataset is as follows:

1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 entx:MRyan rdf:type foaf: Person .
7 entx:MRyan foaf:name "May Ryan" .
8 entx:MRyan entx: salary 33000 .
9 entx:MRyan foaf:phone "222 -2222" .

10 entx: JSmyth rdf:type foaf: Person .
11 entx: JSmyth foaf:name "John Smyth" .
12 entx: JSmyth entx: salary 33000 .
13 entx: JSmyth foaf:phone "333 -3333" .
14 }
15

16 entx: Management {
17 entx:MRyan rdf:type foaf: Person .
18 entx:MRyan foaf:name "May Ryan" .
19 entx:MRyan entx: salary 33000 .
20 entx:MRyan foaf:phone "222 -2222" .
21 entx: JSmyth rdf:type foaf: Person .
22 entx: JSmyth foaf:name "John Smyth" .
23 entx: JSmyth entx: salary 33000 .
24 entx: JSmyth foaf:phone "333 -3333" .
25 }

LOAD. The LOAD operation copies data from a source URI to a destination graph. The INSERT
operation can be used to insert this data into the destination graph. However, like the ADD this
operation should only be permitted if the requester has INSERT permissions for all of the data
that is returned by the select query. Given the LOAD operation would be equivalent to the ADD
operation, the same rewriting strategy applies.

COPY. The COPY operation removes all data from the destination graph, and copies data
from a source graph to a destination graph. This can be done by using DELETE to delete all of
the authorised data from the destination graph and using INSERT to insert this data into the
destination graph. However, given there is a dependency between the queries, they should be
wrapped in a transaction in order to ensure that either both, or neither, succeed. The query
presented in Query 6.16 is used to demonstrate how the COPY operation can be catered for using
a combination of DELETE and INSERT.

Query 6.16 (COPY authorised data )
Given the following query:
COPY GRAPH entx: EmployeeDetails TO GRAPH entx: Management

continued overleaf ->
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Given authorisation 1 in Figure 6.4 is used to prohibit the requester from copying informa-
tion pertaining to entx:JBloggs, the query is rewritten as follows:
DELETE { GRAPH entx: Management { ?s ?p ?o } }
WHERE { GRAPH entx: Management { ?s ?p ?o } }

INSERT { GRAPH entx: Management { ?s ?p ?o } }
WHERE { GRAPH entx: EmployeeDetails {
?s ?p ?o
FILTER NOT EXISTS {
GRAPH entx: EmployeeDetails {?s ?p ?o
FILTER (?s = entx: JBloggs ) } } } }

After the rewritten query is executed over the dataset presented in Figure 6.1, the new state
of the dataset is as follows:

1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 entx:MRyan rdf:type foaf: Person .
7 entx:MRyan foaf:name "May Ryan" .
8 entx:MRyan entx: salary 33000 .
9 entx:MRyan foaf:phone "222 -2222" .

10 entx: JSmyth rdf:type foaf: Person .
11 entx: JSmyth foaf:name "John Smyth" .
12 entx: JSmyth entx: salary 33000 .
13 entx: JSmyth foaf:phone "333 -3333" .
14 }
15

16 entx: Management {
17 entx:MRyan rdf:type foaf: Person .
18 entx:MRyan foaf:name "May Ryan" .
19 entx:MRyan entx: salary 33000 .
20 entx:MRyan foaf:phone "222 -2222" .
21 entx: JSmyth rdf:type foaf: Person .
22 entx: JSmyth foaf:name "John Smyth" .
23 entx: JSmyth entx: salary 33000 .
24 entx: JSmyth foaf:phone "333 -3333" .
25 }

MOVE. The MOVE operation moves all of the data from the source graph into the destination
graph, and afterwards deletes the source graph. When access control is present the INSERT
operation can be used to insert authorised data into the destination graph, and the DELETE
operation can be used to delete authorised data from the source graph. However, given there is
a dependency between the queries, they should be wrapped in a transaction in order to ensure
that either both, or neither, succeed. The query presented in Query 6.17 is used to demonstrate
how the MOVE operation can be catered for using a combination of DELETE and INSERT.
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Query 6.17 (MOVE authorised data )
Given the following query:
MOVE GRAPH entx: EmployeeDetails TO GRAPH entx: Management

If authorisation 1 in Figure 6.4 is used to prohibit the requester from moving information
pertaining to entx:JBloggs, the query is rewritten as follows:

DELETE { GRAPH entx: Management { ?s ?p ?o } }
WHERE { GRAPH entx: Management { ?s ?p ?o } }

INSERT { GRAPH entx: Management { ?s ?p ?o } }
WHERE { GRAPH entx: EmployeeDetails {
?s ?p ?o
FILTER NOT EXISTS {
GRAPH entx: EmployeeDetails {?s ?p ?o
FILTER (?s = entx: JBloggs ) } } } }

DELETE { GRAPH entx: EmployeeDetails { ?s ?p ?o } }
WHERE { GRAPH entx: EmployeeDetails {
?s ?p ?o
FILTER NOT EXISTS {
GRAPH entx: EmployeeDetails {?s ?p ?o
FILTER (?s = entx: JBloggs ) } } } }

After the rewritten query is executed over the dataset presented in Figure 6.1, the new state
of the dataset is as follows:

1 entx: EmployeeDetails {
2 entx: JBloggs rdf:type foaf: Person .
3 entx: JBloggs foaf:name "Joe Bloggs " .
4 entx: JBloggs entx: salary 60000 .
5 entx: JBloggs foaf:phone "111 -1111" .
6 }
7

8 entx: Management {
9 entx:MRyan rdf:type foaf: Person .

10 entx:MRyan foaf:name "May Ryan" .
11 entx:MRyan entx: salary 33000 .
12 entx:MRyan foaf:phone "222 -2222" .
13 entx: JSmyth rdf:type foaf: Person .
14 entx: JSmyth foaf:name "John Smyth" .
15 entx: JSmyth entx: salary 33000 .
16 entx: JSmyth foaf:phone "333 -3333" .
17 }

6.3.2 Update Query Rewriting Algorithm
Based on the query rewriting strategies presented in the previous section, we propose a secure
update query rewriting algorithm, which ensures that only authorised data is inserted and deleted
(Algorithm 6.2). The algorithm takes as input a query and a set of negative authorisations that
relate to that query. In order to cater for the different query types, a number of rewriting
strategies are required:
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Algorithm rewriteUpdate
Data: query, authPatterns
Result: newQueries
if query.type == DELETE/INSERT then

query = rewriteQuery(query, authPatterns)
newQueries.add(query)

end
else if ( query.type == DELETE DATA ) || ( query.type == INSERT DATA )
then

for QuadPattern q in query do
if q in authPatterns then

query = query.remove(q)
end

end
newQueries.add(query)

end
else if ( query.type == CLEAR ) || ( query.type == DROP ) then

deleteQuery = deleteFromGraph(query.target, authPatterns)
newQueries.add(deleteQuery)

end
else if ( query.type == ADD ) || ( query.type == LOAD ) ||
( query.type ==COPY ) || ( query.type == MOVE ) then

if query.type ==COPY || query.type == MOVE then
deleteQuery = deleteFromGraph(query.destination, authPatterns)
newQueries.add(deleteQuery)

end
insertQuery = new InsertQuery(query.destination)
for QuadPattern q in authPatterns do

insertQuery = addNotExistsFilter(insertQuery, q)
end
newQueries.add(insertQuery)
if query.type == MOVE then

deleteQuery = deleteFromGraph(query.source, authPatterns)
newQueries.add(deleteQuery)

end
end

return newQueries

Procedure deleteFromGraph
Data: graph, authPatterns
Result: query
query = new DeleteQuery(graph)
for QuadPattern q in authPatterns do

query = addNotExistsFilter(query, q)
end

return query
Algorithm 6.2: Update rewriting algorithm

(i) DELETE/INSERT. The query rewriting strategy presented in Section 6.2.2 is used to filter
out unauthorised quad patterns using a FILTER NOT EXISTS expression.

(ii) DELETE DATA and INSERT DATA. If any of the quads in the query match the unauthorised
quad patterns, these quads are removed from the query.

(iii) CLEAR and DROP. Negative authorisations pertaining to the specified graph are added as
filters to a DELETE query, which is used to ensure that only authorised data is removed from
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the graph.

(iv) ADD and LOAD. Negative authorisations relating to the source and the destination graphs
are added as filters to an INSERT query, which is used to add/load only authorised data to
the destination graph.

(v) COPY. A DELETE query is used to remove all data from the destination graph. While
negative authorisations matching the source and the destination graphs are added as filters
to an INSERT query, which is used to copy only authorised data into the destination graph.

(vi) MOVE. A DELETE query is used to remove all data from the destination graph. While negative
authorisations associated with the source and the destination graphs, are added as filters
to an INSERT query, which is used to move only authorised data into the destination graph.
Finally a DELETE query is used to delete data from the source graph.

