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Abstract

This thesis investigates Federated Learning (FL) and Personalized Federated Learn-
ing (PFL) architectures for Click-Through Rate (CTR) prediction in the domain of
advertising, responding to the industry’s current need for privacy-preserving tech-
nologies. A state-of-the-art literature review of PFL in the advertising industry is
presented. Further, this thesis demonstrates the design and evaluation of different
(P)FL architectures using the PySyft framework. The findings highlight that while
(P)FL can outperform centralized models under conditions of data heterogeneity,
the effectiveness varies significantly across datasets and architectures. The thesis
compares these architectures, discussing their implications for model performance.
Further research for (P)FL settings and potential practical deployment scenarios
are suggested.
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1 Introduction

The list of problems that can potentially be addressed by Artificial Intelligence (Al) is
extensive and includes curing diseases, controlling crime, and protecting the climate [1].
Here, data forms a critical foundation. Indeed, the rapid success of Machine Learning
(ML) can be partly attributed to the accessibility of large quantities of data (often referred
to as big data). For example, model training and testing require data of considerable
quantity, usually millions or billions of entries, to provide satisfactory results [2].

Frequently, data does not exist in a central location but is fragmented in a plethora of
sources, such as user devices and small databases. Zhang et al. [3] call these small data
storage areas 'data islands’ (also ’data silos’ or ’small data’). The defining characteristic
of this type of data is that it is insufficient for the application of ML, as it displays at
least one of the following features [2]:

e The quantity is too small.
e It lacks certain information (missing labels or values).

e [t is unorganized and requires data cleaning.

As a result, considerable efforts are required to consolidate these data silos into usable
big data. The standard process is to collect and store that data centrally, for instance,
on a dedicated server. There, the data can be unified, cleaned, engineered, and further
processed [3|. Interestingly, one can argue that the consolidation of big data is no longer
the only focus. Instead, data security and privacy are now crucial challenges. Potential
data leakage, for example, is a threat increasingly paid attention to by researchers and
the public alike [4], [3], [5]. Regulations, such as the European Union’s General Data
Protection Regulation (GDPR), also play a significant role in that trend [6]. These
developments pose substantial boundaries and limitations to the standard process of
central data collection and processing [3].

1.1 Research Gap and Scenario

Privacy-Enhancing Technologies (PETS) are generally indicated as a potential solution
for data protection and adherence to privacy regulations. These can also be applied in
the context of ML [7]. Bonawitz et al. [8, p.5| note: "Although privacy-preserving data
analysis has been studied for more than 50 years, only in the past decade have solutions
been widely deployed at scale". This is partly due to the sheer amount of data, computing
power, and devices needed to execute such deployments. One such solution is called FL. It
is concerned with multiple parties collaboratively training ML models without exchanging
their raw data [9].

Research Gap

While many examples of FL. are demonstrated in the literature, only a subsection of
the research concerned with using it in the context of advertising [2], [3], [8], [10]. By
the same token, recent studies successfully illustrate practical applications of FL in that
domain [11], [12]. A key challenge of the advertising industry is the heterogeneity of
models and data (Section 3.4). This is partly caused by the increasing need for data
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privacy and the resulting data leaks. This is also why advertisers are often unwilling to
participate in data exchanges [12]. A potential solution for this is Personalized Federated
Learning (PFL). It involves a personalized model that can be seen as a hybrid between
a local and a global model. PFL is thus an attempt to combine the global model’s
generalization ability with the more tailored approach of the local model [13].

The main contribution of this thesis is a proof-of-concept application of FL. and PFL
in the context of advertising. Detecting such application scenarios and demonstrating
their implementation can be a valuable contribution to this growing field of research [2].
Using the PySyft software framework for this purpose facilitates the implementation, as
it simulates FL and does not require extensive amounts of hardware, data, and imple-
mentation effort to use [14], [2], [8]. The advertising domain is chosen in light of the
practical need for such a solution. Both the application of FL and PFL are evaluated on
a real-life dataset [11]. The dataset includes feature values and click feedback for display
ads within the context of Click-Through Rate (CTR) prediction.

Research Scenario

A hypothetical example is given here to highlight the practical application. It is then
later translated into the implementation setup. The example is split into the ’before’
and ’after’ situations. The first situation describes how conventional technologies are
currently widely used to illustrate the status quo in the advertising industry. The
second scenario represents a potential way of redesigning the architecture and setup in a
federated way.

Before Scenario. Figure 1 illustrates the 'before’ scenario, in which we assume that two
media technology companies have collected user data. We can call each of them a Data
Owner (DO). They want to use that data to create an ML model to predict ads” CTR.
As their ML models benefit from a larger dataset, they exchange data (for example,
using third-party cookies). Finally, they train their ML models on the combined data [12].

After Scenario. Figure 2 illustrates the ’after’ scenario. Let us assume that the two
media technology companies undergo a significant change due to the GDPR and the
discontinuation of third-party cookies. Still, they want to improve their ML models to
show users more relevant ads. They are, further, willing to continue exchanging data
with each other but do so in a privacy-preserving way. FL is chosen for this purpose.

Therefore, they use PySyft, a readily accessible open-source library. The companies
train a local model on their user data during the new process. Then, the DOs upload
their model weights using PySyft. The model weights are combined into global model
weights. Finally, an updated local model is trained using the global model weights for
each company respectively. Different variants of FL and PFL are tested. More details
about the architecture are introduced in Chapter 4.

The main motive of the new scenario is to achieve desirable privacy and utility simul-
taneously. On the one hand, the participants want to continue reaping the benefits of the
improved ML models through data sharing. On the other hand, they want to navigate
the new ’cookieless’ digital advertising landscape, comply with new regulations such as
GDPR, and meet new consumer privacy standards [15], [6], [5]. Overcoming this privacy-
utility trade-off is suggested to be desirable and achievable [1|. This thesis expands on
that in Section 2.2.1.
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1.2 Research Question

Based on the previously mentioned research scenario, we derive the following overarching
Research Question (RQ). It concerns evaluating the use of PySyft in the advertising
context.

"How can federated learning through PySyft be used for privacy-preserving
machine learning to predict click-through rates of ads?’

Four sub-RQs follow. They are revisited and answered in Chapter 6:
e RQ1: "What is the state of the art regarding research in the field of applied PFL

for CTR prediction in advertising?’.

e RQ2: 'How can two DOs exchange advertising CTR prediction model dictionaries
federatively through PySyft?’.

RQ3: '"How can architectures for PFL look like in that context?’.

RQ4: 'How do the results of these FL. and PFL implementations compare with
each other when it comes to a set of metrics?’.

1.3 Methodology

The proposed research method falls into the field of design science. By creating a concrete,
practical artifact for this novel use case, new knowledge can be generated [16]. Solving the
problem practically advances the knowledge in a reproducible way. It further allows for
potential discoveries in applying FL to business problems [16]. Hevner and Chatterjee [16]
provide a list of guidelines for Design Science that practitioners can use as a checklist for
its implementation:

1. "What is the research question?’ |16, p.20].
This thesis specified the RQ and its four sub-questions above.

2. "What is the artifact?’ [16, p.20].
The artifacts are this thesis, as well as several FL. and PFL implementations via
PySyft running on Jupyter Notebooks!.

3. "What design processes (search heuristics) will be used when creating the
artifact?’ [16, p.20|.
The assumptions were that the existing PySyft documentation and provided exam-
ples on GitHub? were sufficient and translatable to the specific use case. Further,
the same was assumed for the FL. and PFL papers used for the implementation.

Lgithub.com /PalexGoneGit/PFLAdsPySyft
2github.com/OpenMined /Py Syft
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4. "How does the knowledge base ground the artifact and design pro-
cesses?’ |16, p.20].
One can distinguish between the practical and the academic knowledge base. For
the first, the existing PySyft documentation and libraries® are used in the implemen-
tation part of this thesis. Further, Criteo’s ’display advertising challenge’ dataset
and user submissions on Kaggle support this thesis*. The work is theoretically
grounded in previous papers on privacy-preserving ML, particularly FL, PFL, and

PySyft [17].

5. "What evaluations are performed during the internal design cycles?’ |16,
p.20].
Firstly, technical evaluations of the code correctly running are used. Secondly,
subject matter evaluations are utilized, such as asking oneself if the model is help-
ful for companies in hypothetical scenarios. Evaluation metrics include accuracy,
Area Under the Curve (AUC), loss, and Relative Improvement (Rellmp), which are
explained in Section 4.2.3.

6. ’How 1is the artifact introduced into the application environment, and
how is it field tested? What metrics are used to demonstrate artifact
utility and improvement over previous artifacts?’ |16, p.20].

The evaluation metrics introduced before are used. The different PFL implemen-
tations are compared to an FL implementation and a centrally trained version.

7. "What new knowledge is added to the knowledge base and in what
form?’ [16, p.20].
A state-of-the-art table of practical PFL applications in the domain of advertising
is shown in Section 3.4. Further, an implementation of ads CTR prediction for FL
and PFL via PySyft is demonstrated®. Lastly, this thesis presents, analyzes, and
discusses a comparison of three types of architectures (Central vs FL vs PFL) in
Chapter 4. The results take the form of this thesis, a set of Jupyter Notebooks,
and contributions on GitHub.

1.4 Structure

The thesis outline is as follows. Firstly, in Chapter 2, background information about the
domain is provided. Specifically, online advertising and the problem of addressability are
introduced. Then, a review of PETs follows. In particular, the pressing need for data
security in ML is highlighted in that section. The concept of structured transparency, a
potential solution, is presented. Lastly, popular PETs are described.

Chapter 3 is dedicated to FL. and answering RQ1. Firstly, an introduction covers FLs
definition and life cycle. Secondly, this thesis showcases the FL process. Differences to
other ML systems are discussed. Thirdly, the following section encompasses a detailed
categorization of an Federated Learning System (FLS), explaining its components and
characteristics. It concludes with a proposed taxonomy of FLSs, which will be used
throughout the paper. Lastly, this thesis sheds light on PFL. The last section of that
chapter showcases the state of the art of application-focused PFL research in advertising.

3github.com/OpenMined /PySyft
4kaggle.com/competitions/criteo-display-ad-challenge
Sgithub.com/PalexGoneGit/PFLAdsPySyft
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Chapter 4 addresses RQ2 and RQ3, which are concerned with the implementation.
First, it details PySyft, a framework enabling FL. Then, the dataset and the ML model
are introduced. The central version, an FL implementation, and two different PFL im-
plementations are described. Chapter 5 answers RQ4. It analyzes the implementations of
the previous chapter and contrasts the performance metrics among the different variants.
Then, a discussion interprets the results.

Chapter 6 acts as the conclusion and summarizes the results, highlighting the findings.
Each of the four sub-research questions is answered, respectively. Then, the limitations
of the work are discussed. Further research opportunities and practical implications are
highlighted.
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2 Background

This chapter provides background insights into two critical areas of this thesis. The first is
the domain of online advertising. We argue why that industry may have an addressability
problem: an issue (re)identifying online website visitors to serve ads. The second part
introduces the concept of privacy in data science. Different aspects of privacy and the
idea of structured transparency are presented. Lastly, this chapter introduces essential
PETs to promote privacy in data science.

2.1 Addressability in Online Advertising

Generally, online advertising is concerned with finding the best ad to serve the user.
Here, constraints like the user device and the applicable ad format apply. The advertiser
displays ads to users to directly or indirectly influence their actions through clicks, con-
versions, or brand recognition. Therefore, the advertiser is interested in maximizing the
chance of such action by displaying the best possible ad for that specific user [18].

Online Advertising Industry

Ad space online is typically sold via auctions, for which each advertiser selects a set of
keywords or websites relevant to its products or services and submits a bit (typically via
first-price or second-price auctions). Therefore, this bid represents the estimated utility
for displaying the ad to the user and, ultimately, the potential action the user will take
as a result of the ad [19].

Online display advertising is a subgroup of online advertising where advertisers embed
visual ads on publishers’ websites. That ad can take the form of pictures, videos, and
text [20]. Due to the context and constraints mentioned before, achieving the advertiser’s
goal optimally is complex. Therefore, advertisers often use specialized technology. One
type of these technologies is called Demand-Side Platform (DSP). DSPs, in a nutshell,
help brands and agencies (the demand side) to determine how and at what price to buy
ad space [21].

On the other side stand online web publishers. These entities control and curate online
websites that sell ad space. While some publishers can use agreed-upon contacts to sell
their ad inventory, they often use marketplaces. Here, the Supply-Side Platform (SSP)
comes into play. That software enables publishers to sell their ad space by connecting
them to DSPs and other similar entities [20]. We can refer to DSPs, SSPs, and similar
entities (like ad exchange platforms) as ad-tech companies or third parties [22].

Interest-based advertising is a central component of the online ad landscape. Showing
users content based on their interests enables better targeting options for advertisers [22].
It could provide a better ad experience for users, as the ads displayed are more relevant
to them. Interest-based advertising predicts users’ interest by analyzing their navigated
content types and websites. Therefore, it indicates if and what product or service the
user is ’in the market for’. Interest-based advertising stands in direct contrast to context-
based advertising, which attempts to anticipate solely by the type of content the user is
currently browsing [22].

Ad-tech companies enable interest-based advertising by building user profiles. By
collecting user data, such as types of websites visited over time, specific user interests
can be inferred [22]. A third party can then leverage that profile to enable a good match
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between a user visiting a website and the ad displayed. For instance, a person with a
browsing history of real estate websites could be assumed to be looking for property to
buy. However, such information can never be predicted with absolute certainty. The
individual could be, for example, looking to sell their property instead [21]. The third-
party cookie is a critical technology that enables this, which will be more thoroughly
explained in the section below. User clustering, also known as user segmentation, has
been a popular method in the advertising space 18], [23].

Addressability Problem

Recent societal, political, and technological developments have increased the need for
privacy-preserving technology [1]. In particular, using third-party cookies to track and
analyze online user behavior has evolved from a de-facto industry standard to a practice
criticized by many sides. Generally, cookies are small text files saved on the user’s browser
when they visit a website [24]. First-party cookies are stored directly by the domain that
the user visits. The website publisher directly stores data collected using these cookies.
Because the organization has a direct prior relationship with the user, it can use that
data for communication purposes [25].

On the other hand, third-party cookies are stored by a different domain and are often
used for cross-site tracking, retargeting, and serving ads [26]. This practice has been the
subject of much discussion® [15]. This is because these types of cookies are placed by
other parties and are mainly used for analytical and marketing purposes [24], [15]. Three
factors are considered to cause the future depletion of the third-party cookie [26].

1. A (legal) environment increasingly focused on online privacy and consent.
2. Browser gate-keeping.

3. The use of ad blockers.

Regulators have raised the question of the legality of the current use of third-party cook-
ies and several regulations pose potential restrictions on it [26]. The GDPR framework,
governing the data controller’s duties and the data subject’s rights when personal infor-
mation is processed, has collided with that practice. The GDPR applies when personal
data (like online user behavior) is processed or analyzed [27], [6]. It also applies when Al
is under development or is applied using personal data.

Many legal bases for such a collision can be found [6]. For example, the GDPR requires
the user’s consent if any personal data is collected, transparency about how it is used,
and the ability to revoke the consent given [27]. Furthermore, the principle of fairness
in the GDPR dictates that a model can not use sensitive private data (such as race or
gender) if it would result in arbitrary, discriminatory treatment.

The GDPR is not the only regulation posing challenges to third-party cookies. For
example, the public sector in Norway is subject to the Public Administration Act, where
any person has the right to be informed about the circumstances leading to a decision
being made. Complying with that act proves to be challenging for many models, as
sometimes nobody knows how a result is produced, resulting in a ’black box’ [27]. Another
example is the California Consumer Privacy Act, which gives users the right to delete,
access, or opt out of personal data they share with third parties [26].

6blog.google /products/chrome /privacy-sandbox-tracking-protection /
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An additional reason for the increased need for privacy-enhancing or preserving tech-
nology is a push from the general public in favor of privacy preservation. Individuals are
becoming increasingly aware of their rights in data processing [26]. Public scandals in
which individual privacy rights were breached (e.g. Cambridge Analytica or Schrems I
and II) have contributed to increased privacy sensibility [5], [28].

This has led to market pressure on companies to reevaluate how they handle personal
data. Anonymization, the process of removing identifying information from data so it
cannot be linked back to an individual, does not solve the issue entirely. One reason
is that it is often possible to re-identify the data using other information, primarily
given enough information, time, and resources [1], [29]. Large technology companies have
evolved to reflect this. In particular, browsers have gone beyond the legal requirements
(as of now) to allow users to control their data to gain a competitive advantage [26]. The
increasing popularity of ad blockers further disrupts the ability of websites to track user
behavior [26].

Impact on Advertising

Data plays a crucial role in marketing and customer experience, as companies need it
to provide value to customers [30]. Thus, the phasing out of third-party cookies will
significantly impact the online advertising industry. Advertisers currently use them to
track users across different websites and target them with ads [15].

This has resulted in what is presently called the addressability problem. Its definition
is the capability to uniquely identify a user or a device between several data sets of
multiple parties, which can be used for advertising [31]. Advertisers have greatly benefited
from collecting and tracking user data on websites (e.g. through third-party cookies) as
well as leveraging that information to understand potential customer demographics and
interests. Ultimately, that data is used to effectively place ads by targeting users based
on their preferences [15]. Advertisers buy ad space on websites with prices determined
by total traffic, click-through rate, and conversion rate, among others. These websites
include news sites, blogs, and online stores [25].

Due to the depreciation of the third-party cookie, addressability is often not possible
in the same form as before. In particular, Puffett and Mussard [26] propose that the
advertising industry may face critical problems in several essential advertising functions:

e Frequency capping in the context of displaying ads.

e Audience targeting based on third-party data.

Retargeting and most forms of dynamic creative targeting.

Creation of identity linkages by data management platforms.
e Last or multi-touch attribution in the context of marketing attribution.

With the disappearance of third-party cookies, all previously mentioned stakeholders are
thus strongly interested in finding alternative solutions for targeting users before [15].
Appendix A.1 details popular alternative online tracking technologies presently in use.
A summary of privacy solutions currently developed by technology companies such as
Apple and Alphabet is shown in Appendix A.2.
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2.2 Privacy in Data Science

It is difficult to establish what exactly defines privacy in the context of data science. For
example, Narayanan and Shmatikov [29] show how supposedly anonymized user data (in
this case, the Netflix Price data set) can be deanonymized using background knowledge.
Here, a correlation is found between a user’s private Netflix ratings and their public IMDb
ratings. As a result, the individual’s anonymized entry in the Netflix data set could be
identified. This can expose user information such as name and age or even uncover data
as private as political inclination and sexual preferences [29].

