
An Ethereum-based system for resource ownership
in data markets

Faculty of Information Engineering, Computer Science and Statistics
Master’s Degree in Computer Science

Davide Basile
ID number 1810355

Advisor
Prof. Claudio Di Ciccio

Co-Advisor
Prof. Sabrina Kirrane

Academic Year 2021/2022

An Ethereum-based system for resource ownership in data markets
Sapienza University of Rome

© 2022 Davide Basile. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: davide.basile.9898@gmail.com

mailto:davide.basile.9898@gmail.com

2

Contents

1 Introduction 4
1.1 Structure of the document . 6

2 Background and state of the art 7
2.1 Big Data and privacy preservation 7

2.1.1 Access control . 8
2.1.2 Usage Control . 8

2.2 Data trading: context and opportunities 9
2.3 Blockchains and Ethereum . 11

2.3.1 Ethereum and smart contracts 12
2.4 Decentralized web . 13

2.4.1 Solid . 14
2.4.2 Digi.me . 14
2.4.3 InterPlanetary File System 15

3 Use Case Scenario 16
3.1 DecentralTrading Market . 16
3.2 Joining the market . 17
3.3 Resource sharing . 18
3.4 Resource usage . 18

4 Architecture and design of the market 19
4.1 The DecentralTrading infrastructure 19

4.1.1 Ethereum and the on-chain infrastructure 21
4.1.2 Pods and data owners . 21
4.1.3 Trusted Execution Environments and data consumers 22

4.2 On-chain and off-chain communication 23
4.2.1 Direct communication model 23
4.2.2 Middleware services model 23
4.2.3 Gas station network model 24

CONTENTS 3

4.3 Components coordination . 25
4.3.1 Pod initiation . 25
4.3.2 Resource initiation . 26
4.3.3 Resource indexing . 27
4.3.4 Resource access . 27
4.3.5 Obligation modification . 28
4.3.6 Obligations monitoring . 29

5 Implementation 30
5.1 The on-chain smart contracts of the market 31

5.1.1 Tokenization . 32
5.1.2 Indexing . 37
5.1.3 Obligations . 40

5.2 The pod manager . 43
5.2.1 The pod manager application 43
5.2.2 Physical organization of pods 45
5.2.3 Blockchain interaction . 46
5.2.4 Data provision and requests authentication 49

6 Evaluation 53
6.1 Methodology . 53
6.2 Results . 54

6.2.1 DTtoken . 55
6.2.2 DTtokenMarket . 55
6.2.3 DTsubscription . 56
6.2.4 DTindexing . 56
6.2.5 DTobligation . 57

6.3 Discussion . 59

7 Conclusion and future work 61

4

Chapter 1

Introduction

Blockchain technologies are distributed systems which safely store information
in sequential data structures called “blocks” [45]. Numerous studies show the
effectiveness of such technologies in the fields of global supply chains, healthcare
systems, finance, insurance, and digital rights management [43, 75, 76]. The high
scalability and distributed nature of blockchains make these technologies highly
suitable for big data contexts, in which, requirements for information integrity,
availability and traceability are manifested [29]. The diffusion of social network
applications and Internet of Things-based smart systems has exponentially increased
volumes and values of personal data [62, 19]. As reported in [40], the big data
field’s revenue will reach $ 273.4 billion by 2026. Such a scenario highlights the
need for safe data trading environments that guarantee the fair execution of the
involved exchange mechanisms. Among the most popular blockchains, Ethereum has
opened up a new phase for such technologies [9]. Ethereum supports the execution
of distributed applications, called smart contracts, which are run by the nodes of
the blockchain [8]. Smart contracts enable blockchain adoption in different areas.
The central theme of the thesis is the realisation of a decentralized data market for
web resources based on the Ethereum platform. The infrastructure underlying the
system is inspired by decentralized web initiatives such as Solid [58] and Digi.me[71],
which aim to give data owners more control over their data. The system architecture
is based on several enabler technologies: personal online datastores (pod), Trusted
Execution Environments (TEE) and the Ethereum blockchain. Pods are technologies
accessed via web services, controlled by data owners, that store and provide on-
demand data. Pod managers are the software components of pods that are capable
of processing resource requests and communicating with the on-chain infrastructure
of the market. The Ethereum platform hosts the smart contracts implementing the
logic of the market distributed application. Finally, TEEs allow data consumers to

5

get and utilize data. The architecture is built upon the HTTP protocol 1, which
enables data delivery processes between data owners and data consumers, and
the communication with the on-chain logic of the market for requests validation,
resources initialization and subscriptions payment.
After the design stage, the functional requirements of the implementation have
been defined. Among the different components to be implemented, this thesis
focuses on the data owner perspective of the proposed architecture. The study
and implementation of the data consuming perspective and the TEE components
are covered by a separate study. The goal is to realize the technologies enabling
users to share and sell personal resources in the market, while maintaining a high
degree of control over their data. The infrastructure components considered by the
implementation work of the thesis are pods and Ethereum smart contracts.
The first part of the implementation concerns the Ethereum ecosystem. This phase
of the study addresses the on-chain components of the market, which are grouped
into several modules. The tokenization module deals with the exchange mechanisms
necessary to join the market. The indexing module contains the logic necessary
for resource initialization. Information needed to index pods and market resources
(e.g. web URLs, IDs, addresses) are stored and managed by the smart contracts of
this module. Finally, the obligation module collects the smart contracts aimed at
managing the usage limitations of the initialized resources of the market.
The second part of the implementation involves pod managers. According to
the functional requirements, pods must guarantee the proper handling of HTTP
requests, communication with the on-chain smart contracts, and the managing of
the resources in the local filesystem. Initialized resources of pods are physically
stored in a specific location of their filesystem. By interacting with pods, users can
initialize or deactivate resources, add obligation rules, and monitor their compliance.
Regarding data provision, pods deliver resources to data consumers through HTTP
responses. However, an authentication mechanism is necessary to identify data
consumers and determine their rights to the requested resource. The encryption
methodologies provided by the Ethereum platform have been used in this regard.
The last part of the thesis focuses on qualitative and quantitative evaluations of the
implementation work. Through the functional testing, it is verified that the pod
manager prototype and the smart contracts fulfil the specification of the requirements
defined during the design phase. The quantitative evaluation involves costs and code
analysis. The execution of on-chain code collected in smart contracts requires the
payment of a tax measured in Gas, whose amount is calculated according to the
computational effort of the code to be executed. The state of the art provides several