6.4 Evaluation of the Proposed Query Rewriting Strategies
In Section 6.1 we redefined the secure, sound and maximum correctness criteria proposed by
Wang et al. (2007), so that access control via query rewriting can be compared against access
control via data filtering. In order to evaluate our query rewriting strategy, we use this criteria,
along with an unconventional approach to model checking, to perform a comparison between the
two approaches.
Model checking is used to verify the correctness properties of finite-state systems. The objec-

tive being, given a model of a system, exhaustively and automatically check whether this model
meets a given specification. Model checking has been successfully used to verify access control
in other domains, however to date it has not been used to evaluate access control over RDF.
Although we use model checking in an unconventional way.
The aim of our model checking approach is to verify the query rewriting algorithms hold,

irrespective of the data, for both the SPARQL 1.1 query and update languages. Therefore, we
developed an authorisation and query data generator, which automatically generates a set of
authorisations from all 24 possible combinations (of constants and variables), for each quad in
a given dataset, and which systematically generates queries for each RDF quad pattern. Given
that SPARQL query results are dependent on pattern matching and filtering, in order to prove
the correctness of our query rewriting strategy we only have to show it works for all possible
combinations of quad patterns injected into a bounded set of queries. Both the size of the dataset
and the data itself are irrelevant, therefore our model checking approach is unconventional.

6.4.1 Evaluation Setting
The benchmark system has an Intel(R) Xeon(R) CPU 8 core 2.13GHz processor, 64 GB of mem-
ory and runs Debian 6.0.3. The entire system (test data generator, query rewriting algorithms
and model checking algorithms) is implemented in Java, and the query evaluation is performed
over an in memory store using Jena. The Berlin SPARQL Benchmark (BSBM) dataset genera-
tor was used to generate a dataset containing 1194 quads. Authorisations and queries are auto
generated from a Berlin SPARQL Benchmark (BSBM) dataset, using our test data generator.
For each RDF quad in the BSBM dataset, 24 authorisations are generated, resulting in a total
of 19104 authorisations. Although we examined twenty four query types, the SAMPLE, LOAD and
the CREATE operations where not included in the evaluation. As SAMPLE returns different data
each time it is executed it is not possible to compare query rewriting to results filtering. The
query rewriting strategy for LOAD is identical to that for the ADD operation and no rewriting
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strategy is required for CREATE as access is either granted or denied. Therefore, for each of these
authorisations twenty one queries are generated as follows:
• Basic graph patterns. A query is generated, which contains either one, two or three RDF
quad patterns, that are randomly generated from data selected from the entire dataset.

• Aggregates. For COUNT and GROUP_CONCAT operations, queries are also generated from
up to three RDF quad patterns, which like basic graph patterns, are randomly generated
from the entire dataset. Given SUM, MIN, MAX and AVG operations are dependent on nu-
meric data, these queries are generated from a quad pattern which matches all offers (?s
rdf:type bsbm:offer ?g) and a pattern that matches the associated delivery days (?s
bsbm:deliveryDays ?o ?g).

• Subqueries and filters. In the case of subqueries and filters a pattern with all variables
is added to the outer query, and the inner SELECT, MINUS, FILTER EXISTS and FILTER NOT
EXISTS are generated from either one, two or three RDF quad patterns, which are randomly
selected from the entire dataset.

• Delete data and insert data. For DELETE DATA and INSERT DATA, queries are generated
from one, two or three RDF quads, that are randomly selected from the entire dataset.

• Delete, insert and delete/insert. As per basic graph patterns, DELETE, INSERT and
DELETE/INSERT queries are generated from graph patterns that are randomly selected from
the entire dataset.

• Graph update operations. CLEAR, DROP, ADD, COPY and MOVE queries are generated for
each graph appearing in the dataset.

6.4.2 Verification of SPARQL 1.1 Queries
Our verification of our query rewriting strategy for the SPARQL 1.1 query language was per-
formed as per Algorithm 6.3. For each query, the relevant authorisation is retrieved and the
following steps are performed:
(i) Firstly, the quad pattern is used to create a new dataset which only contains authorised

data, and the query is executed against this filtered dataset.
(ii) Secondly, the quad pattern is used to rewrite the query based on the query rewriting

algorithm presented in Algorithm 6.1, and this rewritten query is executed over the original
dataset.

(iii) Finally, the results of both approaches are compared. If each resource in the rewritten
result set is also present in the filtered dataset, the query rewriting strategy is secure. If
each resource in the rewritten result set is also present in the filtered result set, the query
rewriting strategy is sound. Whereas, if both the rewritten result set and the filtered result
set are equivalent the query is deemed maximum.

In the case of basic graph patterns, aggregates and negation, each of the queries generated from
the BSBM dataset, were deemed secure, sound and maximum. However, given property given
a FILTER NOT EQUALS does not restrict access to the path data, further analysis is required in
order to determine an appropriate rewriting strategy for property paths.

6.4.3 Verification of SPARQL 1.1 Updates
Our verification of our query rewriting strategy for the SPARQL 1.1 update language was per-
formed as per Algorithm 6.4. As before, for each query, the relevant authorisation is retrieved
and the following steps are performed:
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Algorithm queryModelChecking
Data: dataset, auths, queries
for Query query in queries do

Auth auth = getAuth(query, auths)

Dataset filteredDS = filterDataset(dataset, auth)
List<String> filteredResults = execute(query, auth, filteredDS)

Query rewrittenQuery = rewriteQuery(query, auth)
List<String> rewrittenResults = execute(rewrittenQuery, auth, dataset)

secure = " secure "
sound = " sound "
maximum = " maximum "

for String s in rewrittenResults do
if !filteredDS.contains(s) then

secure= " not secure "
end
if !filteredResults.contains(s) then

sound= " not sound "
end

end

if rewrittenResults != filteredResults then
maximum= " not maximum "

end
print(query.filename + secure + sound + maximum)

end
return

Algorithm 6.3: Query model checking algorithm

(i) Firstly, the quad pattern is used to create a dataset which only contains authorised data,
and a dataset which only contains unauthorised data. Like the SPARQL query language,
the query is executed against the dataset which contains authorised data. However, in
this instance the updated dataset is returned rather than a list of projections. Both the
unauthorised dataset and the updated filtered dataset are merged to form a new merged
filtered dataset.

(ii) Secondly, the quad pattern is used to rewrite the query, based on the update query rewriting
algorithm presented in Algorithm 6.2, and this rewritten query is executed over the original
dataset. Again, the the updated dataset is returned rather than a list of projections.

(iii) Finally, the results of both approaches are compared. As DELETE DATA, DELETE, CLEAR,
DROP and MOVE operations delete data from the dataset, if each of the quads in the filtered
dataset are also present in the rewritten dataset the delete is deemed secure. Whereas, if
all of the data in the merged filtered dataset is present in the rewritten dataset, the delete is
deemed sound. Given, INSERT DATA, INSERT, ADD, LOAD, COPY and MOVE operations insert
data into the dataset, if all of the data in the rewritten dataset is also in the merged filtered
dataset, the insert is secure. Whereas, if each of the quads in the rewritten dataset are also
present in the merged filtered dataset, the insert is deemed sound. If both the rewritten
result set and the filtered result set are equivalent, both the delete and/or the insert are
deemed maximum.
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Algorithm updateModelChecking
Data: dataset, auths, queries
for Query query in queries do

Auth auth = getAuth(query, auths)

Dataset filteredDenyDS = filterDenyDataset(dataset, auth)
Dataset filteredGrantDS = filterGrantDataset(dataset, auth)
filteredGrantDS = execute(query, filteredGrantDS)
Dataset filteredMerged = mergeDataset(filteredGrantDS, filteredDenyDS)

Query rewrittenQ = rewriteQuery(query, quad)
Dataset rewrittenDS = execute(rewrittenQ, auth, dataset)

secure = " secure "
sound = " sound "
maximum = " maximum "

if ((query.type == DELETE DATA) || (query.type == DELETE) ||
(query.type == CLEAR) || (query.type == DROP) || (query.type == MOVE))
then

for Quad qf in filteredMerged do
if !rewrittenDS.contains(qf) then

result+= " delete not secure " result+= " delete not sound "
end

end
end

if ((query.type == INSERT DATA) || (query.type == INSERT) ||
(query.type == ADD) || (query.type == LOAD) ||
(query.type == COPY) || (query.type == MOVE)) then

for Quad rw in rewrittenDS do
if !filteredMerged.contains(rw) then

result+= " insert not secure " result+= " insert not sound "
end

end
end

if filteredMerged != filteredResults then
result+= " delete not maximum " result+= " insert not maximum "

end
print(result)

end
return

Algorithm 6.4: Update model checking algorithm

As each of the update queries, that were generated from the BSBM dataset, were deemed secure,
sound and maximum, we can conclude that the update rewriting algorithm is secure, sound and
maximum.