2.2.1 Structured Transparency and its Limitations

The concept of structured transparency, introduced by Trask et al. [1], describes the
ability to enable public data accessibility while avoiding undesired use. Especially
in areas with highly sensitive data (e.g. medical records), questions arise on the
complicated trade-off between ensuring high privacy standards and also providing
researchers access to the valuable data they need for their work. The provision of
decentralized ownership allows for AI models to be trained on data they cannot
explicitly access, thus benefiting from the shared information without the downsides
associated with direct data ownership [4]. A taxonomy of structured transparency is pro-
vided below. It is split into three components (privacy, verification, and flow governance).

Privacy [4], [1], [32]. The first element of structured transparency is privacy. It includes
input privacy, defined as the ability to process hidden information without revealing it.
Its second element, output privacy, describes the ability to receive information while si-
multaneously being unable to reverse engineer or infer further information about its input.

Verification [1], [32], [33]. Privacy must be balanced with verification, the second
part of structured transparency. This describes the recipient’s need to verify the data’s
validity to trust it. Firstly, there is input verification. It enables one to verify that
the information received indeed stems from a trusted source. Also, output verification
needs to be mentioned. It allows us to determine whether the results of any information
processing within the information process are valid.

Flow Governance [1], [32], [33]. Lastly, flow governance can be seen as a binding
element in structured transparency. It is given when each 'stakeholder’ of the information
used has guarantees that any use of that information will not go beyond the intended or
agreed upon use.

Further, the authors expand on the limitations of structured transparency. They include
the copy problem, the bundling problem, and the recursive oversight problem [1], [32].

The Copy Problem [1], [33]. The first issue is called the copy problem, which
represents the case when once data is shared, the recipient is normally free to copy or
misuse it in any other way without immediate consequences or limitations.

The Bundling Problem [1]. The bundling problem describes the fact that it is often

difficult to share a piece of information without needing additional data. This is either
because the way the data is structured does not allow for individual sharing or be-
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cause the authenticity of the data can not be verified without additional context provided.

The Recursive Oversight Problem [1]. We often attempt to tackle the two problems
mentioned above by creating organizations or institutions tasked with controlling and
overseeing the actors in an information flow. That inherently comes with an additional
issue: Who, in turn, holds these organizations accountable? This is called the recursive
oversight problem.

2.2.2 Privacy-Preserving Technologies

The problems described above center around the issue of data accessibility: Often, data
is present but restricted due to privacy barriers. As a result, many machine learning
problems today arise not due to a lack of data per se but due to a lack of access to

that data. As a result, privacy-preserving technology is currently relevant and actively
researched [1], 3], [2], [4].

Secure Multi-Party Computation (SMPC). An example of PETs for input data
privacy protection is SMPC, a cryptographic method. SMPC is concerned with enabling
several parties to work together to compute a function while revealing only the output [34].
In SMPC, a secret value z is split into P; shares. As a result, a party P; only knows a
portion of z, called x;. All parties can collaboratively calculate the following function:

Yl ooy Yn = f(21, 00y )

In that way, each party P; learns the output value y; and knows its input x;, without
gaining any knowledge about the inputs of other parties |2, p.22]. There have been
many different approaches for SMPC protocols. Often, they use a secret-sharing scheme
called "Shamir’s secret sharing’. This technique enables parties to share information so
no party can reconstruct the secret unless many parties pool together [34].

Homomorphic Encryption (HE). HE is another cryptographic method for privacy
preservation, originally introduced by Rivest et al. [35]. Tt is concerned with an algorithm
computing the sum or the product of two messages given the public key and the encryption
of the messages, but not the messages themselves [36], [2]. An HE scheme H generally is
composed of a set of four functions [2]:

H = {KeyGen, Enc, Dec, Eval}

Here, KeyGen refers to key generation. A pair of public and private keys is generated
for asymmetric HE, while only a public key is created for symmetric HE. Enc stands for
encryption, which includes using the public key (in the case of assymetric HE) or the
private key (for symetric HE) to generate the ciphertext out of the plaintext [2]. During
the decryption Dec, the secret key and cypthertext are used to produce the plaintext.
Finally, the evaluation Fval function uses the plaintext and the public key (in the case
of assymetric HE) to create the ciphertext [2].

Differential Privacy (DP). Another relevant example of PETs is DP. It is a way of
preserving privacy through obfuscation [2|. As Dwork [37] shows, DP guarantees that
adding or removing a single data entry does not (substantially) alter the outcome of any
analysis performed on the data set [37]. More formally, a randomized mechanism M
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adheres to (¢,0)- differential privacy if provided any two data sets D and D’ differing by
only one record, and for all S C Range (M),

PriM(d) € S] < PrlM(D') € S] x e€+4d

where € is the privacy budget and § is the failure probability [2, p.29]. As a result,
minimal risk is incurred when data points are added to a data set concerning the danger
of the leakage of sensitive data. In practice, several algorithms ensure this [37]. As
noise is added to data, DP inherently carries a utility-privacy trade-off. Generally, this
happens by following the function’s sensitivity or the exponential distribution among
discrete values.

Cummings and Desai [6] argue in favor of using differential privacy for GDPR com-
pliance. In their position paper, the authors detail how many recommender systems and
ML models capture individual data entries and thus fail to comply with the GDPR. In
contrast, DP achieves compliance while also allowing for the accurate functioning of the
models, according to the authors [6].

Researchers at Apple acknowledge that while understanding user behavior can im-
prove their experience, the attempt to do so can compromise user privacy [38]. They
designed a system that enables learning at scale while protecting the privacy of users [38].
The use cases here range from identifying popular emojis to common health data types.
The paper describes a system that uses local differential privacy, among other techniques,
to enable learning. Notably, the algorithm is demonstrated to be scalable and efficient
while requiring an opt-in and being transparent [38|. The authors conclude that their pa-
per provides one of the first practical and successful examples of local differential privacy
across several use cases. Therefore, it contributes to bridging the gap between theory and
practice.

In their seminal paper, Shokri and Shmatikov [4] argue that previously proposed tech-
niques are insufficient for fully achieving privacy. They demonstrate a system that allows
several participants to collectively train a Neural Network (NN) model while simulta-
neously preserving the privacy of individual input data sets. The parties independently
train the model on their own data set while only sharing small subsets of it with others.
As a result, the model’s utility can come to fruition while no sensitive data is exposed.
The paper highlights the model’s accuracy compared to other methods. The protocol
used here is selective Stochastic Gradient Descent (SGD) [4].

McMahan et al. [39] present a new algorithm based on SGD called Federated Averaging
(FedAvg). This approach leverages distributed data on mobile devices and then learns a
shared model using aggregated updates, which are locally computed. The algorithm is
specified in Appendix A.4. This is an example of on-device processing, defined as done
'locally’, meaning on a user device, without communicating with external servers [40].
The authors indicate that this method, coined as FL, offers a variety of privacy benefits
over techniques solely relying on DP, SMPC, or their combination [39].
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3 Federated Learning

This chapter is dedicated to FL, which is among the most popular PETs for ML. It starts
by introducing the FedAvg algorithm, providing a definition of FL, and illustrating the
cycle of an FLL model. Then, the characteristics of FLSs are contrasted with the concept
of distributed learning. A taxonomy of FLSs is then presented. Subsequently, PFL is
introduced, explaining why a need for personalization exists. Further, a taxonomy of
PFL is presented. The last section answers RQ1 by leveraging both previous taxonomies,
creating a state-of-the-art table of PFL in advertising.

3.1 Definition, Process, and Life Cycle of Federated Learning
The following properties characterize FL [2]:

Several parties are interested in building an ML model together.

Each party’s data remains only with that party during the ML training process.

The parties can exchange the model with each other without compromising the
privacy of their data.

The resulting model is comparable to an ideal model trained in a ’traditional’,
central way.

A potential loss in performance of the FL model is to be weighed against an attainable
increase in privacy, referred to as the privacy trade-off [1]. Therefore, the ability of the
individual users to benefit from the ML model without exposing their sensitive data is
an advantage of FL [41].

However, FL. may also improve model performance. Nowadays, data does not solely
reside in one specific location. Instead, it is often distributed among several, often many
(user)devices. This can be individual mobile keyboard data on smartphones, satellite
data, or autonomous driving data stored in cars. FL can therefore contribute to connect-
ing these 'data silos’ [42], [2]. FL thus enables several parties to collaborate and jointly
produce a potentially better model. Additionally, the inherently decentralized nature of
the technology enables more democratic access to information and analytics without a
central, controlling entity [2].

Li et al. [9] highlight the popularity of FL as a research topic, with circa 4,400 related
papers in 2022. The authors suggest that an increase in the problems mentioned above,
which they term ’data island phenomena’, contributes to that rise in popularity. Further,
they attribute it to increased privacy protection awareness, which this thesis highlighted
before [5].

Zhang et al. [3] illustrate FL using a practical example. The ’traditional’ scenario is
that data must be sent from devices to a centralized server to understand and predict
mobile phone users’ behavior. A central ML model can be thus trained on the aggregated
data. By contrast, the authors describe a second, federated scenario. There, individual
users can collaborate in teaching the ML model with the personal data remaining on
their respective devices. FL is, therefore, the building of a ML model using data located
on different devices [2].

Hard et al. [43] show an influential application of FL for mobile keyboard prediction.
The Google researchers used an on-device learning network for next-word prediction in
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Android virtual keyboards. The results are achieved in a scalable way. Further, the
FL algorithm is compared to a server-based training method and is described to have a
better prediction recall. Thus, data privacy and better user experience can be practically
reached, with the paper being one of the first published practical applications of FL to
do so [43].

3.1.1 Definition

In their influential paper, Kairouz et al. [44, p. 4f] propose a broad definition of FL:

"Federated learning is a machine learning setting where multiple entities (clients)
collaborate in solving a machine learning problem under the coordination of a
central server or service provider. FEach client’s raw data is stored locally and not
exchanged or transferred; focused updates intended for immediate aggregation are
used to achieve the learning objective."

Building on the above definition, Li et al. |9, p.3] define an FLS as a system where:

" [M[ultiple parties train machine learning models collaboratively without exchanging
their raw data. The system’s output is a machine-learning model for each party
(which can be the same or different). A practical FLS has the following constraints.
Given an evaluation metric such as test accuracy, the model’s performance learned
by FL should be better than the model learned by local training with the same model
architecture."

This can be more formally expressed and defined as follows (adapted from |2, p.4]).

N data owners {F;}Y | want to train a ML model. For that purpose, they use their
respective data sets {D;}¥;. The standard method here would be to centrally train
the model by collecting all data and saving it to one data server. The resulting ML
model can be named Mg,,,. Here, all data owners {F; will expose their respective
data sets {D; to each other and the server. By contrast, using FL, the data owners
will train a model Mp.q while not collecting all data {Di}ij\il centrally. Define the
following as performance measures: Vg, as the performance measure for Mgy,
and Vg as the performance measure for Mp.4. Finally, we can express a potential
loss in performance for M.y using 0, a non-negative real number |V, - Vieq| < 0.

3.1.2 FL Life Cycle and Process

But how does an FL architecture come to be, and what does the FL process look like?

FL Life Cycle. One can abstractly define the FL life cycle as follows (adapted from
Kairouz et al. [44, p.7]. Note that this high-level process parallels the ’traditional’,
centralized ML life cycle.

1. Problem identification.
2. Client instrumentation.

3. Simulation testing and prototyping.
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4. Model training.
5. Model evaluation.
6. Model deployment.

The initial step is generally made by an engineer developing the model for a particular use
case. The problem to be addressed by FL is identified [44]. As mentioned in this thesis,
ML models and big data are used to tackle various problems across many domains [1]. For
example, let us take the next word prediction on virtual keyboards on smartphones [43].

What follows are two optional steps, depending on the circumstances of the application
and deployment of the model. The first is concerned with enabling clients to store the
necessary data [44]. In the case of next-word prediction on smartphones, the client device
is already capable of this. Yet, it is sometimes necessary to store additional (meta)data for
this purpose and, in all cases, some consent for data processing is required if not already
given (38|, [43]. Then, in the second optional step, the data engineer could simulate the
FL model using dummy data for prototyping [44].

The next step is deploying the FL training. Several variations of the model or
differently optimized models are trained simultaneously. Then, the different models are
evaluated [44]. The final step involves selecting and deploying the chosen model. This in-
cludes quality assurance, such as manual and automated testing, as well as A /B testing”
of the models. The process concludes with a final model roll-out to the client devices [44].

FL Process. Seminal literature agrees that the FL process can be broken down into
three different elements [2], 3], [44]:

1. Model initialization

(a) Client selection
(b) Global model broadcast

2. Model training

(a) Client computation of the local modal
(b) Local model upload

3. Model inference

(a) Aggregation
(b) Global model update

The first step is the model initialization, consisting of several sub-steps [3|. Firstly, one
needs to select eligible clients based on eligibility requirements. For example, in the case
of the next word prediction, a client device is only eligible if it is plugged in, on an
unmetered WiFi connection, and not currently in use (for example, at night). This is
done to avoid inhibiting the smartphone user’s experience through additional computation
processes [44], [43]. Then, the initial global model is sent from the server to each eligible
device 2], [3]. The client downloads the model, the current model weights, and the
training program, for instance, using TensorFlow® [44].

"hbr.org/2017/06/a-refresher-on-ab-testing
8tensorflow.org
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Characteristic Distributed Learning FL

Data Type flat’, homogeneous Varying, heterogeneous

Clients Nodes of a cluster Different, independent participants
Data Distribution | Centrally stored Remains local

Data Access All clients can read all data Clients only access own data
Orchestration Central Central/decentral, raw data not shared
Communication | Cluster communication Central hub linking clients

Bottleneck Computation Computation or communication

Data Partitioning | Flexible Fixed

Typical Scale 1-1000 2 — 1010

Table 1: FL vs distributed learning (adapted from Kairouz et al. [44, p.6|)

Secondly, the device trains the model using its own data, resulting in an individual,
local version of the model on each device [2]. The client computes a model update using
local data, for example, running SGD as in FedAvg [39], [43]. The device does not need
to share its local data [3]. The process can either be coordinated by a central computer
or function peer-to-peer, while this example focuses on the former [2]. The local model
is uploaded from the client devices to the central server.

Then, the server aggregates the local models into an updated global model [2].
Sometimes, straggler devices are dropped here when a critical mass of model updates
has been received to improve efficiency. Also, at this stage, other methods for privacy
preservation, such as adding noise, can be applied [44]. This global model is then,
again, shared with all devices [3|. This final step, model inference, happens when the
model is applied to new data. Ideally, FL is carefully designed so that no partner can
reverse-engineer or second-guess the data of any other party [2].

Considerations. The above processes only serve as an illustrative example of FL. and
do not always apply. Importantly, Kairouz et al. [44] emphasize certain exceptions. With
asynchronous SGD, for example, local model updates are immediately applied to the
global model without synchronizing with or waiting for the other devices during that
protocol. A strict peer-to-peer architecture would also exhibit different characteristics
and steps [2].

Further, the processes demonstrate another consideration in deploying FL, especially
in practical settings. User experience is pivotal to the technique’s success in a real-world
environment. For that, firstly, the additional computational effort should not put a strain
on the device, impacting its purpose [38], [43], [44]. Secondly, even though models can be
trained and updated in real-time, the roll-outs to the users should only happen during
the planned deployment phases. This is because creating well-performing ML models
is complex, and untested live updates can decrease the usefulness of the product and
hamper user experience |44].

3.1.3 Characteristics

Contrasted with a central ML architecture, three characteristics of FL databases can be
emphasized [9].
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Autonomy. A client engaging in FL is autonomous, meaning it is under autonomous
control and can be individually managed by its owner.

Heterogeneity. The databases do not have to be homogeneous and can differ in
structure, specifications, and types of data stores.

Varying Data Distribution. How data is spread can vary among the databases, e.g.
the partitioning and the frequency of data entries.

An FLS falls into the category of federated systems. These two concepts share the
common trait of 'federation’, where multiple independent parties collaborate. The first
two characteristics from above can, therefore, also be applied. For the third point, the
execution distribution in both system types is important, as it strongly influences its
performance [9]. For example, FL. model updates are narrowly scoped, and aggregation
is done as early as possible. This is to minimize data flows and improve computation
performance [44]. Yet, data distribution does not vary to the same extent for conventional
distributed systems as for FL [9]. Kairouz et al. [44] contrast the typical characteristics
of a distributed data center to FL. Some key differences are highlighted in Table 1.

3.2 Taxonomy of Federated Learning

Dimension Characteristics
Data Partitioning HFL VFL FTL
Privacy Mechanism | Model aggregation | Cryptography DPp
Applicable Model Linear Tree NN
Hetero. Solution Asynch. comm. Sampling Fault Tolerance | Hetero. Model

Client Types

End-user devices

Company servers

Client Setting Cross-device Cross-silo

Comm. Architecture | Centralized Decentralized

Framework FedAvg SimFL

Motivation Regulation Monetary Non-monetary

Table 2: Taxonomy of FLSs

Characteristic | HFL VFL FTL
Data Features | Shared | Varying | Varying
Data Samples | Varying | Shared | Varying

Table 3: Data partitioning in FL

The following section introduces and explains the elements of the different FL. In their
survey on FL systems, Li et al. [9] examine the current landscape of the FL technology.
The authors propose a taxonomy for its categorization [9]. Similarly, Zhang et al. [3]
surveyed FL and its mechanisms while ordering them into different aspects. A potential
taxonomy based on these papers is proposed; see Table 2.
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3.2.1 Data Partitioning

FL techniques can be classified into three types of data partitioning approaches (see
Table 3) [44], [2], [10], [3]. More detailed explanations are shown in Appendix A.3:

e Horizontal Federated Learning (HFL) (also example-partitioned or sample-
partitioned): clients share overlapping data features but vary in data samples.

e Vertical Federated Learning (VFL) (also feature-partitioned): clients share data
samples but vary in data features.

e Federated Transfer Learning (FTL) (also Hybrid FL): neither samples nor features
are shared.

3.2.2 Privacy Mechanism

FL requires privacy preservation, as it is not privacy-preserving by itself [44]. To achieve
this, it can employ several PETs. This thesis has elaborated on different PETs in Section
2.2.2. They all can come into play in FL. Additionally, another mechanism called Model
Aggregation (ModAg) plays a significant role in the privacy preservation of FLSs [3], [2].

Model Aggregation. ModAg is a common privacy technique for FL. It is concerned
with avoiding transmitting original data from the parties by summarizing the model
parameters from all participants. These parameters are then used to train the global
model [3]. McMahan et al. [42] propose such a technique in the context of FL, where a
summarized local model trains a global model in each update.

Private aggregation of teacher ensembles is an example approach using a ’teacher’
and ’student’ model. Here, the teachers use noisy voting to train the student to predict
an output. The student cannot access individual teacher’s data or parameters directly.
Therefore, the method provides strong privacy guarantees for training data [45|. Various
other ModAg techniques exist [3].

Cryptographic Methods. This thesis has introduced the cryptographic techniques
of HE and SMPC in the PETs Section [35], [36], [34]. These methods are widely used
for privacy preservation in ML. HE enables users to process encrypted data without
disclosing the original data. Zhang et al. [3, p.5] refer to it as the "icing on the cake" of
FL, solving the problem of encrypting private information without hampering the model
performance. It further protects the leakage of private party information to the central
server. [3|. Similarly, SMPC enables participants to compute a function and share its
output without revealing their private inputs.

Differential Privacy. As mentioned in the PETs Section, DP quantifies how much
information about a user can be found when analyzing a dataset that includes that user’s
data. It uses obfuscation in the form of noise or randomness to reduce that revealed
information [37]. DP has seen several practical applications in FL [3]. One example of
such an application is the privacy-preserving news recommendation model Qi et al. [46]
used. In that paper, experiments with realistic data show the ability for the deployment of
a news-recommendation model, displaying comparable performance to centrally-trained
alternatives, while preserving privacy through DP [46].
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3.2.3 Model Types in FL

Characteristic Cross-silo FL Cross-device FL

Clients Different organizations Many mobile or IoT devices

Data Availability Almost always Only a fraction of clients at the
same time

Typical Scale 2-100 2 — 1010

Bottleneck Computation or communication Mostly communication

Addressability Each client has an identity Clients cannot be directly indexed

Client statefulness Stateful, each client may partici- | Stateless, each client will likely

pate in each round participate only in one round

Client reliability Reliable Highly unreliable

Data Partitioning Horizontal or vertical Horizontal

Client hardware capacity | Higher Lower

Table 4: Cross-silo vs cross-device FL (adapted from Kairouz et al. [44, p.6] and Zhang
et al. [3])

Several models types are used in FL. The most common belong to one of three
types [3], [10]:

e Linear models.
e Tree models.

e Neural networks.

While a detailed explanation of each model type is beyond the scope of this thesis, it
will touch upon them shortly. Zhang et al. [3] and Li et al. [10] provide a more thorough
explanation. Linear models include linear, logistic, ridge, and lasso regressions. An
upside of using linear models is the relative ease of their implementation [3]. Tree models
encompass decision trees and random forests. Arguably, they are efficient to train and
rather uncomplicated to interpret [10]. Lastly, NNs are widely used and popular, as they
can achieve state-of-the-art outcomes in next-word prediction and image classification.
Many FL studies, such as Hard et al. [43], use NNs combined with FedAvg [10].

3.2.4 Heterogeneity Solution

As previously mentioned, heterogeneity is a key differentiator of FLSs. However, it can
pose a barrier to their success. Several solutions have been implemented to address this
issue |3].

Asynchronous Communication. In FL, real-time communication is a necessity. As
with other distributed systems, asynchronous communication is a practical solution to
this challenge. For example, one can imagine millions of mobile devices corresponding
with the central server in the mobile-keyboard experiment. As consistent exchange
of information with all devices at the same time would be impossible, the researchers
leverage asynchronous communication as a key answer to that problem [3], [43].
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Sampling. In addition, an advantage of FLSs is that not all participants need to
partake in the process. Due to the aforementioned scale of many FL applications, this
is key for the realistic implementation of FLSs [3]. While being a part of the system
is beneficial for model improvement and can therefore be incentivized, it is not needed
from all potential parties, especially in large-scale FLSs [2], [47].

Fault Tolerance. The heterogeneity of participants induces lagging or even crashing
of individual devices during several process steps. An FLS overcomes this by dropping
straggler devices for that part of the process when a satisfying amount of information
has been received. This makes model iterations more efficient concerning communication
costs [44], [47].

Heterogeneous Model. The data stored by the parties can be described as non-
Identically and Independently Distributed (IID). It has been shown to reduce the perfor-
mance of FL. models by up to 55 percent [48]. Thus, handling non-IID data is a central
challenge for all FLSs. We address potential solutions in the dedicated PFL section in
Section 3.3

While most research addresses device and resource heterogeneity, task heterogeneity
can also be challenging for FL systems. Researchers showcase a technique to enable
individual end-devices to complete training when performance targets are met. This has
been shown to improve model performance [49].

3.2.5 Client Types and Setting.

Clients (also entities, parties, and participants) are the main beneficiaries of FL; hence
their collaboration [44]|. Kairouz et al. [44, p.6| provide a comparison of client settings
in FL, an adapted version of which is shown in Table 4. The table further includes the
hardware capacity aspect as mentioned in Zhang et al. [3].

Cross-device. Initially, FL. was mainly of interest for mobile and device applications,
like the experiments run by Google and Apple on their client-edge devices [38], [50].
This type of FL is generally referred to ’cross-device’ FL. Note that cross-device FL,
popularly used on smartphones and laptops, can also be executed using other devices.
For example, Nguyen et al. [51] deploy FL on off-the-shelf IoT devices, ranging from
smart coffee machines and over-door sensors to IoT hubs. Zhang et al. [52] demonstrate
using FL on unarmed aerial vehicles. These examples also fall under cross-device FL.

Cross-silo. More recently, systems with fewer but larger participants (like different or-
ganizations or companies) have also collaborated to train a shared model. One can name
this ’'cross-silo’ FL application [44]. Yang et al. [2] published a white paper providing
several useful theoretical examples for this application. They include companies collab-
orating to improve their marketing intelligence and medical institutions establishing a
data alliance [53].

3.2.6 Coordinating Entity

The literature somewhat diverges when discussing the coordinating entity in FLS. While
Kairuz et al. [44] propose that FL is to be distinguished from fully decentralized, peer-
to-peer distributed learning, others argue that a peer-to-peer architecture for FL can be
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designed. While it would potentially increase security, it would require more computation
power 2], [3]. Here, the central server is fully replaced by peer-to-peer communication be-
tween the individual clients. Compared to the Hub-and-spoke communication framework
mentioned in 1, this architecture attempts to minimize the number of edges for each node
to not overload the system [44|. Kairuz et al. [44] propose that, even for a theoretically
fully decentralized system, some central authority may still coordinate the learning task,
the model, the algorithm used, and more aspects. Yet, the authors argue, such decisions
could be solved using a consensus scheme. Yang [2|, however, mentions variations of FL
using the peer-to-peer distributed learning architecture, citing several such cases in the
literature [54], [55]. Nevertheless, the literature agrees that both variations are closely
connected and worth exploring further [44].

In practice, a fully decentralized FL setup has been demonstrated. Savazzi et al. [56]
deploy FL on a large-scale, dense IoT network without any central coordination entity.
The authors’ methodology is further successfully validated in a practical experiment using
real devices and data for passive body detection in an industrial setting [56].

The coordinating entity can broadly vary between cross-silo FL and cross-device FL.
For the first, most organizations would have comparable and performant hardware par-
ticipating in the process. With sufficient trust from all parties, one of the participating
servers can act as the central coordinator. Alternatively, a dedicated server can perform
that duty [3]. In many cross-device settings, the clients need a central server acting as
the manager, as their hardware capacities are insufficient to perform that assignment [3].

3.2.7 Communication-Computation Framework

The communication-computation framework defines the protocol in which the parties
and the coordinator collaborate. This includes the exchange of model parameters and
model computation [3]. FedAvg is a commonly used ModAg framework [39]. It functions
similarly to the FL process illustrated earlier (see Appendix A.4 for the algorithm).

1. The global model is sent to the clients.
2. The clients update their model with local data.
3. The local models are sent to the server.

4. The global model is updated.

Other frameworks are also proposed. For example, an alternative algorithm called SimFL
has been proposed for decentralized FLSs [10]. Here, the participating clients first update
the gradients of their local data. Then, these gradients are sent to another party. That
party uses the gradients and its local data to update the model. Finally, the model is
sent to all other parties. The protocol is repeated using different parties before the final
model is created [10], [3].

3.2.8 Motivation of Federation

At this point, one can ask, "Why should a party participate in an FLS?’. Indeed, en-
couraging long-term cooperation is a critical factor for the success of FLSs [2]|. Here, one
can generally distinguish between motivation by regulation and incentives (both mone-
tary and non-monetary) [10]. The first is rather direct: an organization-wide policy or
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a governing body could mandate participation in an FLS. While such an order would
undoubtedly increase the amount of participants, it would raise questions of legality and
morality.

The second type of motivation, incentive-based motivation, is more technically sophis-
ticated. Yang et al. [2| provide a detailed overview of payment systems for data contri-
butions. A DOs contribution could be used to build an ML model that generates revenue
which is then shared with them. This includes approaches like profit-sharing games and
reverse auctions. The authors propose a fairness-aware profit-sharing framework, which
integrates incorporated fairness to promote continuous participation of data-owning par-
ties [2].

Parties can also voluntarily participate in an FLS without direct monetary incentives.
Instead, they could partake due to other benefits, like better model accuracy [10]. Ex-
amples can include participation for higher personal convenience, such as the next-word
prediction of virtual keyboards [43]. One can also imagine that, for example, a hospital
could be interested in partaking in an FLS if its disease detection model is improved [10].

3.2.9 Summary of Taxonomy

Dimension Mutually Exclusive | Collectively Exhaustive
Data Partitioning Yes Yes
Privacy Mechanism No No
Applicable ML Model No No
Heterogeneity Solution No No
Client Types Yes No
Client Setting Yes Yes
Comm. Architecture Yes Yes
Comm. Comp. Framework Yes No
Motivation of Federation No Yes

Table 5: Mutually-exclusive collectively-exhaustive assessment of FLSs taxonomy

The previous sections and Table 2 is an attempt to summarize the different elements
of an FLS based on the seminal literature [8], [2], [3], [L0]. While this taxonomy is
neither complete nor exhaustive, it enables the creation of the state-of-the-art literature
review. In this thesis, the categorization of the literature was based on those criteria. In
Table 5, the previous dimensions are assessed using the Mutually-Exclusive Collectively-
Exhaustive principle by Minto [57].

3.3 Personalized Federated Learning

The previous section characterizes FL, FLSs, and their components. They generally rely
on weighted averaging such as FedAvg [39]. While the performance of such protocols is
good for homogeneous clients, it faces challenges when dealing with heterogeneity, which
is often the case in practice [58]. The following part describes how heterogeneity may
create a need for personalization. Further, a taxonomy of PFL is shown.
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3.3.1 Need for Personalization

Recognizing that many FLSs operate on heterogeneous, non-IID data, we can observe
that performance deterioration may occur [59]. This is because of two different factors:

Client Drift. The first is called ’client drift’ and refers to slower convergence of FLSs
due to the heterogeneity of data [60]. This considerably slows down the training process
and negatively impacts model performance [58].

Local Data Generalization. Also, challenges may arise regarding local data general-
ization. While the global model is aggregated from local modal updates, that model is
not personalized for each participant. This is because, after all, FL. uses a global model
for all clients [61]. Yet, in many use cases, a tailored model for each user could benefit
the utility of the FLS [59]. Indeed, the discrepancy in performance between a global and
a personalized model emphasizes the need for personalization in the context of FL [44].

Let us envision a practical example highlighting the need to personalize models. We can
do this by taking the use case of next-word prediction for virtual keyboards [43]. After the
finalization of the training process, a new global model is deployed on the participating
devices. The same prediction pattern will be used across all user devices. However, each
texting pattern has nuances and cultural patterns, making them unique. We can argue
that having a tailored model for each user would improve prediction performance [59].
Thus, we can ask: "How can we leverage the global model in FL to find a ’personalized
model’ stylized for each client’s data?" Dinh et al. [61, p.1].

3.3.2 Taxonomy of PFL

The literature proposes many solutions to that question. For example, Zhao et al. [48]
improved model performance for non-IID data by training a global model with fractions
from all device information. Similarly, Liang et al. [62] propose an algorithm that learns
a local representation for each party while also training a global model. Also, Smith et
al. [47] suggest a novel optimization method considering communication cost, stragglers,
and fault tolerance, resulting in significant speedups of FLSs.

But how can we structure these approaches in groups? Several attempts to categorize

such forms of PFL can be found in the literature (63|, [13], [59]. We found that among
these papers, Tan et al. [59] provide the best overview for this thesis. This is because,
firstly, it has been recently published. Being up-to-date with the consistently changing
academic status quo is key, especially for a research field that developed as recently as in
the past few years [44]. Secondly, the paper provides the only comprehensive and holistic
survey of PFL specifically, to the best of our knowledge [59]. That PFL taxonomy is
presented in Figure 3. Note that both Deng et al. [63] and Mansour et al. [13] provide
a similar but less exhaustive categorization and should be viewed as augmenting this
taxonomy.
Tan et al. [59] generally distinguish between two overarching strategies for PFL. They
are marked as 'personalization strategies’ in Figure 3. Analogously to the two challenges
of FLSs mentioned earlier, the two strategies are separated into solving the problems of
heterogeneity and lack of personalization, respectively. The following section will explain
each personalization strategy and provide a recent academic paper to illustrate it.
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Figure 3: PFL taxonomy as in Tan et al. [59, p.2]

3.3.3 Global Model Personalization

The first strategy is called ’global model personalization’ and is concerned with solving
data heterogeneity. The averaging of results is negatively impacted due to client drift,
and this is addressed by personalizing the trained global model the participants. Firstly,
a global FL model is trained analogously to the FL process. Then, that model is person-
alized for the clients by training it on the client’s data [59]. Global model personalization
distinguishes between data-based and model-based personalization approaches.
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Data-based. The first approach category, ’data-based’; aims to reduce data heterogene-
ity in the participating party’s datasets. Two types of variations exist in this approach
category. Data augmentation is the first [59|. Here, data sharing makes the individual
participant’s data more homogeneous. This can happen, for example, through distribut-
ing a subset of data among all clients. Zhao et al. [48] demonstrated that sharing five
percent of the global data among all clients can increase model accuracy by circa 30% [48].
The taxonomy refers to the other variation of data-based approaches as ’client-selection’.
It modifies the strategy by which participants are picked for every federated training
round. For example, a paper formalized a participant-selection approach for every
learning round to optimize accuracy and minimize the number of rounds required [64].

Model-based. The last category of personalization approaches in the context of ’global
model personalization’ is model-based personalization. In contrast to the previously
mentioned data-based approaches, it is not concerned with allocating data among the
clients but with creating a well-performing global model [59]. Firstly, let us examine
Transfer Learning (TL) as an approach. It aims to reduce the gap between the global
and local models by transferring knowledge from a source domain to a target domain. A
popular example of this is the 'FedMD’ framework. Each model is first trained on public
data, which creates a global model. Then, a local model is trained on the private data.
In the final step, a personalized model is created by refining the local model with the
global model’s knowledge through TL [65].

Regularization is the second 'model-based’ personalization approach. This technique
is concerned with reducing local loss by limiting the impact of local updates, resulting
in improved convergence stability and a better generalization of the global model [59].
For example, an algorithm called 'SCAFFOLD’ uses variance reduction to correct for
the client drift of FedAvg. The authors prove that the algorithm successfully works with
heterogeneous clients and converges in fewer rounds [60].

The final approach in this category is meta-learning. That method is often described
as ’learning to learn’ and refers to how systems improve their ability to adapt to domains
by using prior knowledge. Fallah et al. [66] leveraged meta-learning to reformulate the
goal of FedAvg: instead of learning a global model that performs well on most tasks, the
aim is now to create a good initial global model that works well on heterogeneous tasks
after adaptation to local data [66]. Their approach is shown to outperform FedAvg when
it comes to personalization.

3.3.4 Learning Personalized Models

"Learning personalized models’ is the second strategy, standing in contrast to the
first. Instead of adapting and personalizing the global model, it learns individual
personalized models. The taxonomy groups these approaches into ’architecture-based’
and ’similarity-based’ [59].

Architecture-based. Architecture-based approaches attempt to personalize models by
individually tailoring the model configuration. The first way to achieve that is parameter
decoupling. It functions by separating the model parameters used in the local and the
global model. This technique allows for a degree of personalization by enabling specific
components of the model to adapt to the unique characteristics of local data while main-
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taining a shared model structure for standard features learned across all clients [59]. An
example here is Federated Learning with Personalization Layers (FedPer), as in Arvazha-
gan et al. [67]. The authors separately train the base layer on global data and the top
layers on local data.

Alternatively, Knowledge Distillation (KD) can be used for architecture-based
approaches. In the context of NNs, it is concerned with transferring knowledge from
teacher to student models. Several studies demonstrate the utility of this practice in the
context of VFL, where the global model teaches the local model while performance is
improved [68], [11], [69].

Similarity-based. The last category of personalization approaches is called ’similarity-
based’. Here, each participant learns a personalized model, while personalized models
have similarities, as their participants are alike [59]. Model interpolation combines the
global and local models into a personalized model for each participant. The goal is to
find the optimal mixing parameter for each client [63]. For example, Deng et al. [63]
introduce model interpolation using Adaptive Personalized Federated Learning (APFL)
and demonstrate its effectiveness.

Smith et al. [47] argue that multi-task learning, the second approach of similarity-
based personalization, is naturally suited to solve problems in FL. Multi-task learning
aims to train a model that jointly performs several connected tasks. One can consider each
client a separate task in FL. Using Federated multi-task learning can leverage domain-
specific knowledge and thus improve performance through personalization.

Clustering is the final approach to be discussed. Scientists at Meta Al propose a novel
approach called ’group personalized FL’, which falls under that category. For inherently
partitioned groups, each client can leverage the knowledge from its respective group and
improve its model. This is done by fine-tuning the global model through another FL
process over the client group |70].

3.4 State of the Art of PFL in Advertising

"In [...] targeted advertising delivery, the heterogeneous content of data samples
and models at different nodes is an important issue. However, most FL frameworks
overlook this problem, resulting in defects in practical applications" [12] p.5.

The previously mentioned challenges of FL are equally relevant in advertising. Addition-
ally, this is a significant challenge for CTR prediction models in FL. As a result, the
training of such models is often slowed down, and accuracy is suboptimal [58].

PFL, as in the previous section, is used to tackle these FL challenges. With PFL
being an emerging research topic, narrowing down on advertising reduces the amount of
existing research substantially [44]. RQ1 concerns a state-of-the-art literature table for
PFL in advertising. For that purpose, the following criteria are used:

1. The publishing date needs to be from 2016 or later, taking MacMahan et al. [39]
as a pivotal turning point for FL research.

2. The paper needs to be application-focused, not merely providing theoretical proof.
3. Further, it must tackle a problem in advertising or be firmly placed in that domain.

4. That problem must be related to or be concerned with CTR prediction.

36



5. Lastly, the experiment must be performed on real-world data, not dummy data.

The state of the art is summarized in Table 6 and Table 7. To create these tables,
both the taxonomy of FLSs (see Table 2) and the taxonomy of PFL (Figure 3) were
consulted. Only the most relevant aspects were included to ensure a focused, state-of-
the-art summary. As a result, each column serves the purpose of making the tables a
comprehensive yet narrow overview.