6.4.4 Comparison of Query Rewriting and Filtering
In order to evaluate our query rewriting algorithms we examine the performance for each of the
different query types that were generated using the BSBM dataset as described in Section 6.4.1.
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Table 6.1: Average query processing times (ms)
Query Execution Query Rewriting &

Query Execution
Dataset Filtering &
Query Execution

AVG 1.26 1.49 18.06
BGP 1.06 1.11 17.82
GROUP CONCAT 1.27 1.28 18.00
COUNT 1.25 1.31 17.85
MAX 1.17 1.45 17.85
MIN 1.17 1.42 17.93
SUM 1.18 1.43 17.93
EXISTS 9.76 49.37 26.35
MINUS 4.06 74.77 20.81
NOT EXISTS 10.68 96.1 27.41
SUBQUERY 11.39 38.63 27.14
DELETE 1.21 1.29 17.16
DELETE/INSERT 1.20 1.28 17.19
DELETE DATA 1.01 0.35 17.10
INSERT 1.19 1.28 17.37
INSERT DATA 1.02 0.35 17.01
CLEAR 0.47 15.58 16.56
DROP 0.46 15.53 16.60
MOVE 0.63 33.41 16.62
ADD 0.68 15.38 16.72
COPY 0.69 16.72 16.67

For each query set we perform the following:

(i) Query Execution. We calculate the average time taken to execute the original query over
the filtered dataset. This calculation does not take into consideration the time required to
filter the data.

(ii) Query Rewriting & Execution. We calculate the average time taken to rewrite the
query and subsequently execute the rewritten query over the original dataset.

(iii) Dataset Filtering & Query Execution. We calculate the average time taken to remove
all unauthorised data from the dataset and to execute the original query over the filtered
dataset.

In Table 6.1 and Figure 6.5 we present the average query processing time for each query cate-
gory. In each instance we calculate the total processing time for all 19104 queries, based on 10
separate runs, remove the fastest and the slowest total test runs, and calculate the average query
processing time for an individual query. The results indicate that in the case of:

• Basic Graph Patterns (BGPs) and aggregates - there is only a small increase in processing
time when the query is rewritten. However, given that the data filtering approach needs
to iterate through each quad in the dataset, the processing times are substantially greater
than the query rewriting approach.

• Quad update operations - Given that unauthorised data is remove from the INSERT DATA
and DELETE DATA queries, such operations take less time than the respective queries without
access control. Whereas, the results for the DELETE/INSERT operations are consistent with
that of the BGPs and aggregates.
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(b) Filters and subqueries
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(c) Quad update operations
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(d) Graph update operations

Figure 6.5: Query processing times

• Graph update operations - we see a considerable increase in processing times. This can be
attributed to the fact that when graph based operations are translated into triple based
operations we construct INSERT/DELETE queries with a graph pattern matching all quads
and a filter which removes all of the unauthorised data. The move operation takes twice
as long as the other operations as we need two separate operations, one to INSERT into the
destination and one to DELETE from the destination.

• Filters and subqueries - given that our query rewriting strategy involves adding a filter
inside a filter, in the case of negation we see a severe impact in query processing times with
MINUS and NOT EXISTS operations taking longer than EXISTS and subqueries.

Based on our evaluation, we can conclude that although it is possible to rewrite SPARQL 1.1
queries and updates so that they behave as if the unauthorised data is not present in the dataset,
it is clear that there is a need for query planning in order to optimise the performance times
for different query categories. As such, it is envisaged that the results presented in this chapter,
will serve as a baseline that can be used to benchmark alternative access control strategies for
Linked Data.

6.5 Access Control for the LDW
In Section 5.5.1 we examined how the G-FAF framework can be used to enforce and manage
access control policies over Linked Data that is exposed via SPARQL endpoints. In this section,
we extend the original architecture to allow for access to be granted to partial RDF data, and
to cater for RDF exposed as web documents, embedded in HTML documents or exposed via
RDB2RDF interfaces. The discussion that follows demonstrates how the extended Linked Data
Authorisation Architecture (LinDAA), which is presented in Figure 6.6, can be used to seamlessly
enforce and manage RDF data exposed as Linked Data.
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Figure 6.6: Linked Data Authorisation Architecture (LinDAA)

6.5.1 Securely Publishing Linked Data
Linked Data publishers either serve RDF data or enable RDF data to be queried using the
existing web infrastructure. In Section 2.4.2, we presented the different strategies used to expose
RDF data as Linked Data. In summary:

• RDF data that is represented in RDF stores can be exposed as Linked Data via SPARQL
endpoints.

• RDF represented in static RDF documents can be served by regular web servers.

• RDF can be embedded in HTML documents using RDFa and served as per normal HTML
pages.

• RDB2RDF tools can be used to translate relational data into RDF, which can be represented
in an RDF store or an RDF document. Alternatively, custom interfaces and RDB2RDF
mappings can be used to expose relational data as RDF.

Given that LinDAA is designed to work seamlessly with the LDW, regardless of whether the
RDF data is exposed via a SPARQL endpoint, represented in an RDF document, embedded in
HTML or accessed via an RDB2RDF interface, the web server needs to be configured to redirect
all requests for access to the LinDAA Authorisation Interface which ensures that access is only
permitted to authorised data.

6.5.2 Securely Consuming Linked Data
In a similar fashion to the web of documents, Linked Data can be accessed using Linked Data
browsers, search engines and crawlers. In Section 2.4.3, we examine the different patterns, that
according to Heath and Bizer (2011), are commonly used to consume Linked Data. The Crawling
Pattern uses URI dereferencing to explore the Linked Data web and to create a local index. The
On-The-Fly-Dereferencing Pattern also uses URIs to dereference, however in this case data is
consumed at query time. Whereas, the Query Federation Pattern involves querying a fixed set
of data sources via SPARQL endpoints. In order for LinDAA to work seamlessly with the LDW,
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regardless of the mechanism used to consume Linked Data, the requester needs to be able to
both dereference and query the RDF data. As LinDAA also supports SPARQL 1.1 queries, a
fourth pattern, which we call the Update Pattern, can be used to maintain RDF data.

6.5.3 The Linked Data Authorisation Architecture
In this section we discuss how the LinDAA architecture depicted in Figure 6.6 can be used
in conjunction with SPARQL endpoints, RDF documents, RDFa and RDB2RDF interfaces. In
addition to either the document request or the query, the requester must submit their credentials,
which are verified by an external authentication system.

(1) Authorisation Interface (Update Request). For each request the Authorisation Interface
generates an Authorisation Request of the form 〈Sub,Query〉. Where Sub refers to the requesters
credentials and Query refers to the query, which is either submitted by the requester or con-
structed by the Authorisation Interface. In the case of:

• SPARQL queries and SPARQL updates. The SPARQL query or SPARQL update
query is simply mapped to an Authorisation Request.

• RDF documents. All of the data residing in the RDF Document is loaded into a tem-
porary RDF dataset and a new SPARQL query, which is used to return all data from the
temporary dataset is constructed and mapped to an Authorisation Request.

• RDFa documents. A distiller or parser is used to extract the RDF data and to store it
in a temporary RDF dataset and a new SPARQL query, which is used to return all data
from the temporary dataset is constructed and mapped to an Authorisation Request.

• RDB2RDF. An RDB2RDF interface is used to retrieve the RDF data and to load it in a
temporary RDF dataset and a new SPARQL query, which is used to return all data from
the temporary dataset is constructed and mapped to an Authorisation Request.

In each instance the Authorisation Request is subsequently passed to the Authorisation Engine.

(2) Authorisation Engine. For each graph pattern present in the query the Authorisation En-
gine, constructs a tuple 〈Sub,Acc,Res〉, where Sub refers to the authorisation subject, Acc refers
to the access right based on the type of query and Res refers to the graph pattern. For each
tuple the Authorisation Engine calls the Authorisation Framework in order to determine what
data needs to be filtered out of the query.

(3) Authorisation Framework. The authorisation algorithm checks if the Authorisation Request
can be derived using the Authorisations and the Conflict Resolution Policies. If the authorisation
framework denies access, the algorithm returns a list of the quad patterns that are unauthorised.
This possibly empty list of unauthorised quad patterns is returned to the Authorisation Engine.
For additional details on the Authorisation Framework see Section 5.4.

(2) Authorisation Engine. When the Authorisation Framework has checked all graph patterns
in the query, the Authorisation Engine proceeds as follows:

• Access granted. If the list of unauthorised quad patterns is empty, then access is granted
to the entire graph pattern and no action is required.

• Access denied. If the list contains all of the quad patterns, then access is denied to the
entire graph pattern and the graph pattern is removed.
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• Access partially granted. If access to some graph patterns is granted and access to
other graph patterns is denied, then the query is rewritten according to either the SPARQL
query rewriting algorithm (Algorithm 6.1) or the SPARQL update query rewriting algorithm
(Algorithm 6.2).

Once all of the quad patterns have been checked then the rewritten query is returned to the
Authorisation Interface:

• Access granted. If access is granted to the entire query, then the original query is returned.

• Access denied. If access is denied to the entire query, then an empty query is returned.

• Access partially granted. If access was partially granted to one or more graph patterns,
then the rewritten query is returned.