Both tables examine the same ten distinct academic papers. Table 6 describes the
more essential characteristics of the paper in question and the type of personalization
used. Table 7 is concerned with explaining the results of the studies. Both tables will be
discussed in the following section. The aim with this is not to thoroughly describe every
paper, as a more concise approach will be taken. The literature will be analyzed and put
into context on a higher meta-level. Similarities and differences will be evaluated. It is
thus an attempt to summarize the state of the art as of the writing of this thesis within
the five constraints provided above.

3.4.1 Set-Up

Dataset Use Privacy Personal-
Author and Date Source Case Mechanism Model ization
Ren et al. (2022) [68] Criteo, CTR ModAg, HE | Regression | KD
Taobao
Li et al. (2022) [69] Criteo, CTR, CVR | ModAg NN KD
Game-Ad
(Tencent)
Li et al. (2022) [11] Criteo, CTR ModAg NN KD
Avazu
Wan et al. (2023) [71] Criteo CTR ModAg, DP | NN KD
Su et al. (2023) [12] Avazu, CTR ModAg NN KD, TL
Taobao
He et al. (2022) [72] Avazu CTR ModAg NN Meta-
Learning
Liu et al. (2022) [58] Tmall CTR ModAg NN Meta-
Learning
Rong et al. (2022) [73] Algo.qq CTR ModAg NN Meta-
(Tencent), Learning
Taobao
Wei et al. (2023) [74] FedAds (Al- | CVR ModAg, DP | NN Data  Aug-
ibaba) mentation
Hejazinia et al. (2022) [75] | Taobao CTR ModAg, DP | NN Clustering

Table 6: Set-up and personalization in state of the art of PFL in advertising

The set-up of the ten papers is described in this section and Table 6. Notably, we can
find similarities regarding the origin of the dataset used. Firstly, they strongly overlap
in their dataset, as displayed in Figure 4. Secondly, they are all produced by large
advertising companies or retailers. Thirdly, they are all of Chinese origin, except Criteo.
On one hand, this allows for some comparability among the papers. On the other hand,
it naturally leads to a lack of diversity regarding the datasets used in the state of the art.
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Criteo Tahao Avazu Game-Ad Tmall Algo.qq FedAds

Figure 4: Datasets used in state-of-the-art papers

Not only, as Wei et al. [74] argue, is there a lack of standardized datasets, but authors
often also adapt the few datasets publicly available. Often, these are not federated by
themselves, so the federation is then simulated. This is the case for all but one dataset,
the one used in [74]. This brings challenges to the comparability of results. Further, Wei
et al. [74] propose the large-scale dataset they collected from Alibaba called 'Fed Ads’.
This dataset is genuinely federated, as one part belongs to a publisher and the other
to an advertiser. Thus, they propose this dataset and a set of metrics as a benchmark
for further studies in the realm of PFL in advertising. Both [72] are referred to in that
benchmarking paper [11].

Interestingly, nine of the ten papers have CTR prediction as their goal. The other
is concerned with conversion rate (CVR). CVR is closely related to CTR but is more
complex to estimate because it is rarer, among other factors [21]. Also, only a few use
cases of FL in advertising have been found while creating the state-of-the-art tables, such
as facilitating private data exchange between advertisers [76]. CTR prediction seems to
be a valuable use case and somewhat easy to facilitate [21]. This combination might be
one of the reasons for the popularity of CTR in the state of the art. Considering the
above, it becomes clear why NNs are predominantly used, with only one paper using a
regression model instead [68]: NNs are a popular and successful form of CTR prediction
in advertising [77].

Looking at the privacy mechanism used as in Figure 5, it is unsurprising to see ModAg
used by all, as it is an inherent property of FLSs [39]. Notably, only four papers go beyond
solely relying on ModAg, with three using DP and one using homomorphic encryption.
He et al. |[72] explore privacy in the context of PFL, being one of the first papers to
directly address the issue of label leakage in VFL. It provides a thorough privacy analysis,
including risks and potential solutions. The work, however, does not directly deal with
advertising but tests its novel approach on an advertising dataset [72].
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Model Aggregation Homomaorphic Encryption Differential Privacy

Figure 5: Privacy mechanisms used in state-of-the-art papers

3.4.2 Personalization Approach

Comparing the state of the art (see Table 6) to the taxonomy, we find that both
personalization strategies, ’global model personalization’ and ’learning personalized
models’, are included. Also, all personalization categories, namely data-based, model-
based, architecture-based, and similarity-based, are represented at least once in the
table. However, the distribution of personalization approaches is somewhat uneven (see
Figure 6). While KD is used five times and meta-learning three times, transfer learning,
data augmentation, and clustering have one representative each. The approaches are
further examined in the following sections.

Knowlege Distillation Transfer Learning ~ Meta-Learning  Data Augmentation Clustering

Figure 6: Personalization approach used in state-of-the-art papers



Knowledge Distillation. Ren et al. [68] can be considered a pioneer work when it comes
to PFL in advertising through KD [11]. Recognizing the limited ability of VFL systems
to infer for non-overlapping data samples, the authors propose KD as a solution. Firstly,
the global model, the teacher model in this paper, is trained on combined datasets. Then,
the local model, acting as the student model, is taught by the global model. However, the
local model only has access to its local dataset and the label information provided by the
teacher. In that way, a better inference of the local model without direct access to global
data is possible [68]. While an advertising dataset is used in this paper to demonstrate
the effectiveness of the novel approach, it is not specifically targeted toward advertising
as a use case. Further, this is the only paper to train a regression model and deploy HE
for additional privacy [68].

This circumstance changes in the second paper to be presented [69]. By contrast, it
addresses challenges typical to advertising, like a lack of data labels and easy deploya-
bility on advertising systems (as systems often differ in computation power or network
power, for example). The first issue is managed by utilizing both labeled and non-labeled
data available through self-supervised learning. The second challenge is addressed by
minimizing the system requirements of the approach. This is done by facilitating the
knowledge of federated models to be distilled into an independent local model, limiting
the need for cross-party operations [69].

A similar focus on real-world advertising deployability is provided in Li et al. [11].
However, the paper considers the entire sample and feature space. A practical distilla-
tion framework for feature correlation is proposed for that purpose. The authors name
their approach ’vertical semi-FL’, a hybrid between full FLS and a non-federated model.
Both [69] and [68] are included in that definition. That term can be interpreted as another
way of expressing PFL, although that name itself is not directly mentioned [11].

Focusing less on the domain of advertising, Wan et al. |71| emphasize privacy
preservation in their work. Using a double-distillation approach, knowledge can be
transferred despite the restraint of limited data overlap. Importantly, it explicitly targets
the problem of potential privacy leakage by limiting the amount and capacity of server
communication and introducing an offline training scheme. This improves privacy and
reduces communication costs. Further, DP was introduced to strengthen privacy.

Transfer Learning. In their approach, Su et al. [12] introduce two properties unique to
this state-of-the-art overview. It is the only paper presented here that uses two different
personalization techniques and leverages TL. Their framework, named Fed-TLKD, is
specifically designed for advertising. The framework is divided into two modules. The
first uses maximum average difference TL to select valuable information from sample
data and improve the global model’s performance. In particular, TL is applied to
enhance the adaptability of the global model to various ad-targeting datasets, like
those containing unique text data. Firstly, an optimal aggregate model is computed,
considering each client’s unique data distribution. This ensures that the global model is
customized to the specific needs of each participant. The second module utilizes KD.
Here, local models are trained by a global (teacher) model. Thus, both approaches are
used to achieve personalization.

Meta-Learning. Similarly to Li et al. [69], He et al. |72] utilized self-supervised learning

to use non-labeled data and improve model performance. Yet, the key difference is that
He et al. [72]| leverage meta-learning to combine cross-party and local self-supervised
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learning methods to achieve that. It adapts the learning process based on the data it
encounters across parties. As a result, the model better understands how to train itself
on different datasets.

The approach proposed by Liu et al. [58] also falls into the meta-learning category
for model personalization. In contrast, the method does not use self-supervised learning.
Instead, it optimizes ModAg and adjusts learning rates dynamically across participants.
Meta-learning is used here to adapt the teaching of the global model consistently. There-
fore, client heterogeneity takes is taken into account.

The approach outlined in Rong et al. |73] involves users, advertisers, and ad servers.
Initially, a base model is trained through FL, with user devices optimizing the model
locally based on their local data and advertisers aggregating the weights of ads. Following
this FL, the model leverages the embeddings developed during this phase to initiate a
meta-learning process. The model further uses a gradient-based meta-learning approach
for fine-tuning. The framework can dynamically adjust to new or less frequent data
by initializing the meta-learning with the previously learned federated embeddings.
It emphasizes the improvement of the model’s accuracy and relevance in real-world
advertising scenarios.

Data Augmentation. The only paper leveraging a data augmentation in the state-
of-the-art tables is introduced in |74] and is called Diffu-AT. It addresses the challenge
of incorporating unaligned samples. Typically, these samples would not be usable due
to missing features, which is solved here by generating these missing features through
a diffusion model. This approach augments the data, creating synthetic features that
fully utilize unaligned samples. Incorporating these synthetic features makes more
comprehensive training of the federated model across diverse data sets possible.

Clustering. The last paper to be introduced and the only one leveraging Clustering for
personalization is Hejazinia et al. [75]. It uses the ’federated ensemble learning’ approach
to tackle the challenges associated with recommendation systems. The method entails
grouping client devices by distinctive characteristics and then training multiple model
versions on these clusters. As a result, each cluster’s model specializes in the traits of the
group. After training, the models are aggregated on a central server. Here, the models
are used for inference. The final prediction is created by passing the output of each cluster
model into the ensemble aggregation layer.

3.4.3 Results

Table 7 presents the results of the state-of-the-art literature examined in this thesis. All
papers used at least one model to compare and benchmark their results. Often, a local or
global model is used. This helps compare FL with non-FL approaches. We can emphasize
that FL increases privacy due to ModAg and outperforms them in prediction accuracy,
as seen in the AUC or accuracy metrics. Other FL models are also used in the papers
for comparison. The comparison is important to highlight the need for personalization
in advertising and is done by using ads datasets with popular domain constraints, like:

e Non-overlapping data samples (e.g. [68], [71]).
e A lack of data labels (e.g. [69]).

e Device and system heterogeneity (e.g. [69], [71]).
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Comparison Performance Privacy

Author and Date Model(s) Metric Metric | Result
Ren et al. (2022) [6§] Local AUC - Better
Li et al. (2022) [69] Local, FL AUC - Better
Li et al. (2022) [11] Local, FL, [68], [69] AUC, Rellmp - Better
Wan et al. (2023) [71] Local, Global, FL, PFL Accuracy - Better
Su et al. (2023) [12] Global, PFL AUC, Accuracy, Loss | - Better
He et al. (2022) [72] Local, Global, FL, PFL | AUC, F1 Score CAP Better
Liu et al. (2022) [58] Global, FL AUC, Logloss - Better
Rong et al. (2022) [73] FL AUC, Logloss - Better
Wei et al. (2023) [74] Local, FL, PFL, [69], [72] | AUC, NLL ALeakAUC | Better
Hejazinia et al. (2022) [75] | FL AUC, Accuracy - Better

Table 7: Results of state of the art of PFL in advertising

e Increased need for privacy (e.g. [71]).

Lastly, other PFL methods are also sometimes used to compare the papers. These

contributions enable a more coherent and comprehensive overview of the existing
methods. Interestingly, two papers in the state-of-the-art table compare their models to
ones used in other works appearing in it [11], [74].

Metrics. Apart from accuracy and AUC, F1 scores are used to assess the performance
of the models. Loss is another popular metric, also reflected in Negative Log-Likelihood
(NLL) and logloss [74]. Perhaps the most unique performance measure in the papers is
called Rellmp, used in [11]. It is a popular metric in the industry and is used to compare
a model to a baseline model [78]. More formally, they define it as |78, p.10]:

AUC(model) — 0.5
AUC(baseline) — 0.5
In comparison, only two papers measure privacy directly through metrics. He at al. [72]

quantify the privacy-utility trade-off using Calibrated Averaged Performance (CAP).
They define it as [72, p.10]:

Rellmp = x 100%

"For a given protection mechanism My with a protection strength parameter \ and an
attacking mechanism A, the Calibrated Averaged Performance (CAP) for a given privacy-
utility trade-off curve is defined as follows,

)\11

Y U(G)) * E(Dy, D), (1)

A=)\

1
v

CAP(Mjepp,.n}, A) =

where Gy = M\(G) is the VFL model protected by M, D, = A((;’A,D) s the data
recovered by the attacking mechanism A from eN gien the private data D as input, U(-)
measures the main task utility (e.g., accuracy) of a given model, and E(-) measures the
distance between recovered data Dy and original data D."

The last privacy metric mentioned here is named ALeakAUC. It helps assess the ability
to defend from a label inference attack [74]. The metric does so in three steps |74, p.9]:
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. Create a baseline model without any defense approach. Calculate AUC given labels
inferred by an attacker as LeakAUC, .

. Learn a new model with a defense approach and compute the AUC for the inferred
model analogously to 1 as LeakAUC,yp,.

. Calculate ALeakAUC as follows:

(LeakAUCqyp — LeakAUCh,q.)

ALeakAUC = LeakAUCh e
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4 Implementation

This chapter examines how PySyft and ML are implemented to answer RQ2 and RQ3.
It begins by explaining PySyft and its practical deployment. Both the dataset and data
modifications are subsequently described. Further, the implemented ML model is dis-
cussed. Then, the metrics used to assess the model’s performance are introduced. Also,
the comparative metric of Rellmp is shown. The chapter concludes by detailing the four
different types of architectures implemented.

4.1 PySyft

Yang et al. [2] and Bonawitz et al. [8] provide overviews of implementation frameworks for
the simulation of FL. These are often developed as open-source initiatives [8]. They fa-
cilitate the creation proof-of-concept applications, accelerating the development of FLSs.
Below is a short selection [2], [8]:

e TensorFlow Federated®.
e Federated Al Technology Enableri?.
e PySyft [17].

4.1.1 Introduction

This thesis implements PySyft, which was proposed by Ryffel et al. [17]. PySyft was
selected for several reasons:

e [t has a considerably large and active open-source community and is continuously
developed further!!.

e [t is somewhat easy to use and implement for people familiar with Python and data
science (e.g. it can be used via Jupyter Notebooks) [14].

e It enables the simulation of FL, which is useful for proof-of-concept applications [2].

In their work, they train a ML model without providing direct access to that data. They
denote a distributed approach where models are trained on decentralized data residing
on remote devices, such as mobile phones [17]. Instead of bringing the data to the
machine training the model, the code for training the model is sent to the devices. The
remote devices receive the current model and subsequently train that model on their
data. Afterward, the changes made to the model are summarized and sent back, with
the training data of the device remaining local throughout the entire process. Also,
the implementation averages the updates of several remote devices and does not store
individual updates, thereby improving both model quality and privacy. According to the
authors, the system’s most significant drawback is the long training time [17].
Researchers behind Ryffel et al. [17] and Trask et al. [1] created OpenMined!?, an open-
source software community with the goal of achieving structured transparency through

9tensorflow.org
10fate.fedai.org
Hgithub.com/OpenMined /PySyft
2openmined.org
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PETs. Its vision is to provide access to data without the negative consequences that
might come from misuse, such as intellectual property theft and discrimination.

In particular, OpenMined is leading the development of PySyft. Ziller et al. [14]
describe PySyft as an open-source library that facilitates the creation of secure, private
ML models. It integrates with deep learning frameworks like PyTorch. The primary
objective of PySyft is to enable the use of privacy-preserving techniques, making them
accessible through commonly used interfaces and tools. Additionally, it allows for
incorporating additional PETs, such as DP and SMPC [14].

Functionality. PySyft’s functionality is centered around tensors, which extend those
from existing ML libraries (e.g., PyTorch or TensorFlow), adding further functionali-
ties(e.g. the ability to encode). This happens via chains where each connected tensor
adds a particular feature, making PySyft modular [14]. So-called workers, composed of
a server and a client, own the tensors and can use them for computations. Workers
communicate with each other via messages to perform remote executions, which can be
cross-platform (e.g. Python to JavaScript). These remote computations are executed
through pointers [14].

The architecture of PySyft is illustrated in Figure 7. The central idea is that the data
and code are separated. The data is stored on the side of the DO, which has control
over it. The Data Scientist (DS) is a peer node that can request certain computations
on the data stored with the DO [79]. Any operation on the code by the DS on the DO’s
data is wrapped into a Remote Procedure Call (RPC) and sent to the DO. A remote
computation of any object or library mapped to the abstract syntax tree is possible. In
addition, agents are used to verify the identity and credentials of both actors [79].

The DO can, in turn, review both the code and the request result. They can fur-
ther approve or deny it manually or via an automatic policy. If approved, the result is
returned to the DS and can be encrypted [79]. In that way, a computational operation
was performed on data without revealing it. The architecture aims to provide a trans-
parent layer for the two actors, enabling privacy preservation without much change to
the original code [79).

4.1.2 Deployment in Thesis

This subsection describes how PySyft was installed and implemented for this thesis.

Installation. For the installation, the macOS tutorial for PySyft was used!3. In short, it
allows deploying a PySyft domain on the local machine. The process includes installing
and activating Python packages like Conda, pip, and jupyterlab. HaGrid is a command
line tool that speeds up the deployment of PyGrid, which provides peer-to-peer networks
of DOs and DSs using PySyft'4. Syft Version 0.8.4 was used for all implementations. For
replication purposes, it is to be noted that many other versions of Syft may not work.
The implementation was done via Jupyter Notebooks and can be accessed here®®.

Bopenmined.github.io/PySyft /install _tutorials/osx 11 5 1.html
Hgee Footnote 11
15github.com/PalexGoneGit/PFLAdsPySyft
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Figure 7: PySyft architecture adapted from Hall et al. |79, p.3|
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Passing of Model Weights in the Implementation. First, the model weights are
extracted, and noise with a standard deviation of 0.01 is added. Then, both DOs login to
their PySyft domain, convert their weights into Syft ActionObjects, and set them in their
domain (Figure 8). The DS then defines a function to access the weights and requests
it to be executed (Figure 9). After approval by the DOs, the DS receives and averages
both model weights, creating the global weights (Figure 10).

Initialize Model Weights

model_weights_obj = sy. . (noisy_model_weights_dict_1)

(model_weights_obj. ), model_weights_obj.id)

<class 'dict'> 15f1ldb5a34514badac22203c5af9ccad

Convert Model Weights to Syft ActionObject:

weight_domain_obj domain_client. . . . {model_weights_obj)

(weight_domain_obj.id)

INFO: 127.0.0.1:52636 - "POST /api/v2/api_call HTTP/1.1" 200 OK
15f1db5a34514badac22203c5af9ccad

Figure 8: Initialization and conversion of model weights in PySyft

Define a Weights Access function

sy.syft_function(
input_policy-=sy. ) (weights-weight_domain_obj.id),
output_policy=sy. 0,
(weights):
weights

127.0.0.1:52648 - "POST /api/v2/api_call HTTP/1.1" 200 OK
127.0.0.1:52651 - "GET /api/v2/metadata HTTP/1.1" 200 OK

SyftSuccess: Syft function ‘fetch_weights' successfully created. To add a code reques

Access Weights

weights_pointer - fetch_weights(weights-weight_domain_obj)
weights_local = weights_pointer. 9]

Figure 9: Definition of weights access function and access of weights in PySyft

Fetching the pointer and the actual weights

25] :
weights_ptr = fetch_weights(weights-weight_domain_obj)

weights_local - weights_ptr. ()

Figure 10: Fetching of pointer and weights in PySyft
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4.2 Dataset and Model

As described in Section 1.1, the implementation highlights a practical use case. Two
media companies are switching from a centrally trained ML model for CTR prediction
to a federated setup. The CTR prediction problem has been validated as central to the
advertising industry in Chapter 2 and Section 3.3.

4.2.1 Original Dataset

To simulate the CTR prediction problem, the ’display advertising challenge’ dataset by
Criteo was selected!S, available for download here!”. It was chosen as it is:

1. Fitting to the research scenario,

2. Of sufficient size for ML,

3. Generally available and free to use publicly, and

4. Among the most used datasets in the state of the art (see Figure 4).

The source provides a ’training’ and ’test’ dataset. Only the first contains a label, so the
second is useless for this thesis and discarded. The remaining dataset contains feature
values and click feedback for display ads and has been collected by Criteo over seven
days. It includes 1,264,729 rows, each representing an instance of an ad being served.
There are 40 columns, with the first being the label, indicating whether an ad has been
clicked (1) or not (0). The positive and negative examples have been sub-sampled at
different rates to reduce data size. The other 39 columns are divided into 13 features in
the form of integer values and 26 categorical features. The latter has been hashed for
privacy purposes. The semantics of all features are undisclosed, while some features may
have values missing. With the raw CSV file loaded and 'not applicable’” values replaced
with zeros, an excerpt of the dataset can be seen in Figure 11. By dividing the total
negative labels by the total number of rows, we can calculate the accuracy of guessing
the label to be 0 for every instance, which we can refer to as a baseline (74.63%)

4.2.2 Dataset Modifications

While the original dataset is popular in the state of the art and suitable for ML, it is
relatively homogeneous. This thesis aims to exhibit PFL, so reflecting the need for per-
sonalization is key. As argued in Section 3.3, PFL is particularly useful for heterogeneous,
non-IID data. Therefore, six dataset variants are used, displayed in blue in Figure 12.

Firstly, the variations are split into the entire dataset (’full dataset’) and a variant
using one-tenth of all rows. The full dataset is sorted chronologically and thedividedit in
half. For the 10% dataset, the rows are sampled randomly. All further variations exist
analogously for both datasets.

Two data modifications, factor 2’ and ’random noise’, are deployed and explained
below. When the dataset is not modified, it is called ’regular’. These three variations
exist twice for the ’full dataset’ and '10% dataset’. This results in six distinct datasets
(shown in blue in Figure 12).

16kaggle.com/competitions /criteo-display-ad-challenge
7tianchi.aliyun.com /dataset /144733
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[2]:
columns ['label', *(f'I{i}' for i in (1, 14)), *x(f'C{i}' for i in (1, 27))1
df pd.read_csv('/Users/alex/Thesis/New Dataset/train.txt', sep='\t', names=columns).fillna(@)
df

label c17 c18 c19 Cc20
0 J ... ebba7672 f{54016b9 21ddcdc9 b1252a9d
07c540c4 b04e4670 21ddcdc9 5840adea

8efede7f 3412118d (0]

1e88c74f 74ef3502 0

1e88c74f 26b3c7a7 0

1364724 0.0 .0 41171.0 90.0 I ... 07c540c4 ab194a92 (0]

1364725 (X0} 3 70 3912.0 400.0 - ... ebba7672 698d1c68 0

1364726 0.0 X0 .0 17375.0 0.0 I .0 .. ebba7672 7b06fafe 2f4b9dd2 a458ea53
1364727 0.0 0 49.0 .0 16610.0 0.0 ! ... 1e88c74f c21c3ed4c efa3470f a458ea53
1364728 1.0 106 1.0 152.0 33.0 ! O oo 0 0 0 0

1364729 rows x 40 columns

Figure 11: Excerpt of dataset

Full Dataset 10% Dataset

Regular Personalized Regular Personalized

| o b |

Factor 2 Random Noise Factor 2 Random Noise

Figure 12: Six variations of dataset

49



Factor 2. The ’factor 2’ datasets are created as follows. Firstly, the dataset is split at
half of the rows. The first part has its integer values amplified by multiplying them by
two. At the same time, the second part has its integer values dampened via division by
two. The split datasets’ mean integer values are contrasted in Figure 13.

. Amplified Features
BEm Dampened Features

0.00 - - - I . . | I I -
-0.02 - | I | I
11 12 13 14

0.04 -

0.02 -

Mean Values

—0.04

15 16 17 18 19 110 n1 112 n3
Features

Figure 13: Mean integer values of factor 2 dataset

Random Noise. The other method of artificially instilling heterogeneity into the
datasets is the addition of random noise. As in the ’factor 2’ method, the dataset is split
in half. Then, random noise is created with a mean of 0 and a standard deviation of 0.5.
The shape of the noise array matches the shape of the slice. Finally, the random noise is
added to the first slice. The second slice is kept as is. This introduces randomness and
variability to the data. Figure 14 illustrates the resulting mean integer values.

Data Slices. For all implementations besides ’central,” data halves (data slices)
are created for separate DOs. This is analogous to the 'before’ and ’after’ scenarios
(Figures 1 and 2). For the 'factor 2’ method, DO1 receives the amplified, and DO2 gets
the dampened data slice. In the case of 'random noise’, DO1 receives the altered data
slice, whereas DO2 obtains the unmodified half. There is only one data owner in the
‘central’ architecture, so the data slices are merged again.
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o
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Figure 14: Mean integer values of random noise dataset

4.2.3 Model and Metrics

For all dataset variations and DOs, the ML model is identical and based on the 'Deep
Learning Recommendation Model’, proposed by researchers at Meta [80]. The model
is designed explicitly for recommendation tasks, CTR prediction in particular. It is
also well suited for the dataset, as it handles numerical and categorical features in an
efficient and scalable manner [80]. A TensorFlow implementation of the 'Deep Learning
Recommendation Model’, submitted publically for Criteo’s ’display ad challenge’, was
used as a code template!®.

As the dataset includes both numerical and categorical features, the latter must be
encoded into numerical for the model to function. Their cardinality is partly very high (up
to over 400,000). Known as the ’curse of dimensionality’, using some encoding techniques
here can cause slow computation [81].

This is solved the following way. First, each categorical feature is mapped to dense
vectors. The numerical features are also transformed, resulting in a dense representa-
tion [80]. An 80/20 training/test split is used. Additionally, 20% of the test data is used
for validation to improve model tuning. Second, the 'Deep Learning Recommendation
Model’ is defined. The bottom layer prepares both feature types to function together [80].
It is initialized with two hidden layers, while the top layer uses three. The top (or
output) multilayer perceptron post-processes the results and sends them to a sigmoid
function to receive a probability. For the compilation, keras.optimizer.Adam is used in
its legacy version due to hardware constraints. Binary cross-entropy loss is used here.
The learning rate is defined at 0.0001, five epochs are used, and the batch size equals 128.

Bhttps:/ /kaggle.com/code/egordm /deep-learning-recommendation-model-dlrm
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Prediction Quality Metrics. The performance metrics used for analysis are accuracy,
AUC, and loss. They were selected for their utility in reflecting the quality of the
prediction. Also, they were chosen to build upon the state-of-the-art papers analyzed in
Figure 7, as they are popular there. They are used to illustrate the model’s prediction
quality directly, hence each is referred to as a Prediction Quality Metric (PQM) or
collectively as PQMs.

Rellmp. Further, Rellmp, as explained in Section 3.4.3, is calculated where applicable.
We can leverage Rellmp to measure the relative improvement of the federated model
compared to the local model of each implementation. It was chosen for its unique ability
to do so, its appearance in the-state-of-the-art table (see Figure 7), and its popularity in
the industry [11].

We can use Rellmp to see if the FL or PFL architecture causes the model predictions
to improve. If Rellmp is above 100%, the architecture enhances the model predictions.
That statement can be reversed if Rellmp is below 100%. All metrics are presented
in Tables 11 - 16 in Appendix A.7. They are summarized, analyzed, and discussed in
Chapter 5.

4.3 Architectures

The architectures were selected for the following reasons. Firstly, they are fit to answer
our RQs. As RQ2 is concerned with the implementation of FL, using FedAvg is key. It
is among the most seminal and popular versions of FL [39], [44]. Further, RQ3 and RQ4
are related to the implementation and comparison of PFL, so two PFL architectures were
selected.

The reasons for selecting the PFL architectures are now discussed. Firstly, they
represent two different personalization approaches (parameter decoupling vs model inter-
polation), as in the PFL Taxonomy in Figure 3. Implementations of these approaches
are yet to be found in the state-of-the-art literature (see Table 6).

Secondly, they express two different categories of personalization approaches:
architecture-based and similarity-based. These categories of personalization are indeed
already represented in the state-of-the-art table. The approaches are thus yet to be im-
plemented in the state-of-the-art literature, but similar approaches have already been
implemented. Therefore, this thesis attempts to introduce both methodical standardiza-
tion and heterogeneity to enable a comparison.

Finally, we turn to practical reasons. Both PFL approaches are demonstrated to
work with NNs, which is the type of model used [63], [13]|. Also, these architectures (in
a simplified form) were found to be realistically implementable, considering the technical
limitations of this thesis. These limitations are further discussed in Section 6.2.
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4.3.1 Centralized

The centralized architecture is the most straightforward and is representative of the before
scenario, as seen in Section 1.1 and Figure 1. The implementation of the central model
is depicted in Figure 15. The centralized approach encompasses a model being trained
on training data, and then testing that model on testing data to evaluate its prediction
quality.

O—> Train Model *»O

Figure 15: Implementation of ’central’

Parties
Data Owner 1 & 2

4.3.2 Federated Averaging

FedAvg, the first federated architecture, is displayed in Figure 16. Here, model weights
are passed as described in the Section 4.1.2. Both DOs then use the new global weights to
train the model on their local data. Finally, the performance metrics are calculated. This
performs ModAg using a simplified version of the FedAvg algorithm (see Appendix A.4).

4.3.3 Adaptive Personalized Federated Learning

Mansour et al. [13| propose that the constraints of FL give rise to three different ap-
proaches for algorithms for model interpolation for personalization:

e User clustering, by training a model for subsets of users.
e Data interpolation, by training a model on a combination of local and global data.

e Model interpolation, by training a local and global model and using their combina-
tiomn.

Deng [63] argues that the first two of these approaches tend to have practical draw-
backs, as privacy is reduced, e.g. when meta-features are collected from participating
parties [63]. Building and expanding upon the third schema, the authors propose APFL.
This method belongs to the category of similarity-based approaches and is concerned
with model interpolation (see Figure 3).

In APFL each participant trains its local model first. The personalization happens
by mixing the global and the local model weights to create a personalized model for each
client. This combines the global model’s robustness with the local model’s personaliza-
tion. That algorithm is described in Appendix A.5.
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Figure 16: Implementation of FedAvg in PySyft

The APFL architecture is implemented in this thesis (see Figure 17). Initially, it
follows the same approach as the FedAvg implementation. This changes after the global
model dictionary is sent to the DOs. Instead of directly applying the global weights to a
new model, they are combined with the previous local weights into a new, personalized
model dictionary. In this case, «, the mixing parameter, is set to 0.5. Finally, the new,
personalized model dictionary is used to deploy the model and the metrics are calculated.
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Figure 17: Implementation of APFL in PySyft
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4.3.4 FedPer

The second PFL approach implemented in this thesis relies on local fine-tuning. Ar-
vazhagan et al. [67] introduce a PFL algorithm with personalization layers for NNs. This
method belongs to the category of architecture-based approaches, more specifically, pa-
rameter decoupling (see Figure 3).

That method, called FedPer, trains the model base layers using FedAvg. The person-
alization layers are trained only on local data. Please see Appendix A.6 for the specific
algorithms. For an overview of the FedPer implementation in the thesis, please see Fig-
ure 18.

First, the DOs’ base layer and top layer models are individually trained on their local
data. Only the bottom layer model dictionaries are passed through PySyft in the same
way as before, and the DS combines them into the global model dictionary. Each DO
retrains the base layer model with the global model dictionary. In the final step, each
DO’s bottom and top layers are merged into a personalized model, whose performance
metrics are then calculated.
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Figure 18: Implementation of FedPer in PySyft
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5 Results, Analysis, and Discussion

The following chapter describes the implementation results. Then, a thorough analysis of
the outcomes structured by architecture follows. Lastly, the discussion section uses that
same structure to interpret the results.

5.1 Results

There are a total of six pairings of dataset variants and architectures. They are shown
starting Table 11 until Table 16 in Appendix A.7. Each table displays a unique dataset
variant with all architecture combinations used. Since all architectures besides ’central’
have two variants, one for each data slice as in the DO1 and DO2 split, both results are
shown for each architecture variant. The respective data slice result is indicated with a
1 or 2 at the end of the architecture name column (e.g. FedAvgl or FedAvg2), leading
to seven columns for each table. The results for each metric - architecture - dataset
combination are thus shown in the respective cell of the appropriate table.

Performance Metrics. Performance metrics include the PQMs and Rellmp. For all
architectures besides ’central’, all performance metrics were calculated using the final
federated model (not the first, local model). Due to its nature, the 'central’ architecture
only has one model output and no federated model. Therefore, the Rellmp - Central
combination is always empty, as no relative improvement calculation is possible for that
architecture. For the remaining architectures, Rellmp is calculated as specified in the
formula in Section 3.4.2. For ease of reuse and accessibility, the performance metrics are
aggregated in table form in Appendix 27 and as a CSV file on GitHub!®.

Performance Metrics Comparison vs Central. To promote ease of readability
and comparability, the metrics are shown in one comprehensive table, namely Table 8.
Each architecture-DO-Dataset-modification pairing receives a column for that purpose.
Instead of showing the results directly, they are contrasted with the results of the
respective central implementation, which we use as a baseline. Note that Rellmp for all
‘central’” implementations is denoted as 100%. This lets us see the results directly while
comparing them to the baseline.

Summary Statistics. Additionally, summary statistics are exhibited. For this, the
performance metrics for each architecture were aggregated across all datasets (including
the results of DO1 and DO2 for each implementation). Their median, Maximum (Max),
Minimum (Min), and Standard Deviation (SD) values are displayed in Table 17 until
Table 20 in Appendix A.7. Further, the summary statistics are graphically shown in
Figure 30 until Figure 32, also in Appendix A.7.

Summary Comparison Statistics. The summary statistics are used to compare
the architectures among each other to help answer RQ4. PQMs for the FL. and PFL
architectures are compared to the ’central’ version. The Rellmp metric is contrasted
with the results of the FedAvg architecture. These comparisons are illustrated in Fig-
ure 19 until Figure 28. Their tables are in the Appendix A.7, from Table 22 until Table 26.

Ygithub.com /PalexGoneGit/PFLAdsPySyft
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Architecture | DO | Dataset | DataMod Accuracy | AUC Loss | Rellmp
FedAvg 1 Full Regular -0.0092 | -0.0101 | 0.0174| -0.73%
FedAvg 2 Full Regular -0.0026 | -0.0040 | 0.0139 | -0.43%
APFL 1 Full Regular -0.0056 | -0.0073 | 0.0150 1.25%
APFL 2 Full Regular -0.0089 | -0.0106 | 0.0187 | -0.37%
FedPer 1 Full Regular -0.0316 | -0.0528 | 0.2240 | -8.11%
FedPer 2 Full Regular -0.0216 | -0.0432 | 0.2088 | -7.20%
FedAvg 1 Full Faktor 2 -0.0048 | -0.0054 | 0.0188 1.29%
FedAvg 2 Full Faktor 2 -0.0126 | -0.0146 | 0.0220 | -2.85%
APFL 1 Full Faktor 2 -0.0038 | -0.0052 | 0.0119 0.53%
APFL 2 Full Faktor 2 -0.0047 | -0.0068 | 0.0162 0.98%
FedPer 1 Full Faktor 2 -0.0231 | -0.0393 | 0.1480 | -4.48%
FedPer 2 Full Faktor 2 -0.0268 | -0.0417 | 0.1405 | -7.83%
FedAvg 1 Full Random Noise 0.0113 | 0.0121|-0.0325| -0.62%
FedAvg 2 Full Random Noise 0.0182 | 0.0210 | -0.0446 0.49%
APFL 1 Full Random Noise 0.0117 | 0.0122|-0.0327 | -0.23%
APFL 2 Full Random Noise 0.0181 | 0.0183 |-0.0409 | -0.80%
FedPer 1 Full Random Noise 0.0176 | 0.0208 | -0.0448 | 23.85%
FedPer 2 Full Random Noise 0.0269 | 0.0307 | -0.0588 | 15.46%
FedAvg 1 10% Regular 0.0147 | 0.0146 | -0.0357 | -3.10%
FedAvg 2 10% Regular -0.0022 | 0.0014 | -0.0072 | -2.34%
APFL 1 10% Regular 0.0049 | 0.0084 |-0.0274 2.44%
APFL 2 10% Regular -0.0013 | 0.0010 |-0.0125 | -0.94%
FedPer 1 10% Regular -0.0170 | -0.0261 | 0.1483 | 25.15%
FedPer 2 10% Regular -0.0098 | -0.0195 | 0.1806 | 36.16%
FedAvg 1 10% Faktor 2 -0.0143 | -0.0093 | 0.0082 0.87%
FedAvg 2 10% Faktor 2 0.0063 | 0.0083|-0.0156 | -1.27%
APFL 1 10% Faktor 2 -0.0058 | -0.0109 | 0.0103 0.58%
APFL 2 10% Faktor 2 0.0027 | 0.0025 | -0.0068 0.53%
FedPer 1 10% Faktor 2 -0.0329 | -0.0399 | 0.1676 | 51.58%
FedPer 2 10% Faktor 2 -0.0197 | -0.0267 | 0.1645 | 36.63%
FedAvg 1 10% Random Noise -0.0008 | -0.0016 | -0.0132 0.16%
FedAvg 2 10% Random Noise 0.0160 | 0.0146 | -0.0322 | -0.03%
APFL 1 10% Random Noise 0.0026 | -0.0034 | -0.0035 | -0.22%
APFL 2 10% Random Noise 0.0149 | 0.0121|-0.0340 | -0.44%
FedPer 1 10% Random Noise -0.0330 | -0.0435 | 0.1634 | 25.39%
FedPer 2 10% Random Noise -0.0136 | -0.0266 | 0.1569 | 34.48%
Table 8: Full metrics comparison vs 'central’
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5.2 Analysis

The analysis describes the results and is organized into four subsections, one for each
respective architecture. Each time, the PQMs are discussed first, then Rellmp (if ap-
plicable). Figures are provided and referenced for illustration. Finally, the discussion
presents an interpretation of the findings. Subsections for each architecture again sepa-
rate that section.