(4) Authorisation Interface (Process Request). Once the query is returned by the Authori-
sation Engine. The Authorisation Interface proceeds as follows:

• Access granted. If access is granted, then depending on the original request the Authori-
sation Interface, proceeds as follows:
– SPARQL queries and updates. The query is executed against the SPARQL end-

point and the results are returned to the requester;
– RDF documents and RDFa documents. The RDF or HTML document is returned

to the requester; or
– RDB2RDF. The data returned from the RDB2RDF interface is returned to the re-

quester.

• Access denied. If access is denied, then depending on the original request the Authorisa-
tion Interface, proceeds as follows:
– SPARQL queries and updates. The interface returns the same results as you would

get if the data was not present in the RDF dataset;
– RDF documents. The interface returns an empty document;
– RDFa document. The RDFa is removed from the HTML document and the resulting

HTML document is returned to the requester;
– RDB2RDF. The interface returns the same results as you would get if the data was

not present in the relational database.

• Access partially granted. If the query was rewritten, then depending on the original
request the Authorisation Interface, proceeds as follows:
– SPARQL queries and updates. The rewritten query is executed against the

SPARQL endpoint and the results are returned to the requester;
– RDF documents. The rewritten query is executed against the temporary RDF

dataset, and a new document is generated from the results and returned to the re-
quester;

– RDFa documents. The rewritten query is executed against the temporary RDF
dataset, and any RDF data that is not present in the result set is removed from the
HTML. Finally the updated HTML document is returned to the requester;

– RDB2RDF. The rewritten query is executed against the temporary RDF dataset,
and a new document is generated from the results and returned to the requester.

In order to evaluate LinDAA, we plan to examine both the performance and the correctness of
the access control policies, that are specified on top of Linked Data (exposed as RDF documents,
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embedded in HTML documents, exposed via SPARQL endpoints and accessible using RDB2RDF
technology). Additionally, in order to evaluate the expressiveness of our framework we plan to
choose a representative set of case studies, based on use cases that are commonly adopted by
Semantic Web researchers, and examine the type of authorisation and rules that are required in
each scenario.

6.6 Related Work
Broadly speaking access control frameworks for RDF data enforce access control either at the
data layer (Dietzold and Auer, 2006; Muhleisen et al., 2010), the query layer (Abel et al., 2007;
Franzoni et al., 2007; Chen and Stuckenschmidt, 2010; Oulmakhzoune et al., 2010; Costabello
et al., 2012a) or a combination of both Li and Cheung (2008). When access control is enforced
at the data layer, a filtering mechanism is used to generate a view of the data based on a given
access control policy (which only contains authorised data). Whereas, when access control is
enforced at the query layer, query rewriting techniques are used to limit access to data, based
on a given access control policy.
Both Dietzold and Auer (2006) and Muhleisen et al. (2010), adopt a filtering approach to

access control. Dietzold and Auer (2006) propose access control policy specification at multiple
levels of granularity (triples, classes and properties). Authorisations are used to assign users
access to RDF data using filters (SPARQL CONSTRUCT queries). When a requester submits a
query, a virtual model is created based on the matched authorisations. The query is subsequently
executed against the virtual model, which only contains data the requester is authorised to access.
Muhleisen et al. (2010) allow access control policies to be specified for triple patterns, resources
or instances. When a requester submits a query, the system uses their WebID to determine the
data instances the user is permitted to access and generates a temporary named graph containing
authorised data. The requesters query is subsequently executed against the temporary named
graph and the results are returned to the user.
Abel et al. (2007) and Franzoni et al. (2007) demonstrate how contextual conditions associ-

ated with the requester, the resource or the environment can be injected into the query. Abel
et al. (2007) specify authorisations in terms of sets of contextual predicates, path expressions and
boolean expressions. The authors propose a query rewriting strategy which constructs bindings
for authorisation path expressions and contextual predicates. For positive authorisations, the
bindings are appended to the query WHERE clause. For negative authorisations, the bindings are
added to a MINUS clause, which in turn is appended to the query. Whereas, Franzoni et al. (2007)
propose a query rewriting strategy which is used to grant/deny access to ontology instances,
based on contextual information pertaining to the user or the environment. Authorisations are
used to associate properties in the form of path expressions, attributes and filter conditions with
resources. Like Abel et al. (2007) bindings are generated for the path expressions and both
the path expressions and the bindings are added to the query. Costabello et al. (2012a) also
use contextual data to restrict access to RDF. However, the proposed query rewriting strategy
restricts access to named graphs as opposed to specific classes, properties and instances.
Like us, Chen and Stuckenschmidt (2010) and Oulmakhzoune et al. (2010) use filters to

bind/unbind query solutions based on access control policies that are associated with classes,
properties and individuals. Chen and Stuckenschmidt (2010) present a query rewriting strategy
which can be used to restrict access to data represented using ontologies. Access control policies
are used to deny access to specific individuals, or to grant/deny access to instances associated
with a given class or property. The authors propose a query rewriting strategy, which uses
FILTER expressions to bind or unbind variables specified in the query to instances, properties
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and classes specified in the authorisations. When access is prohibited to properties or classes,
the matching triple patterns are made OPTIONAL, which ensures that all authorised information
is returned. Oulmakhzoune et al. (2010) also cater for both positive and negative authorisations.
In the presented modelling, authorisations are composed of sets of filters that are associated with
simple conditions or involved conditions. The authors use the term simple condition to refer to
an authorisation, which either permits/denies access to one or more triple patterns, and the term
involved condition to refer to authorisations that permit/deny access for a given predicate. In
the case of simple conditions, when access is permitted to a single triple pattern, no action is
required. Whereas, when access is denied to a single triple pattern, the triple pattern is deleted.
Like Chen and Stuckenschmidt (2010) when access is permitted/denied to a basic graph pattern,
the pattern is converted to an OPTIONAL pattern, and the authorisation FILTER expression is
added to the query. In the case of involved conditions, when access is permitted the FILTER
expression, which is associated with the predicate is added to the query. If the triple pattern is
not already part of the query, it is also added. When access is prohibited, the FILTER expression
associated with the predicate is added, and if the object associated with the given predicate
is a variable, a !BOUND expression is added for the object variable. Although both Chen and
Stuckenschmidt (2010) and Oulmakhzoune et al. (2010) propose query rewriting strategies for
SPARQL queries, the authors focus specifically on SELECT queries and no special consideration is
given to complex SPARQL queries that include subqueries or negation. In addition, no specific
consideration is given to named graphs.
Li and Cheung (2008) propose a query rewriting strategy for views generated from ontological

relations. The proposed query rewriting strategy involves expanding the view concepts to include
implicit concepts, retrieving both explicit and implicit access control policies and adding range
and instance restrictions, associated with the matched authorisation, to the view query. Like us,
the authors take into account both explicit and implicit access control policies. However, they
propose a combined query rewriting and filtering access control strategy, as opposed to a query
rewriting strategy for the SPARQL 1.1 query and update languages in our case.
When it comes to the formal evaluation there is very little agreement on a formal notion of

correctness for access control for RDF. Oulmakhzoune et al. (2010) use the three correctness
properties (secure, sound and maximum) proposed by Wang et al. (2007), to evaluate their
query rewriting strategy for RDF data. However, given their query rewriting algorithm does
not support negation, an investigation on how the correctness criteria can be used to validate
SPARQL queries that include FILTERS is left for future work.
Although, a number of authors have proposed query rewriting strategies for basic SPARQL

queries, we build on this work by providing a query rewriting strategy for both complex SPARQL
queries and SPARQL update queries. In addition, we demonstrate how a set of correctness
criteria, that was originally used to verify that a given access control policy holds over different
database states, can be used to verify that our query rewriting algorithm is secure, sound and
maximum. As the correctness criteria is not specific to RDF, it can be used in general to compare
access control at the query layer to access control at the data layer.