5.2.1 Central

The central model forms a standard of comparison for the other architectures. Generally,
we can see that all three metrics follow the same pattern for each version, i.e., no outlier
metric stands out against the others.

PQMs. While the 'full—regular’ and ’full—factor 2’ implementations display the best
PQMs (see Tables 11 and 12), the two worst performing pairings are '10%—random
noise’ and '10%—regular’ (see Tables 16 and 14). Their maximum differences are small:
76% vs. 74.30% accuracy, 83.47% vs. 81.70% AUC, and 0.5255 vs. 0.5565 loss. The
downsized dataset versions display worse PQMs compared to the ’full’ variants. One
exception exists, in which the 10%—'factor 2’ version outperforms the ’full—regular’
counterpart (see Table 15 and 12).

5.2.2 FedAvg

Let us now turn the FedAvg implementation and its results. It is the first federated
architecture to be examined.

PQMs. Comparing the FedAvg implementations to their central counterparts yields
varied results. All 'full—regular’ and ’full—factor 2’ FedAvg models are worse than
the central implementations (see Table 8). Yet, all ’full—random noise’ FedAvg models
outperform their central equivalents. Interestingly, all FedAvg variations of the 10%’
dataset outperform ’'central’ when it comes to one DO, but not the other (see Table 13).

Looking at the summary statistics, we can see that all median PQMs are slightly
worse than the ones of the central architecture, as illustrated in Figure 19 and Figure 20.
Yet, the differences for FedAvg are only within the range of two decimals (see Table 22).

However, the best FedAvg implementation beats the maximum ’central’ performance
by 1.76 and 1.86% for Accuracy and AUC, respectively see Figure 21 and Table 23. The
highest loss of FedAvg is 1.31% lower than the ’central’ maximum (Figure 22). The
minimum loss for FedAvg is 8.73% lower than the ’central’ equivalent, as in Figure 24
and Table 24.

Rellmp. For the Rellmp metrics, we see that using FedAvg never substantially improves
the performance of the personalized model. We often see almost no change in the perfor-
mance of the local and personalized model, with Rellmp varying between 99 and 101%.
Sometimes, a decline in model performance can be seen (see Table 8). This is the case
for FedAvg2 in the 'full—factor 2’ and the '10%—factor 2" implementations, with 97.15%
and 98.73% respectively (see Tables 12 and 15). The worst performance deterioration
is displayed in both '10%—regular’ implementations, with a Rellmp metric as low as
96.90%, the worst of all FedAvg versions (see Table 14).
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Figure 19: Median accuracy and AUC (vs ’central’)
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Figure 20: Median loss (vs ’central’)
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Figure 21: Max accuracy and AUC (vs ’central’)
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Figure 22: Max loss (vs ’central’)
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Figure 23: Min accuracy and AUC (vs ’central’)
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Figure 24: Min loss (vs central’)
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5.2.3 APFL
Let us now examine APFL, the first PFL architecture.

PQMs. Overall, APFL’s PQMs are similar to their FedAvg counterparts. This is best
shown in Figure 19 and Figure 20 (see Table 17). We can see that the median APFL
accuracy and AUC only deviate from the FedAvg metrics by 0.2 Percentage Points (pp)
or less. Loss is almost identical here with a difference of 0.0003. The same can be said
for the Max and Min of these architecture’s metrics, as in Figures 21, 22, 23, and 24 (see
Table 19 and Table 20).

APFL displays the lowest variance of all federated architectures across all metrics;
see Figures 25 and 26 (see Table 25). Only the central architecture’s SD is lower (see
Table 21). The increase of APFL’s SD is 9.06%, 13.03%, and 19.03%, for accuracy,
AUC, and Loss. The increase of the FedAvg architecture in that context is larger, with
20.95%, 19.15%, and 23.75%, respectively.

Rellmp. In Rellmp, APFL slightly outperforms FedAvg, which is not the case for the
PQMs (see Table 26). The architecture’s Median Rellmp is 0.68% higher compared to
FedAvg. Further, the Max is 1.12%, and the Min is 2.18% larger. Rellmp SD here is the
lowest of all federated architectures, illustrated in Figure 28, 47% smaller compared to
FedAvg (see Table 26).

APFL is better than FedAvg when looking at Rellmp in the case of certain datasets
and DOs (see Table 8). Whereas FedAvg sees a drop in Rellmp for both DO2s of the ’fac-
tor 2’ versions, this is not the case for APFL. Rellmp is better here, with an improvement
of 3.83 pp and 1.8 pp, respectively (see Tables 12 and 15). APFL in the '10%-Regular’
combination performs similarly, with an improvement of 5.54 and 1.4 (as in Table 14).

Finally, when looking at the Min Rellmp, we can see that APFL performs best here,
as in Figure 27. In the worst case, APFL only deteriorates model performance by 0.94 pp.
FedAvg, the second-best performer here, is lower by an additional 2.16 pp (see Table 20).

5.2.4 FedPer
Lastly, we turn to FedPer, the second PFL to be analyzed.

PQMs. FedPer displays the largest differences in metrics compared to all other architec-
tures; see Figures 19 until 24. Table 17 shows that FedPer has the lowest median accuracy
and AUC, and the highest median loss. This becomes apparent when comparing Fed-
Per’s and APFL’s median PQMs to the central architecture’s. Here, FedPer’s difference
to APFL is -3.01 pp (accuracy), -4.48 pp (AUC), and +23 pp (loss) (see Table 22).

The gap is even larger when looking at the Min comparison vs. Central as in Table 24.
Here, the difference to APFL is -4.37 pp (accuracy), -5.19 pp (AUC). Nevertheless, the
Min loss is 4.14 pp lower. Also, FedPer outperforms APFL by 1.1 pp and 1.41 pp in
accuracy and AUC when comparing their Max metrics to 'central’. The loss, however, is
26.2 pp higher here (see Table 23).

In all datasets besides one, FedPer is outperformed by APFL in PQMs (see Ta-
ble 8). The exception is that FedPer performs better than all other architectures in the
full—random noise combination, where it shows its best performance (see Table 13). In-
terestingly, that is not the case for the 10% equivalent, where it performs worst of all
architectures (see Table 16).
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The SD reflects these differences. It is the highest for FedPer across all metrics.
Compared to the central architecture, its SD is 59.47%, 67.49%, and 82.33% larger for
accuracy, AUC, and loss. By contrast, APFL’s metrics here are only 9.06%, 13.03%, and
19.03% higher, respectively (see Table 21).

Rellmp. The median Rellmp for the FedPer architecture is 18.14 pp higher compared
to APFL (see Table 17). The difference is even larger for Max Rellmp (49.14 pp), as in
Table 19. On the other hand, Min FedPer’s Rellmp is smaller (-7.17 pp) (see Table 20).
The SD for the Rellmp metric is 93% larger than FedAvg (see Table 26).

Often, FedPer displays the best Rellmp, sometimes by a large margin. This is the
case for all datasets besides 'full—regular’ and ’full—factor 2’, where it is worst (see
Tables 11) and 12). The highest Rellmp displayed by all architectures is FedPer1, present
in "10%—factor 2’ (see Table 15).
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Figure 25: SD accuracy and AUC (vs ’central’)
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Figure 26: SD loss (vs ’central’)
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Figure 27: Rellmp (vs FedAvg)
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Figure 28: Rellmp SD (vs FedAvg)

5.3 Discussion

It is important to observe not only where the differences in the results lie but also how
large that difference is. A popular method for that is Cohen’s d [82]. It can be defined
as [83, p.3|:

X1—Xo

Spooled

Cohen’s d is a popular measure of the effect size between two means [83]. To deploy it,
the results are first grouped by architecture. Then, we calculated the pooled standard
deviation for each federated architecture s,ooeq. As the control group, the central model
performance was used. The results are displayed in Table 9. This allows us to compare
effect sizes across all datasets, providing more substance to the discussion.

The larger Cohen’s d, the greater the effect size. Important, its interpretation is not
objective and should not be taken rigidly [83]. Nevertheless, for this thesis, the suggested
interpretation of effects will be used [82]:

e small (d =~ 0.2).
e medium (d = 0.5).
e large (d =~ 0.8).

5.3.1 Central Model

We will shortly address the performance of the central model. We first compare it to the
random guessing baseline and then contrast the model results across the datasets.
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Architecture | Accuracy AUC Loss Rellmp
FedAvg 0.1710 0.2243 -0.4112 -0.6015
APFL 0.2351 0.0904 -0.3668 0.3418
FedPer -0.8825 -1.1436 1.6892 1.0738

Table 9: Cohen’s d median improvement vs ’central’

Performance vs Baseline. The central architecture’s median accuracy of 75.67%
(see Table 22) offers a small improvement compared to the random guessing baseline
of 74.63% shown in Section 4.2.1. Further, the median loss is somewhat high but
acceptable, with 0.5255. Indeed, this is an existing critique of the implementation of the
model?®. However, its median AUC is well over 80% for all variants in this thesis, which
is generally considered acceptable.

Performance Across Datasets. In general, the central architecture has the best me-
dian metrics, but only slightly (see Table 22). The architecture performs best with the
unmodified dataset (see Table 11). With the altered datasets, the central model perfor-
mance worsens. It could be due to the introduction of heterogeneity [59], [44].

The fact that the central performance on ’factor 2’ datasets is better than on 'random
noise’ data (see Tables 12 and 15 vs 13 and 16) for this architecture could be caused by
the presence of more irregularity in the second dataset variant. The further reduction
of the metrics for the 10% dataset versions possibly showcases that the smaller dataset
provides fewer learning opportunities for the model. Generally, the second slice of the
full-random noise performs best for almost all models and architectures. This could be
because it provides the whole sample, is chronically ordered, and is non-modified, helping
the model to optimize its learning.

5.3.2 FedAvg

Here, we discuss the results of the FedAvg architecture. First, they are compared to the
results of the central architecture. Patterns in its performance across different datasets
are then discussed.

Performance vs Other Architectures. For the median, FedAvg generally closely
follows the central model’s performance but is slightly worse (see Table 22). Indeed,
according to the literature, FedAvg is generally not aiming to improve model performance,
all else equal. Instead, this architecture’s primary goal is to preserve privacy through
ModAg and, potentially, additional methods such as DP [39] [44]. It is to be noted that a
small amount of noise is added to the model weights in all three federated architectures,
slightly decreasing their model accuracy.

While the median is slightly worse, the average is slightly better (see Table 18). This
is why, looking at Cohen’s d in Table 9, we can find a small positive effect on Accuracy
and AUC, and a small to medium negative effect on Loss. The effect on AUC here is the
largest among all architectures. At the same time, the Rellmp of FedAvg has a medium
negative effect, the largest negative impact of all architectures for that metric.

20https:/ /kaggle.com/code/egordm /deep-learning-recommendation-model-dlrm
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Performance Across Datasets. FedAvg's PQMs vary between being slightly better
and worse than ’central’, depending on the dataset (see Table 8). A performance improve-
ment here, however, was not to be expected [39] [44]. A possible explanation could be
that, due to the low number of DOs in the implementation, a moderate amount of model
personalization is happening in this implementation FedAvg. More details are provided
in Section 6.2.

Also, differences between DO can be observed with FedAvg. We can highlight that
both factor 2 modified datasets have decreased Rellmp for DO2. At the same time, this
is not the case for DO1 (see Tables 12 and 15). This could indicate that the FedAvg
architecture had more performance issues for the second data slice, which was partly
divided by 2, versus the first, which was partly multiplied by 2.

Both DO1 in 10%—regular and DO2 in 10%—factor 2 slightly outperform their Fe-
dAvg and central counterparts (see Table 8). That can not be related to the FedAvg
technique itself, as both Rellmp values are <100%, indicating that their first versions
performed better. The same can be implied for both FedAvg versions of full—random
noise, as their Rellmp metrics are close to 100%. This further points to personalization
due to the low amount of participants, as explained in Section 6.2.

5.3.3 APFL

This part discusses the APFL results. First, they are contrasted with the other ar-
chitectures. Patterns in its performance across different datasets are then expanded upon.

Performance vs Other Architectures. The results of APFL and FedAvg display
many similarities (see Tables 22, 23, and 24). A potential reason for this is that this
thesis simplifies the architecture’s implementation (for more details, see Section 6.2). As
a result, APFL shows more parallels with FedAvg than originally designed in Deng et
al. [63]. If implemented differently, the results would likely be more heterogeneous. The
same limitation as in FedAvg (due to the low amount of participants) can be applied
here; see Section 6.2.

However, differences between the results of the FedAvg and APFL architectures can
be found. As mentioned in Section 5.2.3, all APFL metrics show the lowest SD of all
three federated architectures (see Tables 25 and 26). This makes APFL the federated
architecture with the slightest variance within the context of this thesis.

Looking at impact size, APFL shows the most significant positive impact on accuracy,
a positive impact on AUC, and a negative impact on loss. Yet, all three effects are
considered small (see Table 9). Still, APFL has a small positive impact on Rellmp, while
FedAvg has a medium negative impact on that metric.

Performance Across Datasets. The most notable performance metric for APFL is
Rellmp. The architecture considerably outperforms FedAvg’s Rellmp in certain datasets
and data slices (see Table 8). Further, it displays the highest Min Rellmp, never dropping
below 99% (see Table 24).

Small to moderate improvements in PQMs can be seen with APFL, too (see Table 8).
An outperformance of FedAvg by APFL is thus given in specific datasets and modifica-
tions. We can hypothesize that this is due to APFL’s intended ability for personalization,
which FedAvg by design has not. This would justify using APFL over FedAvg in specific
applications.
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5.3.4 FedPer

Lastly, let us now turn to the FedPer discussion. First, we discuss the results in com-
parison with the other architectures. Then, patterns in the architecture’s performance
across different datasets are highlighted.

Performance vs Other Architectures. FedPer’s results stand in contrast to the other
architectures. Compared to APFL, they do not follow FedAvg’s performance as closely
and display a much higher variance (see Table 21). A potential reason for this could be
that this thesis’ FedPer implementation is the most distinct, while APFL and FedAvg
display more similarities, as further explained in Section 6.2.

Further, APFL’s personalization approach (similarity-based model interpolation) can
be hypothesized to be inherently closer to FedAvg. As used by FedPer, architecture-based
parameter decoupling could be more systemically and structurally distinct [59]. It should
also be less impacted by the low amount of DOs, as argued in Section 6.2.

FedPer is perhaps best characterized by its SD, which is the highest across all metrics
(see Table 21). This variance is demonstrated in FedPer’s results. Its Min metrics are the
worst, while the Max results are best (see Tables 20 and 19). Interestingly, its median
PQMs are the worst of all architectures. Its median Rellmp, on the other hand, is best
(see Table 17).

This is confirmed when examining Cohen’s d, as in Table 9. All impact sizes here are
large and by far the biggest. Further, the impact on accuracy and AUC is negative while
being positive for loss. This signifies a negative impact on prediction quality. However,
the impact on Rellmp is largely positive, indicating that the relative improvement of the
final, personalized model is the largest. We need to consider that Rellmp here could be
somewhat artificially higher than for the architectures, as further explained in Section
6.2. We also argue that this effect alone can not explain the improved Rellmp.

Performance Across Datasets. The 'full—random noise’ combination shows FedPer’s
best performance, beating all other architectures. FedPer’s metrics here are outliers in
two ways. Firstly, FedPer2 outperforms even FedPerl. This is reversed for all other
architectures for that dataset, as DO1 is more heterogeneous. We can attribute this
partially to the architecture, as the Rellmp strongly increased for both DOs, and more
so for DO1. Secondly, for FedPer, all ’full’ variations, besides full—random noise, display
a Rellmp < 100%.

FedPer’s PQMs outperform APFL only for the full—random noise’ pairing (see Ta-
ble 13). In all other cases, FedPer performs worst when it comes to PQMs (see Table 8).
Potentially, the FedPer architecture worsens the prediction quality. However, that answer
would exclude the outlier of the ’full—random noise’ results.

Another pattern is that, for FedPer, the Rellmp is always above 100% for the reduced
datasets (see Table 8). Further, the Rellmp is always positive for FedPer if the data set has
random noise modification. A hypothesis could be that FedPer tends to perform better
for more heterogeneous datasets requiring more personalization. This could partially
explain the better performance for the reduced, random noise datasets and DOs.

68



6 Conclusion

This chapter concludes the thesis by reflecting on its findings and implications. It starts
by giving a summary of the previous chapters. Then, each RQ is answered. This thesis’s
theoretical and practical limitations are illustrated. In the next part, we discuss its
implications for practitioners. Finally, additional areas for future research in this sphere
are presented.

6.1 Summary and Findings

Privacy-preserving ML methods can be essential for DSs and DOs intending to navigate
the current legislative, technological, and societal landscape. In this thesis, we leverage
Design Science [16] to create a practical proof-of-concept application. In particular, we
introduce FL and personalized PFL architectures for the advertising domain. A hypo-
thetical research scenario, where previously centralized data-sharing is to be replaced
with a federated architecture, is a reoccurring example in this thesis, highlighting the
practical implication.

Firstly, the research problem is put into context in the background chapter. Here,
we explain the basics of online advertising technology. Importantly, we argue that the
ads industry has an ’addressability’ problem. With the depletion of third-party cookies,
among other factors, the industry may face difficulties (re)identifying users online. All
stakeholders are thus incentivized to find alternative tracking solutions.

What if decentralized data ownership would enable DSs to train their models on data
they can not directly access? This is the critical question in the concept of structured
transparency, introduced in the second part of the background chapter. A selection of
popular privacy-enhancing technologies in data science, including SMPC, HE, and DP,
is presented there.

The fundamental concept of this thesis is FL. In its dedicated chapter, we define it as
an ML learning setting where multiple clients collaborate to solve a problem. In contrast
to distributed learning, however, the clients do not have direct access to the other parties’
data. We further display a taxonomy of FLSs and explain their characteristics based on
seminal literature [44].

Two drawbacks for FL in the context of heterogeneous, non-IID data are discussed:
the slower convergence of FLSs (called client drift) and local data generalization. PFL is
attempting to target these issues. A PFL taxonomy is provided and explained, grouping
personalization approaches into categories [59|. For this thesis, the implemented PFL
architectures can be classified into similarity-based model interpolation (APFL) and
architecture-based parameter decoupling (FedPer); as in the taxonomy.

RQ1. The heterogeneity of user data is often overlooked in FL applications [12]. Thus,
RQ1 is concerned with the following: "What is the state of the art regarding research in
the field of applied PFL for CTR prediction in advertising?’

To answer RQ1, ten distinct papers from the past two years are presented in state
of the art table. The first part of the state-of-the-art table describes the setup and
personalization used. We see that there may be a lack of standardization in the datasets
and metrics. A potential solution is the 'FedAds’ benchmark proposed by Wei et al. [74].
Almost all papers are dedicated to CTR prediction and use NNs, a popular use-case in

69



the domain. Interestingly, six papers rely solely on ModAg, which is inherent to FedPer.
Three other studies use DP, while one uses HE. Comparing the state of the art to
the taxonomy, we find that both personalization strategies and all four personalization
categories are represented at least once in the table. However, KD appears five times,
and meta-Learning three times. In contrast, TL, data augmentation, and clustering each
have one representative. Accuracy, AUC, and loss are the most popular performance
metrics, while privacy metrics are rare. The metrics are leveraged in the literature to
contrast the model performance with local, global, or other (P)FL models. All papers
note an outperformance of their model to the comparison models.

RQ2 and RQ3. The second RQ deals with implementing FL in the context of ads
CTR prediction models via PySyft: "How could two data owners exchange advertising
CTR prediction model dictionaries federatively through PySyft?’. The third RQ further
explores PFL implementations: "How can architectures for PFL look like in that context?’

PySyft’s architecture and its deployment are explained in the PySyft section. This thesis
uses a public ad dataset?' and partly modifies the data for additional heterogeneity.
A public ML model is leveraged??, while accuracy, AUC, loss, and Rellmp are used to
assess model quality. Four architectures are implemented for each of the six different
dataset variations. One is a central version used as a baseline. The three federated
architectures used are FedAvg, APFL, and FedPer. The federated implementations use
PySyft to store and pass the model dictionary. All implementations are done in Jupyter
Notebooks and can be found here?3.

RQ4. Lastly, the results are thoroughly analyzed, discussed, and interpreted in the
results, analysis, and discussion chapter. This is done for the fourth RQ: "How do the
results of these FL. and PFL implementations compare with each other regarding a set
of metrics?’

We answer this RQ by using prediction quality metrics and the relative improvement
of the respective models. The comparison results are shortly summarized below. It is
essential to note the tentativeness of the interpretations due to the thesis’ limitations;
see the limitations section. The central architecture performs best with the unmodified
dataset. On the other hand, the federated architectures often outperform their central
counterparts when training on more heterogeneous and limited datasets. This is the
case, for example, for the full—random noise variation, where all three architectures beat
‘central’ in terms of PQMs. In general, both FedAvg and APFL have positive impact
sizes on the PQMs. A potential interpretation of this finding is that the personalization
effect of PFL positively impacts prediction quality when dealing with data heterogeneity.
This is the intended purpose of PFL [59]. Yet, FedPer’s median impact on the PQMs is
large and negative. We note that FedAvg sometimes also improves performance, which
we assume to be due to a limitation of this thesis; see the limitations section. A pre-
diction quality improvement is, all else equal, not expected according to the theory [39].
FedAvg has a medium negative impact on the relative improvement of the model. Both
APFL and FedPer outperform it in that regard, with a small and medium improvement,

2lkaggle.com /competitions/criteo-display-ad-challenge
22kaggle.com/code/egordm/deep-learning-recommendation-model-dlrm
2github.com/PalexGoneGit /PFLAdsPySyft
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respectively. This, again, is intended by the PFL architecture, as it looks to improve local
model performance, especially on heterogeneous data [59]. While Rellmp improvements
are essential, relying solely on them is insufficient. Absolute improvements in prediction
quality are vital in justifying the choice of architecture. While we sometimes see minor
improvements in prediction quality when choosing APFL over FedAvg, this changes de-
pending on the dataset. Contrasting APFL with FedPer yields mixed results. APFL
shows more consistent, but only slightly better PQMs, of which the largest impact is on
accuracy. It is, additionally, characterized by a relatively low variance. Further improve-
ment of performance metrics might be needed for most cases to justify its use over FedPer
properly. We could label it to be a ’small-risk, small-reward’ personalization approach
for the context of this thesis. FedPer is outperformed by both APFL and FedPer in all
but one dataset. However, that dataset shows the best performance of all models for all
PQMs and Rellmp. This inconsistency and variance characterize FedPer. We could call
it a "high-risk, high-reward’ personalization approach for our context. We can summarize
that a general recommendation of one architecture over the other is impossible. If privacy
is necessary, the literature agrees that FL has many advantages over central learning. Yet,
it is associated with higher communication and computation costs [44]. When choosing
FL over PFL or vice versa, the literature suggests that the latter is better for heteroge-
neous, personalized data [59]. The price for that is a particular increase in algorithmic
complexity. We can tentatively confirm that with the findings of this thesis. With this
thesis " results, always choosing one PFL architecture over the other is impossible. De-
pending on the situation, APFL might outperform FedPer or vice versa. Always selecting
APFL over FedPer might cost potentially substantial improvements in performance. Yet,
FedPer seems to be only better in a few cases. A tentative hypothesre could be that one
of these cases is the presence of highly heterogeneous data with a strong need for local
personalization. These hypotheses need to be, of course, further explored. The feature
comparison matrix in Table 10 illustrates the potential advantages and disadvantages of
the different architectures for the context of this thesis.

Architecture | Comm. & Privacy Algorithmic Local Data Variance
Comp. Costs Simplicity Personaliza- Reduction
tion
Central + - + - +
FedAvg - + 0 - 0
APFL - + - 0 +
FedPer - + - + -

Table 10: Feature comparison matrix

6.2 Limitations

In this section, the theoretical and practical limitations of this thesis are presented.

Lack of Privacy Guarantees. While FLL may seem private initially, some issues have
been identified. Researchers argue that a malicious party could exploit shared information
through the intermediate layer [84|. Also, a paper has shown that private images can
be reconstructed from FLSs [85]. Furthermore, Zhu et al. [86] demonstrate that private
training data can be obtained through leakage by the central server.
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FL is not privacy-preserving by itself. It needs to be combined with other PETs to
offer more significant privacy guarantees [14]. Combinations of other PETs with FL are
thus promising and possible, for example, in PySyft [14].

SGD Simplification. Due to practical constraints, the SGD protocol, part of all feder-
ated architectures presented (see the algorithm in Appendix A.4 for the notation), was
simplified for all implementations. The simplifications include [39] the following:

e Lack of initialization of the global model and its distribution to the clients (this is
only implied in the implementation).

e Lack of sending of the global model dictionary to the participants (shown in Fig-
ures 16,17, and 18 but only implied in the code).

e Only two DOs and no algorithm for their selection.

e Lack of iterative loops of training and testing between the global and local model.
This would include model evaluation, weighing of local dictionaries, and convergence
criteria.

APFL Simplification. For the APFL implementation, the parameter for the mixture
weights a determines the extent to which the local model influences the client’s
personalized model, as in Deng et al. [63, p.8]. It has been set to 0.5 in this thesis, while
in a full implementation, as described in the algorithm in Appendix A.5, the weights
would be dynamically adapted. Further, the synchronization gap 7 is also missing in the
implementation present in this thesis. It specifies the number of local iterations before
synchronizing with the global model. This makes this Thesis’ APFL implementation
more similar to FedAvg than in Deng et al. [63].

FedPer Simplification. In our FedPer implementation, the client does not send the
number of local data points n; to the server. In turn, the server does not calculate
nor use weights y; for the aggregation of the global base model (Deng et al. [63,
p.8|). Further, due to the architecture of this implementation, the Rellmp needs to be
interpreted with more care. For FedPer, the DOs only train the bottom layer of the
model first. The PQMs for that model are naturally worse than the PQMs of a model
with an included top layer. The Rellmp for FedPer is thus somewhat artificially higher
than for FedAvg and APFL. An alternative way would have been to calculate the Rellmp
considering a different first model with both layers present. However, that would have
been methodically inconsistent with the other Rellmp calculations, which have been
using the same model by which the model dictionary was directly trained. That effect
alone, however, can not fully explain FedPer’s performance. Firstly, sometimes PQMs
are also improved in the personalized model of FedPer. This means that some ’true’
Rellmp must be present. Secondly, FedPer sometimes displays a negative Rellmp, like
in full—regular and full—factor 2. This disproves that the second model of FedPer is
strictly better than the first.

Central Model Implementation. The central model was tested and validated on
one shared dataset. Theoretically, one could split the datasets in half and test the
model twice, simulating a DO1 and DO2. We decided against that approach to be
methodically consistent with the other implementations, where each model is strictly
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tested on the dataset on which it was trained. Further, it is unclear if that split
would have been more or less representative of the real world, as the idea for the ’'be-
fore scenario’ is that all user data is combined for model training and evaluation purposes.

Few DOs. We find unintentional and unexpected personalization effects in the FedAvg
implementation. The reason could be that only two DOs are simulated in this thesis.
Hence, a single data owner’s contribution to the final model weights is relatively large.
That makes the global model dictionary relatively similar to the local model dictionary
of both DOs. This, combined with the ability of NNs to adapt to the local data in the
final training stage, could increase the ability for personalization for FedAvg. It further
could impact APFL and, to a smaller degree, FedPer (as its algorithm is more distinctly
different, see the APFL simplification). This effect should be smaller as the number of
DOs grows because the global model dictionary becomes more and more diluted.

Dataset Limitations. The dataset was not originally federated and has been manually
altered for that purpose. It is, further, artificially heterogeneous, employing data manip-
ulation. Also, while heterogeneity was added, the data still has the IID property. That
somewhat reduces the practical implications of the results [74]. Finally, due to the sim-
plifications of the architectures, only local data generalization is addressed, while client
drift is not [58].

6.3 Practical Implications and Further Research

In this final section, we derive implications for practitioners from this thesis. Lastly, areas
for further research are highlighted.

6.3.1 Practical Implications

This thesis provides several potential practical implications.

Use in Advertising. In light of the addressability problem, organizations in the ad-
vertising sphere may find FL. and PFL to be viable solutions. This is because these
technologies can provide additional privacy and potential performance improvements.
Such tangible benefits could be deemed satisfying for the motivation of federation [2].

Comparing (P)FL to currently developed privacy solutions, such as Google’s "Feder-
ated Learning of Cohorts’, is important. Appendix A.1 and A.2 illustrate such solutions.
(P)FL could be preferable over these solutions, as it is arguably more decentralized and
less invasive [44], [2], [15]. Yet, more theoretical and practical developments in the realm
of (P)FL for advertising are required.

However, FL does not guarantee increased privacy. Instead, it needs to be combined
with other PETs, such as DP or HM [14]. PySyft, as well as other frameworks,
are potential enablers here. It is, therefore, promising to explore further practical
applications of such frameworks.

Architecture Selection. This thesis suggests that FedPer, APFL, and FedPer could
be preferable over central model training. Yet, these findings are tentative and require
further exploration. In practice, a hypothetical model performance improvement could
be achieved indirectly through privacy preservation. This could happen due to increased
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Figure 29: Decision tree for architectures

privacy incentivizing more parties to participate in the federation. The increased diversity
and size of the data could, in turn, improve model performance. Yet, this is not reflected
in this thesis.

When comparing FL to PFL, a larger Rellmp alone can not be the deciding factor for
practitioners. Instead, an increase in performance metrics is necessary. A better model
performance could, however, offset the additional efforts associated with PFL. While this
has been tentatively demonstrated in this thesis’ implementations, it requires further
exploration.

The results of this thesis let us conclude that APFL is not strictly better than FedPer,
or vice versa. Instead, practitioners need to select a suitable model according to several
factors. One such factor could be variance reduction (where APFL seems better), the
other local data personalization (where FedPer is deemed superior), see Table 10. Fig-
ure 29 illustrates a hypothetical, simplified decision tree. Yet, these findings are tentative
and need confirmation.
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6.3.2 Further Research

The FL and PFL domains are relatively new and increasingly popular (see the Feder-
ated Learning chapter). They provide ample opportunities for further research [44|. The
limitations of this thesis could be exploited for that purpose. For example, less simpli-
fied algorithms of the provided architectures could be tested. Other datasets could be
used, which could inherently exhibit more heterogeneous, non-IID data. Personalization
could be tested and confirmed, particularly for client drift. Also, using the advertising
dataset and benchmarking toolkit "FedBench’ [74] could prove fruitful for standardization.
Additionally, other advertising domains (non-CTR-related), as well as other industries
altogether (e.g. other recommendation models) could be explored.

The research presented in this thesis could be expanded. For example, other parameter
decoupling or model interpolation approaches could be tested. Further, new research
could include other architecture-based and similarity-based personalization approaches.
Also, methods from the global model personalization strategy, left unexplored in this
thesis, could be examined.

Finally, this research can be augmented by conducting experiments on a larger scale.
New findings could be investigated by adding more DOs and larger datasets. Especially
not simulating the federated setting but directly implementing the models on client de-
vices, like for the Google next-word-prediction model [43|, would provide valuable insights
for academics and practitioners alike.
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A Appendix

A.1 Online Tracking Technologies

Currently, several promising technologies are being used to tackle the issue of the discon-
tinuation of third-party cookies. They include:

e Fingerprinting [15],
e Third-party identity providers [87], [88],
e Data clean rooms [31], [89], and

e ID stitching [24], [15], [90].

Fingerprinting. Fingerprinting describes analyzing the user’s browser characteristics
to identify their device without using cookies. These features can include browser
customization (e.g. plugins enabled), browser-level user configurations (e.g. timezone),
browser family, operating system as well as hardware and network settings (e.g. screen
resolution) [15]. Combining these characteristics can thus be used to identify and
re-identify a user [24| uniquely. Its applications vary from fraud prevention to cross-
website tracking for advertising purposes. Therefore, it can be considered invasive and
can violate user privacy. Paradoxically, ad-blockers can be used for fingerprinting [15].
Yadav et al. [91] provides an overview of the key terminology of fingerprinting.

Identity Providers. An identity provider is a trusted party authenticating a user
while logging in through single sign-on. When successful, the user can access the
service provider’s online cloud services without requiring a ’traditional’ log-in through
a username and password [87]. The identity provider is responsible for user security
and privacy and, in turn, can track the user through websites and monetize user data [88§].

Data Clean Rooms. A data clean room is a collaboration environment allowing several
parties to share data while following data access and privacy limitations [31]. It can
support several use cases for advertising, like joining multiple databases with matching
keys [31]. As a result, insights for customer targeting, audience segmentation, and the
measuring of ad impact can be gained [89]. Traditionally, advertisers and publishers
share their first-party data with a third party to match and activate their audience.
Data clean rooms function as a private environment and provide services that enable
audience matching for advertising without exposing first-party data to other parties. For
example, a customer overlap between different parties can be identified to estimate an
ad campaign’s effectiveness. Also, first-party data can be enriched using external data
points while data control is maintained [31].

ID Stitching. ID stitching, sometimes called user stitching, refers to identifying and
matching online data to the same user. This happens by identifying and grouping
sessions corresponding to the same user on different channels, browsers, devices, and
platforms. The process solely relies on user interactions with the online content and
metadata. In contrast to fingerprinting (which uses device configurations), this method
uses behavioral patterns that are device-independent [92].
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A.2 Technology Companies’ Privacy Solutions

Apple. Apple, for example, has declared itself to be 'building in privacy from the ground
up’?*. Its popular browser 'Safari’, finds and eliminates third-party cookies in Safari by
default using Intelligent Tracking Prevention?®. The company has also introduced new
privacy-preserving technologies for mobile, such as App Tracking Transparency?® [93].
The App Tracking Transparency includes a compulsory opt-in system on the latest iOS
devices called Identifier for Advertisers. It requires in-app prompts, asking for explicit
permission for publishers to track user data. Such a change from the previous data
tracking has lowered opt-in rates and severely impacted the advertising industry [93], [94].
In addition, the company also introduced the Private Click Measurement. It mostly
prevents sites from tracking user interactions while allowing advertisers to register ad
clicks and conversions. Privacy is more protected than third-party cookies, as user data
reported to the advertiser is limited, anonymized, and submitted with a time delay [95].
To facilitate advertising under these new circumstances, the organization offers its
SKAdNetwork. This solution provides ad insights without revealing personal user data
(when the user has not opted-in to Identifier for Advertisers). However, the amount of
analysis and attribution possible here is restricted due to the limited data®’. Apple is
adopting and actively researching the privacy-preserving technique of DP section [38|.

Alphabet. Google has also committed to phasing out third-party cookies in its popular
browser, Google Chrome. The company has also said it is working on new privacy-
preserving technologies allowing advertisers to target users without using third-party
cookies. Those initiatives are collected under the umbrella term Privacy Sandbox?®.
According to Google, the Privacy Sandbox is a set of industry-wide technologies currently
under development aiming to preserve privacy on the web and Android. It provides safer
alternative solutions to third-party cookies and covert tracking like Fingerprinting. This,
in turn, enables organizations to continue their online business while respecting user
privacy?® [22].

The technology used here includes, among others, DP and on-device processing. These
will be further explained later on. The goals include fraud and spam prevention, show-
ing relevant content and ads, measuring online ads, and strengthening cross-site privacy
boundaries. The company highlights three key technological initiatives that are particu-
larly relevant in the context of the Privacy Sandbox?’:

e Topics APL
e Protected Audience API.

e Reporting APIL.