6.7 Summary and Future Directions
Although the technology to link web data with other relevant data using machine-accessible
formats has been in existence for a number of years, one could argue that without appropriate
security and privacy mechanisms the LDW will struggle to reach its full potential as a global
data space. A number of access control enforcement frameworks have been proposed for RDF,
the data model which underpins the LDW. However, limited research has been conducted into

146



6.7. SUMMARY AND FUTURE DIRECTIONS

providing partial data access to SPARQL queries or SPARQL update queries. Additionally, to
date researchers have focused on performance evaluations, as opposed to verifying the correctness
of the proposed access control mechanisms.
In this chapter, we proposed a query rewriting strategy for both the SPARQL 1.1 query

and update languages. We adapted a set of criteria, which was originally used to verify the
correctness of relational access control algorithms, to allow for access control via query rewriting
to be compared against access control via results filtering. We subsequently used the adapted
correctness criteria to evaluate the proposed query rewriting algorithms. Through evaluation we
verified the correctness of our query rewriting strategy. However it is clear from the performance
evaluation, that in the case of subqueries and filters over large datasets the performance impact
would be prohibitive. Finally, we discussed how our Linked Data Authorisation Architecture
(LinDAA) can be applied to the LDW.
In the current framework, both authorisations and propagation rules are specified declara-

tively. Given access control maintenance over a large number of declarative policies would be
cumbersome for administrators, in future work we propose to investigate how existing policy
languages can be used to represent our access control policies and propagation rules. In addi-
tion, we plan to develop an analytical tool, which can be used not only to graphically analyse
explicit and implicit access control policies, but also to examine the potential impact of new
access control policies.
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Chapter 7

Conclusions

The Internet is growing exponentially, fuelling research into the next generation of Internet
technologies. Over the past two decades much research, has been conducted into the use of
semantic technologies and Linked Data for data integration and search over public data sources.
This exponential expansion of data, and many of the challenges that come with it are mirrored
within the enterprise. With the introduction of SPARQL 1.1, the infrastructure underpinning
the Linked Data Web (LDW) could potentially be used as a global dataspace, which can support
large scale data integration, search and analysis of both public and private data. However, given
the potential sensitivity of private data, appropriate access control mechanisms need to be put
in place.
In this section, we provide a summary of the overall access control strategy presented in this

thesis. We subsequently detail the contributions that enable us to validate our hypothesis. We
compare our access control strategy for the LDW to alternative approaches, based on the access
control requirements identified during our literature survey. Finally, we conclude by identifying
a number of avenues for future work.

7.1 Summary
Several researchers have proposed access control strategies for RDF data that could potentially
be used to enforce access control over Linked Data. In Chapter 3, we provided a summary of
the relevant access control models, standards, policy languages and enforcement frameworks.
Rather than limit ourselves to existing proposals for access control over Linked Data, we adopt
a broader view examining existing strategies for RDF irrespective of whether the authors apply
their proposals to Linked Data or not. We discussed how a number of well known and emerging
access control models (MAC, DAC, RBAC, ABAC, VBAC and CBAC) and relevant standardisa-
tion efforts (XACML, WebID, WAC and P3P), have been used in conjunction with, or enhanced
by, semantic technologies. We subsequently examined access control policy specification using
ontologies (KAoS), rules (Rei, Protune) and a combination of both (Proteus). Following on
from this, we turned our focus to access control over RDF data. Here, we examined the various
approaches used to specify access control policies (triple patterns, views, named graphs and on-
tology concepts) and reviewed the different reasoning strategies (propagation of authorisations,
RDFS inference and reasoning over restricted data). In addition, we examined how data filtering
and query rewriting can be used to return partial query results, when access to some of the data
required by the query is permitted, and access to other data is prohibited. Finally, given that
any of the policy languages or enforcement frameworks proposed to date, could potentially be
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used/adapted to enforce access control over Linked Data, we provided a summary of RDF access
control requirements found in the literature, and categorised existing access control frameworks
accordingly.
Our early work, which was presented in Chapter 4, focused on lifting both data and access

control policies from existing LOB applications using an RDB2RDF tool, known as XSPARQL.
Both the triples and the associated access permissions are represented using an extension of RDF,
known as Annotated RDF, which allows domain specific meta-information (access rights in our
case) to be attached to RDF triples. Domain operations are used to merge the permissions
that relate to the same triple, and to infer new permissions for triples derived using RDFS
inference rules. Although access control specification at the triple level works well when both
the data and the access control policies are lifted from existing data sources, over large datasets
it would be difficult to maintain access control at this level of granularity. Therefore, in addition
to the RDFS inference rules, we proposed a number of rules that can be used to propagate
permissions based on hierarchies of access control entities (subjects, access rights and resources).
We subsequently demonstrated how both the proposed modelling and the inference rules can
be used to support commonly used access control models, such as RBAC, ABAC and VBAC.
We provided an overview of the components necessary for data integration and access control
enforcement, and presented the results of our performance evaluation over increasing datasets.
The results of the evaluation demonstrated that, when access control is present, there is an
overhead associated with queries containing a single triple pattern. However, queries with two
or more triple patterns took less time than the same query without access control. This can be
attributed to the fact that queries with access control return less data, than those without.
Having shown that it is feasible to extract and enforce existing policies over relational data that

is translated into RDF, and to represent existing access control models using rules, in Chapter 5
our focus turned to the enforcement and the administration of access control over distributed
RDF data. Given DAC allows users to delegate their permissions to others, it is particularly
suitable for managing access control over distributed data. In order to devise a suitable strategy
for DAC over RDF data we examined how DAC is used in conjunction with the relational and
the XML data models. Based on this analysis we identified the need for access rights at both
the data and the schema levels, and a tight coupling between query operations and access rights.
In order to cater for these additional requirements, we extended the original triple level access
control by proposing a policy layer on top of the RDF query layer. We demonstrated how
quad patterns (where the fourth element is used to match the named graph) can be used to
specify access rights at multiple levels of granularity (including the triple level permissions from
our earlier work). We also extended our inference rules, in order to cater for various RDFS
relations (permission propagation based on class, property and instance relations). Following on
from this, we demonstrated how the Flexible Authorisation Framework, originally proposed by
Jajodia et al. (2001) for hierarchical data, can be adapted in order to cater for the enforcement
and the administration of dynamic authorisations and inference rules over RDF graph data. The
results of our initial performance evaluation showed a negligible increase in query processing
time in light of both increasing datasets and increasing authorisations, and a linear increase
in inference times over increasing authorisations. We concluded this chapter by identifying the
need for further analysis in order to cater for complex SPARQL queries (graph patterns, filters,
aggregates and subqueries) and SPARQL update operations.
To meet this need, in Chapter 6 we proposed a query rewriting strategy which translates graph

based operations to triple operations, and filters out inaccessible data. In addition we proposed a
strategy, which can be used to verify access control for the SPARQL query and update languages.
To this end, we adapted a set of correctness criteria from relational databases, to allow for a

149



7.2. CONTRIBUTIONS

comparison between our query rewriting strategy and access control via data filtering. We
subsequently used the adapted correctness criteria to evaluate our query rewriting algorithms.
We presented a benchmark, based on the BSBM dataset, that can be used to compare different
access control strategies for Linked Data. Finally, we proposed the Linked Data Authorisation
Architecture (LinDAA) and discussed how it can be used to cater for access control over Linked
Data, irrespective of whether the data is queried via SPARQL endpoints, exposed in RDF
documents, embedded in HTML documents or accessed via RDB2RDF interfaces.

7.2 Contributions
In this section, we present a summary of the contributions, that enable us to validate the hy-
pothesis presented in this thesis.

The main hypothesis is as follows:

Access control for the Linked Data Web can be achieved by (i) a represen-
tation format which can be used to express access control policies that are
lifted from relational databases or associated directly with RDF data; (ii) a
set of rules that simplify access control specification and maintenance; and
(iii) an enforcement strategy which allows for the retrieval of partial query
results.

Based on this hypothesis, we devised a number of research questions:

(i) When relational data is exposed as RDF, how can we ensure the original
access control policies are applied to the RDF data?
Access control policies from existing LOB applications are often stored in relational
databases. In Chapter 4, we discussed how RDB2RDF tools, such as XSPARQL, can be
used to extract both data and access control policies from existing LOB applications. Both
the triples and the associated access permissions are represented using Annotated RDF,
which allows domain specific meta-information (access rights in our case) to be attached
to RDF triples. Access is enforced by translating SPARQL queries into AnQL queries by
using credentials supplied by the requester. This query rewriting step ensures that only
triples with a matching non negative annotation are returned.

(ii) Beyond triple level access control, what rules are necessary to (a) support
existing access control models and (b) simplify access control specification and
maintenance?
In Chapter 4, we demonstrated how ρdf, a subset of RDFS, can be used not only to infer
new triples, but also to infer the relevant access rights. We presented two annotation
domain operations ⊕ and ⊗. The former is used to combine annotations when the same
triple appears in multiple quads. Whereas, the latter is used to derive new annotations for
triples derived using ρdf entailment rules. For the ⊕ access control domain operator we
use disjunction, which maintains the access restrictions of both triples. Whereas for the ⊗
access control domain operator we use conjunction, which further restricts access to the
triple.

We also proposed the following rules that can be used to provide support for a number of
existing access control models, namely MAC, DAC, RBAC, VBAC and ABAC.
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Resource based access is used to propagate access rights to all triples with the same
subject. Such a rule is necessary to support VBAC, where access is granted to a number
of entities simultaneously.

Hierarchical subject inheritance is used to propagate access rights based on the sub-
ject hierarchy. Access rights that are assigned to groups are inherited by all subgroups
or individuals belonging to the specified group. This rule is necessary to support
RBAC, where access rights are often propagated downwards based on nested groups.

Hierarchical subject subsumption is also used to propagate access rights based on the
subject hierarchy. For example access rights assigned to employees are subsumed by
their managers. However, in this instance lower level subjects inherit the access rights
of higher level subjects. Although the vocabulary is different, this rule is essentially
the same as the hierarchical subject inheritance rule.