24apple.com /newsroom /2023 /01 /apple-builds-on-privacy-commitment-by-unveiling-new-efforts-on-
data-privacy-day/

25apple.com /safari/docs/Safari White paper Nov2019.pdf

26apple.com /newsroom /2021 /06 /apple-advances-its-privacy-leadership-with-ios-15-ipados-15-macos-
monterey-and-watchos-8/

2Tdeveloper.apple.com/documentation /storekit /skadnetwork /

28blog.google/products/chrome/privacy-sandbox-tracking-protection/

2privacysandbox.com /learning-hub/

30See Footnote 27
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A key aspect here is Topics API, previously known as ’federated learning of cohorts’.
It is not to be confused with FL, as it functions differently and is not utilizing that
technology (hence the name change)!. This technology is designed to preserve privacy
while displaying relevant content and ads to users. It groups each website the user visits
into high-level topics and sub-topics. For example, the current list includes ’games’,
which can be broken down into ’games/boardgames’, 'games/roleplaying games’, and
so on. The browser collects the most-visited topics of a user. Then, it groups the user
in a clustered group and shares that information with the sites. A profile is thus built
per group and not per individual. This enables advertisers to display more relevant
ads without revealing the specific websites one has visited®?, [22]. Another key privacy
technology under the umbrella of the Privacy Sandbox is called Protected Audience API.
While today, third-party cookies expose collected information to others, this technology
protects private data while ads can still be displayed. Here, as formerly, a cookie stores
information regarding user interest. However, in the case of Protected Audience API,
that cookie is stored on the user’s device only, and the decision to display appropriate
ads when visiting a site is also made on that particular device. In this method, personal
data never leaves the user’s device and protects their privacy®*. The third topic is
Attribution Reporting API, which allows advertisers to measure their campaigns’ impact
without tracking an individual’s online activity. When an interaction with an ad, such as
a click or a purchase, occurs, that information is stored on the user’s device. The reports
sent to the advertiser are time-delayed, contain only aggregated data, and include noise
to protect user privacy further [22].

Others. Similarly, Mozilla Firefox, with its ’enhanced tracking protection’ feature and
Edge’s "Microsoft tracking prevention’, also provide and continuously develop additional
privacy protection options [26]. Ad blockers are a popular way to remove online ads on
web pages. While in the past, they were mostly used in the form of browser extensions, ad-
blocking features have been increasingly introduced into browsers themselves. Nowadays,
most ad blockers block ad delivery and prevent tracking and profiling [26].

3lgithub.com /patcg-individual-drafts/topics/blob/main /taxonomyv2.md
32privacysandbox.com /learning-hub/
33blog.google/products/chrome /privacy-sandbox-tracking-protection
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A.3 FL Data Partitioning Approaches

Horizontal FL. Yang et al. |2] provide an extensively comprehensive overview of all three
techniques, their algorithms, and their architectures. In the case of HFL, two datasets
with many overlapping features exist (or even all features overlap). However, there is little
commonality between the data entries [3|. To visualize this, one can imagine a simple
data set in a table containing user data. This could be, for instance, the user database
of two different banks. This would be an example of cross-silo FL [44]. The table is
horizontally partitioned, meaning it splits the user entries into two parts belonging to
each company. However, both parts share the vertical dimension, the features of the
table [2|. Interestingly, a cross-device FL application is possible here, too. For example,
the next-word prediction of a mobile keyboard falls into this category [43], [44]. Therefore,
HFL contributes to increasing the sample size [3]. More formally (as in Yang et al. |2,
p.49]:
Xi = Xj»%i = Vs L # 1;,VD;, Dy, i # §

Here, the data feature space pair between two participants is deemed to be the same,
i.e. x; = x;j. The same applies to the label space pair, i.e. v; = 7;. However, the user
identifiers I; and I; of the different parties are different. D;, D; represent the respective
data sets [2]. The FedAvg algorithm is popular in HFL systems [39].

Vertical FL. Contrasted to HFL, VFL is characterized by varying data features and
shared data samples. This is the case when user features have little in common while
the users strongly overlap. We can, again, imagine a simple dataset visualized in a table.
This time, however, the table is split vertically: the user entries are the same, but the
vertical features are split along two tables [3]. This could, for example, happen when
companies from two industries share their customer base. One, a shoe company, would
have data about the shoe size, gender, and favorite shoe color of the customers. The
other, a company producing wearable smartwatches, could have the same user registered.
However, the data the second organization has collected is the user’s activity level, daily
steps, and average heart rate. This basic example illustrates that these companies do not
only have a similar user base and different feature sets in their databases but also that
a potential exchange of that information could be mutually beneficial due to synergy
effects. Indeed, VFL is generally only realistic in a cross-silo, B2B context [44], [2]. We
can formally denote that (Yang et al. |2, p.70]):

Xi 7 Xi» Y 7V L = 1;,VD;, Dy, 0 # §

Here, the data feature space pair between two participants is deemed to be different, i.e.
Xi # X;.- The same applies to the label space pair, i.e. v; # 7;. Nevertheless, the user
identifiers [; and I; of the different parties are the same. D;, D; represent the respective
data sets [2].

Federated Transfer Learning. With HFL and VFL, the datasets either have common
data features or common data samples, respectively. Realistically, however, many practi-
cal examples display neither commonality. Often, not many data features or samples are
shared between the parties, while some little overlap can exist in both dimensions. Their
heterogeneity may manifest in different aspects [2]:
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Samples and features.

Data distribution.

Data size.

e Amount and quality of labeling.

These issues exceed the problems considered in the HFL and VFL use cases. Li et al. [10]
provides an example of such a case: Take a group of hospitals collaborating to improve
their cancer diagnosis. Though overlaps can happen, they likely have mostly distinct
patients and different medical examination results. Zhang et al. [3] provides a different
use case. It is concerned with two companies: a Chinese e-commerce company and a social
application in the US. Nguyen et al. [51] deploy a practical experiment on IoT devices
using FL. The devices range from coffee machines to cameras, so their data samples and
features can be described as rather heterogeneous. One can see the lack of overlap here.
Can FL still be applied in these circumstances?

Pan and Yang [96] survey a transfer learning technique in their influential paper. It
alms to address the data problems described in the general context of ML. The solution
enables the creation of performant and reliable ML models in such circumstances. This
is done by inferring and transferring knowledge between two domains. This happens by
finding and exploiting an invariant between a resource-rich and a resource-poor domain.
That invariant is then used to transfer information from the first to the latter [96].

For this reason, Liu et al. [97] first proposed FTL as a solution. It is, therefore,
the application of transfer learning to the context of FL. It differs from the original by
introducing three additional constraints [97], |2]:

e The system is built on data owned by different participants
e Data belonging to each party cannot be exposed to other parties

e User privacy, as well as data and model security, needs to be protected

The situation when FTL is applied can be formally defined as follows (Yang et al. |2,
p.85]):

Xi # Xj» Vi # Vis i # 1;,V Dy, Dy, i #
Here, the data feature space pair between two participants is deemed to be different, i.e.

Xi 7 X;- The same applies to the label space pair, i.e. 7; # ;. Also, the user identifiers
I; and I; of the different parties are different. D;, D; represent the respective data sets [2].
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A.4 FedAvg Algorithm

Algorithm 1 Server execution of FedAvg as in MacMahan et al. [39, p.5|. The K clients
are indexed by k; B is the local minibatch size, E is the number of local epochs, and 7
is the learning rate.

1: Server executes:

2: initialize wy

3: for each round t =1,2,... do

4: m < max(C - K, 1)

5 Sy < (random set of m clients)

6: for each client k£ € S; in parallel do
7: wy,, + ClientUpdate(k, w;)

8: end for

9: My = Y e s, Tk

10: Wiyl < D pes, Z—’iwfﬂ

11: end for

Algorithm 2 Client execution of FedAvg as in MacMahan et al. [39, p.5]. The K clients
are indexed by k; B is the local minibatch size, E is the number of local epochs, and n
is the learning rate.

1: function CLIENTUPDATE(k, w)

2 B + (split Py into batches of size B)
3 for each local epoch i from 1 to £ do
4 for batch b € B do

5: w < w —nVL(w;b)
6

7
8
9:

end for
end for
return w to server
end function
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A.5 APFL Algorithm

Algorithm 3 Local descent APFL (Deng et al. [63, p.§])

1: Input: Mixture weights aq, ..., a,, Synchronization gap 7, A set of randomly se-
lected K clients Uy, Local models vfo) for i € [n] and initial local version of global
model w§°) for i € [n].

2: fort=20,...,7 do

3: parallel for i € U, do

4: if t mod 7 # 0 then

5: w = w™ =V, (wz(t*l); Ef)
6. Ul(t) _ UZ(t—l) YV, <17§t_1); §f>
7 7P = a0 + (1 — a;)w?
: Ui < U;_4
9: else
10: each selected client sends wgt) to the server
11: w®) = ﬁ EjeUt w](-t)
12: server uniformly samples a subset U; of K clients.
13: server broadcasts w® to all chosen clients
14: end if
15: for i ¢ U, do
16: vgt) = vft_l)
17: end for
18: end for
19: fort=1,...,n do

20: Output: Personalized model: o; = o5 Zthl D (aivi(t) +(1— )% >jeu, w;t)>;

21 Global model: i = 1 57 p 2y, wl”.
22: end for
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A.6 FedPer Algorithm

Algorithm 4 FedPer-Client(j) (Arvazhagan et al. [67, p.4])

Require: f(-;-,-), e, b, {(z;:,y5:)|i € {1,...,n;}}
Require: n(k); for k € Z+
1: Initialize W (0)p; at random
2: Send n; to server
3: for k=1,2,... do
4: Receive W (k — 1)p from server
5 (W(k)s,j, W(k)p;) <= SGD;(W(k — 1), W(k — 1)pj,n(k);)
6 Send W (k)p, j to server
7: end for

Algorithm 5 FedPer-Server (Arvazhagan et al. [67, p.4|)

. Initialize W (0)p at random

: Receive n; from each client j € {1,..., N} and compute 7; = =x

1

2 n.
3: Send W(0)p to each client ’

4: for k=1,2,... do

5: for Each client j € {1,...,N} do

6 Receive W (k)p, j from client j

7 end for

8 Aggregate W (k) + 200, %W (k) j

9 Send W (k)p to each client

10: end for
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A.7 Results, Additional Tables, and Figures

Metric | Central FedAvgl |FedAvg2 | APFL1 APFL2 FedPerl | FedPer2
Accuracy | 0.7600 0.7508 0.7574 0.7544 0.7511 0.7284 0.7384
AUC 0.8347 0.8246 0.8307 0.8274 0.8241 0.7819 0.7915
Loss 0.5235 0.5409 0.5374 0.5385 0.5422 0.7475 0.7323
Rellmp | - 99.27% 99.57% 101.25% 99.63% 91.89% 92.80%
Table 11: Full—regular performance metrics
Metric | Central FedAvgl |FedAvg2 | APFL1 APFL2 FedPerl | FedPer2
Accuracy | 0.7596 0.7548 0.7470 0.7558 0.7549 0.7365 0.7328
AUC 0.8341 0.8287 0.8195 0.8289 0.8273 0.7948 0.7924
Loss 0.5229 0.5417 0.5449 0.5348 0.5391 0.6709 0.6634
Rellmp | - 101.29% 97.15% 100.53% 100.98% 95.52% 92.17%
Table 12: Full—factor 2 performance metrics
Metric | Central FedAvgl |FedAvg2 | APFL1 APFL2 FedPerl | FedPer2
Accuracy | 0.7554 0.7667 0.7736 0.7671 0.7735 0.7730 0.7823
AUC 0.8295 0.8416 0.8505 0.8417 0.8478 0.8503 0.8602
Loss 0.5255 0.4930 0.4809 0.4928 0.4846 0.4807 0.4667
Rellmp | - 99.38% 100.49% 99.77% 99.20% 123.85% 115.46%
Table 13: Full—random noise performance metrics
Metric | Central FedAvgl |FedAvg2 | APFL1 APFL2 FedPerl | FedPer2
Accuracy | 0.7423 0.7570 0.7401 0.7472 0.7410 0.7253 0.7325
AUC 0.8149 0.8295 0.8163 0.8233 0.8159 0.7888 0.7954
Loss 0.5568 0.5211 0.5496 0.5294 0.5443 0.7051 0.7374
Rellmp | - 96.90% 97.66% 102.44% 99.06% 125.15% 136.16%
Table 14: 10 % regular performance metrics
Metric | Central FedAvgl |FedAvg2 | APFL1 APFL2 FedPerl | FedPer2
Accuracy | 0.7580 0.7437 0.7643 0.7522 0.7607 0.7251 0.7383
AUC 0.8297 0.8204 0.8380 0.8188 0.8322 0.7898 0.8030
Loss 0.5257 0.5339 0.5101 0.5360 0.5189 0.6933 0.6902
Rellmp | - 100.87% 98.73% 100.58% 100.53% 151.58% 136.63%
Table 15: 10 %—factor 2 performance metrics
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Metric | Central FedAvgl |FedAvg2 | APFL1 APFL2 FedPerl | FedPer2
Accuracy | 0.7430 0.7422 0.7590 0.7456 0.7579 0.7100 0.7294
AUC 0.8170 0.8154 0.8316 0.8136 0.8291 0.7735 0.7904
Loss 0.5565 0.5433 0.5243 0.5530 0.5225 0.7199 0.7134
Rellmp | - 100.16% 99.97% 99.78% 99.56% 125.39% 134.48%
Table 16: 10 %—random noise performance metrics
Architecture | Accuracy AUC Loss Rellmp
Central 75.67% 82.96% 0.5256 -
FedAvg 75.59% 82.91% 0.5357 99.48%
APFL 75.47% 82.74% 0.5354 100.16%
FedPer 73.27% 79.20% 0.6992 124.50%
Table 17: Median summary statistics
Architecture | Accuracy AUC Loss Rellmp
Central 75.31% 82.67% 0.5352 -
FedAvg 75.47% 82.89% 0.5268 99.29%
APFL 75.51% 82.75% 0.5280 100.28%
FedPer 73.77% 80.10% 0.6684 118.42%
Table 18: Average summary statistics
Architecture | Accuracy AUC Loss Rellmp
Central 76.00% 83.47% 0.5568 -
FedAvg 77.36% 85.05% 0.5496 101.29%
APFL 77.35% 84.78% 0.5530 102.44%
FedPer 78.23% 86.02% 0.7475 151.58%
Table 19: Max summary statistics
Architecture | Accuracy AUC Loss Rellmp
Central 74.23% 81.49% 0.5229 -
FedAvg 74.01% 81.54% 0.4809 96.90%
APFL 74.10% 81.36% 0.4846 99.06%
FedPer 71.00% 77.35% 0.4667 91.89%
Table 20: Min summary statistics
Architecture | Accuracy AUC Loss Rellmp
Central 0.82% 0.86% 0.02 -
FedAvg 1.04% 1.06% 0.02 1.43%
APFL 0.90% 0.99% 0.02 0.97%
FedPer 2.03% 2.64% 0.09 20.69%

Table 21: SD summary statistics
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Architecture | Accuracy AUC Loss
FedAvg -0.11% -0.06% 1.88%
APFL -0.27% -0.27% 1.83%
FedPer -3.28% -4.75% 24.83%
Table 22: Median vs ’central’
Architecture | Accuracy AUC Loss
FedAvg 1.76% 1.86% -1.31%
APFL 1.75% 1.55% -0.69%
FedPer 2.85% 2.96% 25.51%
Table 23: Max vs 'central’
Architecture | Accuracy AUC Loss
FedAvg -0.30% 0.06% -8.73%
APFL -0.18% -0.16% -7.90%
FedPer -4.55% -5.35% -12.04%
Table 24: Min vs ’central’
Architecture | Accuracy AUC Loss
FedAvg 20.95% 19.15% 23.75%
APFL 9.06% 13.03% 19.03%
FedPer 59.47% 67.49% 82.33%
Table 25: SD vs ’central’
Architecture | Median Average Max Min SD
APFL 0.68% 0.99% 1.12% 2.18% -47%
FedPer 20.10% 16.16% 33.18% -5.45% 93%
Table 26: FedAvg vs Rellmp
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Figure 32: Median Rellmp
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A.8 Raw Results

ArchitectureVariant-Dataset-DataMod Accuracy AUC Loss Rellmp

Central-Full-Regular 0.76 0.8347 0.5235 100%

Central-Full-Factor 2 0.7596  0.8341 0.5229 100%

Central-Full-Random Noise 0.7554  0.8295 0.5255  100%

Central-10%-Regular 0.7423  0.8149 0.5568  100%

Central-10%-Factor 2 0.758 0.8297 0.5257  100%

Central-10%-Random Noise 0.743 0.817 0.5565  100%

FedAvgl-Full-Regular 0.7508  0.8246 0.5409 99.27%
FedAvgl-Full-Factor 2 0.7548  0.8287 0.5417 101.29%
FedAvgl-Full-Random Noise 0.7667  0.8416 0.493 99.38%
Fed Avgl-10%-Regular 0.757 0.8295 0.5211 96.90%
FedAvgl-10%-Factor 2 0.7437  0.8204 0.5339 100.87%
FedAvgl-10%-Random Noise 0.7422  0.8154 0.5433 100.16%
Fed Avg2-Full-Regular 0.7574  0.8307 0.5374 99.57%
FedAvg2-Full-Factor 2 0.747 0.8195 0.5449 97.15%
FedAvg2-Full-Random Noise 0.7736  0.8505 0.4809 100.49%
Fed Avg2-10%-Regular 0.7401  0.8163 0.5496 97.66%
Fed Avg2-10%-Factor 2 0.7643 0.838 0.5101 98.73%
FedAvg2-10%-Random Noise 0.759 0.8316 0.5243 99.97%
APFLI1-Full-Regular 0.7544  0.8274 0.5385 101.25%
APFL1-Full-Factor 2 0.7558  0.8289 0.5348 100.53%
APFL1-Full-Random Noise 0.7671 0.8417 0.4928 99.77%
APFL1-10%-Regular 0.7472 0.8233 0.5294 102.44%
APFL1-10%-Factor 2 0.7522  0.8188 0.536 100.58%
APFL1-10%-Random Noise 0.7456  0.8136 0.553 99.78%
APFL2-Full-Regular 0.7511  0.8241 0.5422 99.63%
APFL2-Full-Factor 2 0.7549  0.8273 0.5391 100.98%
APFL2-Full-Random Noise 0.7735  0.8478 0.4846 99.20%
APFL2-10%-Regular 0.741 0.8159 0.5443 99.06%
APFL2-10%-Factor 2 0.7607  0.8322 0.5189 100.53%
APFL2-10%-Random Noise 0.7579  0.8291 0.5225 99.56%
FedPerl1-Full-Regular 0.7284  0.7819 0.7475 91.89%
FedPerl-Full-Factor 2 0.7365  0.7948 0.6709 95.52%
FedPerl-Full-Random Noise 0.773 0.8503 0.4807 123.85%
FedPer1-10%-Regular 0.7253  0.7888 0.7051 125.15%
FedPer1-10%-Factor 2 0.7251  0.7898 0.6933 151.58%
FedPer1-10%-Random Noise 0.71 0.7735 0.7199 125.39%
FedPer2-Full-Regular 0.7384  0.7915 0.7323 92.80%
FedPer2-Full-Factor 2 0.7328  0.7924 0.6634 92.17%
FedPer2-Full-Random Noise 0.7823  0.8602 0.4667 115.46%
FedPer2-10%-Regular 0.7325  0.7954 0.7374 136.16%
FedPer2-10%-Factor 2 0.7383 0.803 0.6902 136.63%
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FedPer2-10%-Random Noise 0.7294 0.7904 0.7134 134.48%

Table 27: Raw results
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