Hierarchical resource inheritance is used to propagate access rights based on the
resource hierarchy, with lower level resources inheriting the access rights of higher level
resources. As this rule relates to the structure of resources, it is necessary for each of
the aforementioned access control models.

Resource categorisation is used to propagate access rights to all resources that are of
a given type. As before, this rule is required to support MAC, DAC, RBAC, VBAC
and ABAC.

Hierarchical access rights subsumption is used to propagate access rights based on
a partial order defined between access rights. Using this rule, lower level access rights
will inherit the permissions/prohibitions assigned to higher level access rights. As this
rule relates to the structure of access rights, like the previous two rules, it is relevant
for each of the aforementioned access control models.

In Chapter 5, we proposed five additional rules that are necessary for schema based access
control, similar to the type of rules proposed for DAC over relational data.
Classes to instances is used to propagate access rights assigned to a class, to all instances

of that class.
Properties to instances is used to propagate access rights assigned to a property, to all

instances of that property.
Instances to properties is used to propagate access rights assigned to an instance of a

class, to all properties associated with that instance.
Classes to subclasses is used to propagate access rights assigned to a class, to all

subclasses.
Properties to subproperties is used to propagate access rights assigned to a property,

to all subproperties.

In addition to the propagation policies, we identified the need for a flexible framework that
can support reasoning, not only over propagation rules, but also conflict resolution policies
and integrity constraints.
Conflict resolution rules are used to support multiple conflict resolution strategies. For

example, conflict resolution policies based on the structure of the different components
required for access control over graph data; the sensitivity of the data requested; or
contextual conditions pertaining to the requester.

Integrity constraints are used to specify restrictions on authorisation specification, thus
decreasing the potential for runtime errors. For example, INSERT and DELETE can only
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be applied to an RDF quad, while DROP, CREATE, COPY, MOVE and ADD should only be
associated with a named graph.

(iii) What adjustments need to be made to SPARQL queries, to ensure that only
authorised data is returned?
In Chapter 6, we proposed a query rewriting strategy for the SPARQL 1.1 query and update
languages.
For SPARQL queries we generate a FILTER NOT EXISTS expression, by binding the vari-

ables in the graph pattern group to the constants in the authorisation. Depending on
the query, the following query rewriting strategies are applied:
• Basic graph patterns and aggregates. When an unauthorised quad pattern
matches a quad pattern contained in a basic graph pattern the FILTER NOT EXISTS
is added to the relevant graph pattern group.

• Subqueries and negation. If the matched graph pattern is part of a subquery
or a filter the FILTER NOT EXISTS expression is added to the relevant graph pat-
tern group in the inner SELECT, FILTER NOT EXISTS, FILTER EXISTS or MINUS
expression.

For SPARQL updates in order to cater for the different query types, a number of rewriting
strategies are proposed:
• DELETE/INSERT. The query rewriting strategy is the same as the SPARQL query
rewriting strategy presented above.

• DELETE DATA and INSERT DATA. If any of the quads in the query match the unau-
thorised quad patterns, these quads are removed from the query.

• CLEAR and DROP. Negative authorisations pertaining to the specified graph are
added as filters to a DELETE query, which is used to ensure only authorised data is
removed from the graph.

• ADD and LOAD. Negative authorisations relating to the source and the destination
graphs are added as filters to an INSERT query, which is used to add/load only
authorised data to the destination graph.

• COPY. A DELETE query is used to remove all data from the destination graph.
Negative authorisations that match the source graph are added as filters to an
INSERT query, which is used to ensure that only authorised data is copied to the
destination graph.

• MOVE. A DELETE query is used to remove all data from the destination graph.
Negative authorisations associated with the source graph are added as filters to an
INSERT query, which is used to ensure that only authorised data is moved to the
destination graph. Finally, a DELETE query is used to delete data from the source
graph.

In addition, we define a set of criteria that can be used to verify the correctness of access
control via query rewriting. Using this criteria, it is possible to compare the results obtained
when access control is enforced via query rewriting to those obtained when access control
is enforced via filtering.

(iv) What components are required to support the specification, enforcement and
administration of access control for the LDW?
In Chapter 5, we proposed G-FAF, a graph-based flexible authorisation framework, which
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can be used to reason over authorisations, propagation rules, conflict resolution policies
and integrity constraints.
Authorisations are rules that indicate the access rights that authorisation

subjects are allowed/prohibited to perform on data items. In our case, data
items are represented as quad patterns, a flexible mechanism which can be used to
grant/restrict access to an RDF quad, a collection of RDF quads (multiple quads that
share a common subject), a named graph (arbitrary views of the data) or specific
classes or properties.

Propagation policies are used to simplify authorisation administration, by allowing for
the derivation of implicit authorisations from explicit ones. For example, we can derive
new authorisations based on the logical organisation of authorisation subjects,
access rights and data items or the RDF Schema vocabulary.

Conflict Resolution Policies are rules that are used to determine precedence if one
policy permit access and another policy prohibit access. Rather than propose a partic-
ular conflict resolution strategy, we provide a formal definition for a conflict resolution
rule, that can be used to determine access given several different conflict resolution
strategies. For example, conflict resolution policies based on the structure of the dif-
ferent components required for access control over graph data; the sensitivity of the
data requested; or contextual conditions pertaining to the requester.

Integrity Constraints are used to restrict the specification of authorisations based on the
existing relationships between SPARQL operations and RDF data items. For example,
INSERT and DELETE can only be applied to an RDF quad, whereas DROP, CREATE, COPY,
MOVE and ADD should only be associated with a named graph. As per conflict resolution,
rather than propose specific integrity constraints, we provide a formal definition for an
integrity constraint that can be used to determine if the requested action should be
permitted.

In Chapter 6, we proposed LinDAA, our Linked Data authorisation architecture, which can
be used to provide access control for Linked Data irrespective of how the data is represented
or consumed.
• RDF Data can reside in an RDF Store, be represented as an RDF document, be
embedded in a HTML document or generated using an RDB2RDF tool.
• Access control policies which are composed of authorisations and rules, are repre-
sented in a data store. Although we use a rule based approach, both an ontology based
approach or a combined approach could also be adopted.
• The Authorisation Framework, G-FAF in our case, is used to reason over autho-
risation, propogation policies, conflict resolution rules and integrity constraints. This
component also determines if access should be granted or denied to a particular graph
pattern.
• The Authorisation Engine is responsible for determining the query rewriting strat-
egy based on the query type, and for rewriting the query accordingly.
• TheAuthorisation interface is responsible for intercepting both queries and requests
for documents. In the case of RDF documents, data embedded in HTML documents or
relational data translated into RDF using RDB2RDF tools, this component also gener-
ates the appropriate SPARQL query. Either the submitted or the generated SPARQL
query, together with the requesters credentials, are mapped to an Authorisation Request
and submitted to the Authorisation Engine. The Authorisation Engine rewrites the
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query to filter out unauthorised data, and returns the updated query to the Authorisa-
tion Interface. Finally the Authorisation Interface uses SPARQL to generate a filtered
view of the data, and returns the results in the expected format to the requester.

7.3 Critical Assessment
In this section, we discuss how our proposal for access control for Linked Data, can be used in
conjunction with existing data publishing and consumption strategies. In addition, we use the
access control requirements identified in Section 3.4, to compare the work presented in this thesis
against alternative approaches.

7.3.1 High Level Requirements
Firstly, we examine the extent to which our access control architecture can be used cater for
access control over Linked Data.

Publishing Linked Data. In Chapter 6 we introduced LinDAA, our authorisation architec-
ture for Linked Data. LinDAA is dependent on SPARQL, which is used to ensure that only
authorised data is returned using our query rewriting strategy, irrespective of whether the
data is exposed via an RDF Document, an RDB2RDF interface or a SPARQL endpoint.
Through evaluation we demonstrated that in the case of basic graph patterns and aggre-
gates access control via query rewriting takes marginal more time than the same queries
executed without access control. Queries that are translated from graph based operations
to triple based operations can take approximately twice as long as the graph based opera-
tions. INSERT DATA and DELETE DATA operations take one third of the time of the respective
queries without access control. While queries that include subqueries or filters can take on
average twenty times longer using our query rewriting strategy. Given there is no access
control benchmark for RDF, it remains to be seen how our proposal compares to others.

Consuming Linked Data. When it comes to consuming Linked Data, there are three typical
patterns (the Crawling Pattern, the On-The-Fly-Dereferencing Pattern and the Query Fed-
eration Pattern). Regardless of the mechanism used to consume Linked Data, the requester
needs to be able to both dereference and query the RDF data. Although in this thesis we
demonstrate how we can cater for both, we do not focus on the specific access control
requirements arising from the different applications that consume Linked Data (browsers,
search engines and domain specific applications). It would be interesting to investigate
what are the different access control requirements, and to what degree G-FAF and LinDAA
satisfy these different requirements.

7.3.2 Detailed Requirements
Next, we examine our proposal for access control for Lined Data with respect to the specification,
enforcement, administration and implementation requirements we identified in Section 3.4.

7.3.2.1 Specification

When it comes to access control policy specification, we demonstrate how together declarative
access control policies and rules can be used to provide support for a number of existing ac-
cess control models. A summary of our support for the specification requirements, identified
in Section 3.4.1, is depicted in Table 7.1.
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Granularity. Existing proposals specify access control policies based on ontology concepts,
classes, properties and individuals; graph patterns with/without filters; named graphs or
views and triple patterns (see Table 7.1). In our early work, we specified permissions and
prohibitions at the triple level and propagated access rights, for sets of subjects, access
rights and resources, using rules. However, using such a modelling it was not possible
to cater for graph wide permissions in general, or CREATE permissions in particular. Our
follow-up work demonstrated how RDF quad patterns can be used to specify access control
at multiple levels of granularity (a triple, a quad, a collection of RDF quads, a named
graph, or specific classes or properties). Rather than simply granting or denying access, we
demonstrated how query rewriting can be used to allow for SPARQL queries to be executed
over data which is partially restricted.

Underlying Formalism. Generally speaking, the underlying formalism for existing proposals
for access control over RDF data fall into one of two categories. With OWL based ap-
proaches adopting a description logic formalism (Amini and Jalili, 2010; Bao et al., 2007;
Chen and Stuckenschmidt, 2010; Javanmardi et al., 2006a; Kolovski et al., 2007; Toninelli
et al., 2009) and rule based approaches adopting a logic programming formalism (Bonatti
and Olmedilla, 2007; Kagal and Finin, 2003; Toninelli et al., 2009). Given our reliance on
rules we fall into the second category, with both our early work on aRDF and our later
work on G-FAF both adopting a non recursive DATALOG formalism. As such the proposed
access control policies have unambiguous semantics and can be evaluated in PTIME.

Reasoning. To date, a number of different reasoning strategies for access control over RDF
have been proposed, with policy languages tending to focus on abductive and deductive
reasoning, over both ontology concepts and individuals. Several researchers propose rea-
soning strategies that use RDFS entailment rules to either propagate permissions to existing
triples, or to infer both new data and permission based on an extension of the existing RDF
model. Others focus on subsumption reasoning based on hierarchies of subjects, predicates
and objects. For a summary of existing reasoning strategies see Table 7.1. In this thesis, we
present a number of specific rules that are necessary to provide support for common access
control models. In addition, we propose a Graph-based Flexible Authorisation Framework
(G-FAF), which can be used to support reasoning over propagation policies, integrity con-
straints and conflict resolution rules. One of the limitations of the existing framework is
the lack of support for abductive reasoning. Therefore, it is currently not possible to deter-
mine the potential impact of new access control policies, or to determine the access rights
required in order to satisfy a given policy. Although many general policy languages provide
support for abductive reasoning (Amini and Jalili, 2010; Bonatti and Olmedilla, 2007; Chen
and Stuckenschmidt, 2010; Kagal and Finin, 2003; Kolovski et al., 2007; Muhleisen et al.,
2010; Toninelli et al., 2009; Uszok et al., 2003b), there is still an need for an investigation
into the type of abductive rules that would be beneficial for the LDW, and a general syntax
for specifying these rules.

Condition Expressiveness. A number of researchers who propose general policy lan-
guages (Amini and Jalili, 2010; Kagal and Finin, 2003; Toninelli et al., 2009; Uszok et al.,
2003b) argue that in addition to permissions and prohibitions, it should be possible to
specify both obligations and dispensations. This requirement stems from the desire to
support a wider range of policies. Given we focus specifically on access control, both
obligations and dispensations are deemed outside the scope of this work.

Attributes, Context & Evidences. Many solutions proposed to date, including ours, demon-
strate how access can be granted/denied based on user attributes that are communicated
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using WebID (Muhleisen et al., 2010; Costabello et al., 2012b; Sacco and Passant, 2011b).
A number of researchers also use contextual information pertaining to the requester, the
system or the environment, in order to determine if access should be permitted or pro-
hibited. Much of the work in this area has been on the provision of vocabularies that
can be used to specify context aware access control policies (Corradi et al., 2004a; Costa-
bello et al., 2012b; Montanari et al., 2005; Shen and Cheng, 2011) or demonstrating how
contextual information can be represented in an access control policy (Abel et al., 2007;
Amini and Jalili, 2010; Bonatti and Olmedilla, 2007; Franzoni et al., 2007; Gabillon and
Letouzey, 2010; Kagal and Finin, 2003; Papakonstantinou et al., 2012; Sacco and Passant,
2011b; Toninelli et al., 2009; Uszok et al., 2003b). Given our access control framework uses
credential matching to determine access, it would need to be extended in order to cater for
reasoning over contextual information pertaining to the system and the environment.

Heterogeneity & Interoperability. Given the open nature of the web, access control for
the LDW needs to be able to support a variety of access control policies, resources and
users. The access control strategies, we examined in Chapter 3 provide support of RDF
or OWL, with some also providing support for RDFS and SPARQL. Being aware of the
interoperability benefits that can be obtained though adoption of standards, we have pro-
posed an access control architecture which is tightly coupled with existing RDF, RDFS and
SPARQL standards. Rather than propose a new access control model or policy language,
we discuss how existing access control models can be enforced over RDF and propose a
flexible authorisation framework which can be mapped to existing policy languages.
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7.3.2.2 Enforcement

Access control enforcement requirements refer to the various components that are used in order
to determine if access should be granted or denied. Here our contribution is two fold: (i) The
G-FAF enforcement algorithm demonstrates how together authorisations, propagation rules and
conflict resolution policies can be used to enforce access control over RDF data; (ii) We propose
a query rewriting strategy for the SPARQL 1.1 query and update languages. A summary of our
support for the enforcement requirements, identified in Section 3.4.2, is depicted in Table 7.2.

Negotiation. The process whereby both the requester and the data provider exchange cre-
dentials, until a decision on whether to grant or deny access can be reached, is commonly
known as negotiation. Negotiation commonly goes hand in hand with trust, both of which
are often linked with privacy research. Although we do not specifically focus on privacy
or trust in this thesis, the proposed framework, authorisation architecture and algorithms
could potentially be used to enforce privacy policies. Given that individuals and organi-
sations are more cautious of the type of information they provide to service providers, a
negotiation component may be required in the future. However, like authentication, such
a component could be implemented as an add-on to our current authorisation framework.

Explanations. Rather than simply granting or denying access to resources, a few researchers
believe that the system should also provide details of how this decision was reached. Existing
research on policy languages and explanations focus on how to associate explanations with
access control policies or policy decisions (Bonatti and Olmedilla, 2007; Ryutov et al., 2009;
Toninelli et al., 2009). In the case of our query rewriting strategy, we take the opposite
approach, rather than informing the requester that they do not have the necessary access
rights, we behave as if the data does not exist. Given the system may indirectly reveal
unauthorised data, an interesting direction for further research would be to examine the
trade-off between usability and security.

Conflict Resolution. A conflict arises when one policy grants access and another policy
denies access. When it comes to conflict resolution there is no one size that fits all. Many
researchers adopt a default approach to conflict resolution, choosing to either grant or deny
access. Others either propose conflict resolution algorithms, or meta policies based on one or
more conflict resolution strategies (see Table 7.2). For example, the structure of the graph,
the sensitivity of the data, the nature of the request or contextual information pertaining
to the requester. As conflict resolution requirements vary depending on the use case, rather
than propose a specific conflict resolution strategy, we identify the need for a combined
approach to conflict resolution. To meet this need, we provide a conflict resolution rule
syntax and discuss how our enforcement framework can be used to determine access given
several different conflict resolution strategies.

7.3.2.3 Administration

When it comes to access control administration, we demonstrate how discretionary access control
can be used to guide the administration over RDF in general. In addition, the G-FAF administra-
tion algorithm ensures that any new information is accessible, and any redundant authorisations
are removed. A summary of our support for the requirements, identified in Section 3.4.3, is
depicted in Table 7.3.

Delegation. Like relational databases several researchers have proposed access control models
whereby users are granted full access to the data they create, and they can subsequently
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Table 7.2: Enforcement requirements
Negotiation
support

Explanation Conflict
Resolution

LinDAA - - flexible
framework

Abel et al. - - default
Amini and Jalili &Ehsan et al. bidirectional

policies
- algorithm

Bao et al. - - algorithm
Bonatti and Olmedilla bidirectional

policies
queries -

Chen and Stuckenschmidt - - -
Costabello et al. - - default

Dietzold and Auer - - -
Flouris et al. - - default

Franzoni et al. - - -
Gabillon and Letouzey - - default

Jain and Farkas RDFS - algorithm
Javanmardi et al. - - algorithm
Kagal and Finin - - meta

policies
Kim et al. - - algorithm

Kolovski et al. - - priorities
Li and Cheung - - harmonisation
Muhleisen et al. - - -

Oulmakhzoune et al. - - -
Papakonstantinou et al. - - default

Qin and Atluri - - default
Reddivari et al. - - meta

policies
Ryutov et al. - user

interface
algorithm

Sacco and Breslin - - -
Toninelli et al. bidirectional

policies
descriptions harmonisation

Uszok et al. - - harmonisation

delegate some or all of their access rights to others. We go beyond existing proposals by
demonstrating how the discretionary access control model, which allows users to delegate
their permissions to others, can be used to enforce access control over graph data represented
as RDF.

Consistency & Safety. Here consistency and safety refers to the access control policies
as opposed to the data. For example, all data is accessible by someone or no user can
elevate their own privileges. To date researchers ensure consistency and safety either using
algorithms (Amini and Jalili, 2010; Bao et al., 2007; Jain and Farkas, 2006) or meta policies
(Chen and Stuckenschmidt, 2010; Ryutov et al., 2009). Similar to the conflict resolution
strategy, rather than propose specific consistency and safety policies we provide a syntax
for integrity constraints, that can be used specify conditions that should generate an error.

Usability. From a usability perspective access control specification and maintenance should
be made as simple as possible. A number of researchers have proposed user interfaces that
can be used to specify and maintain access control policies. The access control mechanisms
we propose in this thesis are by design policy language agnostic. As such, we adopt a
declarative approach to access control policy specification, which can be mapped to existing
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Table 7.3: Administration requirements
Delegation Consistency

& Safety
Usability Understandability

LinDAA DAC flexible
framework

- -

Abel et al. - - - -
Amini and JaliliEhsan et al. case study algorithm - -

Bao et al. - algorithm - -
Bonatti and Olmedilla language - - ProtuneX

explanation
Chen and Stuckenschmidt - meta

policies
- -

Costabello et al. - - - -
Dietzold and Auer - - - -

Flouris et al. - - - -
Franzoni et al. - - - -

Gabillon and Letouzey construct &
describe

- - -

Jain and Farkas - algorithm RACL admin
module

-

Javanmardi et al. - - - -
Kagal and Finin speech acts - - -

Kim et al. - - - -
Kolovski et al. - - - analysis

services
Li and Cheung - - - -
Muhleisen et al. - - - -

Oulmakhzoune et al. - - - -
Papakonstantinou et al. - - - -

Qin and Atluri - - - -
Reddivari et al. - - - -

Ryutov et al. - meta
policies

RAW policy
editor

RAW
permission
check

Sacco and Breslin - - privacy
preference
manager

-

Toninelli et al. - - - -
Uszok et al. - - KAoS Policy

Admin Tool
policy
disclosure

access control ontologies. However, in order to improve usability it would be beneficial to
develop a user friendly interface, using a combination of input controls, containers and
informational components to simplify access control specification.

Understandability. It should be possible for the system administrator to understand the
interplay between existing policies and the effect new policies will have on the system.
Although it is feasible to develop a user interface which would simplify the specification
and maintenance of both authorisations and rules, access control administration over large
datasets remains an open issue. When it comes to understandability an interesting avenue
for future work would be to enable data visualisation and analytics over authorisations and
propagation rules.
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Table 7.4: Implementation requirements
Effectiveness Distributed

Use case
Flexibility &
Extensibility

LinDAA performance &
correctness
evaluations

Linked Data
use case &
architecture

Java &
Jena

Abel et al. query rewriting
performance

- SeRQL, Protune

Amini and Jalili &Ehsan et al. enforcement
performance

case study Prolog, GWT,
Jena, JIP, Protege

Bao et al. - - -
Bonatti and Olmedilla explanation

performance
demo Java, TuProlog

Chen and Stuckenschmidt Jena
Costabello et al. enforcement

performance
BSBM & BTC
datasets

mobile &
Linked Data
use cases

Java,
Corese-KGRAM

Dietzold and Auer - - RDF, SPARQL
Flouris et al. annotation

performance
- Java, Jena,

Sesame,
Progress

Franzoni et al. - - Java, SeRQL,
Sesame

Gabillon and Letouzey enforcement
performance

- Java, Tomcat,
Sesame

Jain and Farkas - - Java, Jena,
Jess

Javanmardi et al. policy reasoning - PELLET, SWRL
Kagal and Finin - use cases Java, Prolog

Kim et al. - - -
Kolovski et al. policy reasoning

Continue dataset
- Pellet

Li and Cheung - - -
Muhleisen et al. enforcement

performance
BSBM dataset

demo Joseki, Jena,
Pellet

Oulmakhzoune et al. -
discussion

- -

Papakonstantinou et al. enforcement
reasoning
performance

- PostgreSQL,
MonetDB

Qin and Atluri - - -
Reddivari et al. query

performance
- Java, Jena,

RDQL
Ryutov et al. - - Java

Sacco and Breslin enforcement
performance

mobile &
Linked Data
use cases

Java

Toninelli et al. - - -
Uszok et al. - use cases Java

7.3.2.4 Implementation

From a non-functional requirements perspective we provide a set of correctness criteria, which
can be used to verify the correctness of access control via query rewriting. In addition, we
propose an authorisation architecture for Linked Data, called LinDAA, which can be used to
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both enforce and maintain access control over Linked Data. A summary of our support of the
implementation requirements, identified in Section 3.4.4, is depicted in Table 7.4.

Effectiveness. In order to work in practice the proposed solution needs to be as efficient as
possible. Like many of the existing proposals in this thesis we examine the performance
our access control framework. However, in our case we also proposed a benchmark, based
on the BSBM dataset, that can be used to compare different strategies for access control
for Linked Data. In addition, we also highlight the need to verify the correctness of the
proposed access control mechanisms. To this end, we propose a set of correctness criteria
that can be used to compare access control via query rewriting to access control via data
filtering.

Distributed. As RDF is a distributed data model, the proposed access control frameworks
needs to be capable of enforcing access control over distributed data. Given our objective
is to provide an access control mechanism for the LDW we propose an authorisation archi-
tecture and discuss how it can be used to enforce access control over distributed SPARQL
endpoints, RDF documents, HTML document and RDB2RDF interfaces.

Flexibility & Extensible Architecture. RDF is a flexible and extensible data model. For
this reason, any access control strategy needs to be able to cater for frequent changes to
policies, users, access rights and resources. Our graph based flexible authorisation frame-
work, which we call G-FAF, is not dependent on any particular vocabulary, and can be
used to support a variety of authorisations, propagation rules, conflict resolution policies
and integrity constraints.

7.4 Future Work
Although in this thesis, we demonstrate how together our authorisation framework and our
authorisation architecture can be used to enforce access control over Linked Data, based on our
critical analysis we have identified a number of possible avenues for future work.

Usability & Understandability.
Access control administration in general, and over large datasets in particular, can become
extremely difficult to manage. Given that we allow for access control to be specified at
multiple levels of granularity, and we also allow for reasoning over authorisations, the task
of administration is even more cumbersome. An interesting avenue for future work, would
be to investigate if graph based data clustering and visualisation techniques, such as those
proposed by (Mutton and Golbeck, 2003), can be used to assist systems administrators to
examine the interplay between authorisations and rules, and also determine the impact of
new authorisations.

Explanations & Negotiation.
Earlier we saw that the benefits associated with explanations are two fold: (i) they allow the
requester to understand what is required of them and (ii) they enable the policy owner to
troubleshoot potential issues with existing policies. However, we believe that when it comes
to explanations in particular and negotiation in general, there is a fine line between usability
and security. As such, different levels of detail may need to be relayed to the requester
depending on the context. In order to devise guidelines for access control explanations,
we believe it would be beneficial to examine the different reasons for access denial and the
potential security impact associated with both single and multiple explanations.

164



7.4. FUTURE WORK

Privacy.
Given the strong link between access control and privacy, LinDAA could also be used to
enforce privacy policies. A number of authors have proposed privacy vocabularies that
can be used to specify privacy policies (Sacco and Breslin, 2012; Costabello et al., 2012b).
Others investigate how social structures can be used to establish trust (Carroll et al., 2005;
Golbeck and Hendler, 2006; Sacco and Breslin, 2014). Like our approach for access control
over Linked Data, it would be interesting to demonstrate how reasoning over privacy poli-
cies can be used to simplify privacy policy specification and maintenance. From a subject
perspective, it may be possible to leverage existing trust mechanisms that rely on social
structures. From an access rights perspective, further analysis is required in order to de-
termine the suitability of the proposed SPARQL operations. Whereas, from a resource
perspective, it may be possible to identify specific categorisation mechanisms that can be
used to simplify the administration of privacy policies.

Context Awareness.
As our authorisation framework uses credential matching to determine access, in its cur-
rent state it can be used to enforce access control policies that are based on contextual
information pertaining to the requester. A number of researchers have proposed context
aware access control vocabularies that can be leveraged by our framework (Costabello et al.,
2012b; Kagal and Finin, 2003). However, additional interfaces would need to be provided
in order to obtain contextual information with respect to the system or the environment.
Like privacy policies, it would be interesting to investigate how reasoning over contextual
data can be used to simplify policy specification and maintenance. However, given that con-
textual data is highly dynamic, our framework may need to be updated to ensure efficient
reasoning over streaming data.
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