1https://www.w3.org/Protocols/

1.1. STRUCTURE OF THE DOCUMENT 6

tools for the automated cost evaluation of smart contracts [4, 26, 65]. The purpose
of this assessment is to delineate the expenditures for infrastructure maintenance
and resource control procedures related to data owners. The identification of critical
issues in this regard highlights opportunities for future code improvement and
optimization.

1.1 Structure of the document

Chapter 2 of the document focuses on the thesis background and defines its core
concepts such as privacy in big data topics, data trading, blockchain technologies
and decentralized web initiatives. Subsequently, chapter 3 proposes a motivating
scenario for the DecentralTrading application, which contextualises the market’s main
functionalities. Chapter 4 exposes the design choices and architectural components
involved in the market, by making clear the distinction between data owners and data
consumers. The implementation stage is addressed by chapter 5, which describes
code details related to the on-chain infrastructure and pod managers. The resulting
implementations are evaluated in terms of costs in chapter 6. Finally, chapter 7
concludes the thesis and outlines the future work.

7

Chapter 2

Background and state of the art

2.1 Big Data and privacy preservation

Big data refers to huge, diverse, and complex data collections that are challenging
to store, analyze, and visualize [52]. The big data phenomenon can be expressed
in terms of three main key-descriptors. Variety indicates the type of data sources
involved in the phenomenon (e.g., structured, semi-structured, or unstructured
data). Velocity describes the frequency with which information are generated (e.g.,
streams, real time, nearly real time, and batch). Volume expresses the range and
scale of the phenomenon (terabyte, petabyte, exabyte and zettabyte). The big data
industry is continuously growing. According to estimates [72], 218 around bytes of
data are generated each day across all industries. One of the fundamental big data
challenges involve privacy [74]. In the era of big data, the readily available current
technologies and techniques, such as search engines, social networks and hacking
tools constitute a significant threat to individual privacy. More specifically, the main
danger to today’s privacy protection comes from data mining and machine learning
algorithms, which are able to extract knowledge from large datasets. Such techniques
extremely ease profiling, clustering and non-obvious relationship awareness findings
[38, 68]. Studies examining privacy in big data contexts are numerous. The most
common approach for protecting privacy is still encryption. Asymmetric encryption
[56] can be extremely useful to restrict data access to users provided with proper
public and private keys. Attribute based encryption proposes a methodology that
generates secret keys based on descriptive attributes (e.g. IDs, dates, locations) [25].
Homomorphic encryption is the research branch aimed at operating on encrypted
data by producing consistent and meaningful outputs [51]. Systems dealing with
big data contexts must guarantee the fair management of confidential user data.
Proper solutions to this end are typically integrated into the system design. Access
control and usage control are two of the most popular approaches to managing data

2.1. BIG DATA AND PRIVACY PRESERVATION 8

confidentiality. The following paragraphs set out their principles.

2.1.1 Access control

Access control is a security approach that limits who or what can access resources
in a computing environment [55]. In system infrastructures, access control is
dependent upon and coexists alongside other security services. Such technologies
require the presence of a trusted reference entity that mediates any attempted access
to confidential resources. In order to decide who has rights on specific resources,
access control frameworks make use of authorization rules, typically stored inside the
system. A set of rules constitutes a policy. The literature distinguishes three main
types of access control policies. Discretionary policies control access to information
according to a user’s identity and authorizations [36]. In this case, rules define
the access modes (such as read, write, or execute) that each user is permitted
to have on each object in the system. Mandatory policies control data access by
classifying users and protected resources according to their security level [37]. If
the user’s level matches the security level of the resource, access is granted. Finally,
role-based policies limit users’ access depending on the actions they take in the
system. A role may be described as a set of duties and obligations connected to
certain working activities [54]. A popular approach to implementing access policies
is through Access Control Lists (ACLs). Each protected resource has an associated
ACL file, which lists the rights each subject in the system is allowed to use to access
objects. Access control is a topic that has generated much interest in the scientific
community. Tran et al. [66] propose a solution to integrate access control into
an untrusted Peer-to-Peer (P2P) environment. The work of Ouaddah et al. [49]
leverage the distributed nature of blockchain technologies to implement an access
control framework for Internet of Things contexts. Koshutanski et al. focused on
business processes by designing an access control architecture for Web Services [32].

2.1.2 Usage Control

Modern privacy challenges require solutions that can not be properly offered by
traditional access control. Novel security requirements are brought by the progress
of computer systems, necessitating the use of new safety protocols [1]. Usage control
is an extension of access control whose policies take into account obligations and
conditions besides authorizations [34]. Authorization predicates define limitations
that consider user’s and resource’s attributes. Obligations are constraints that
must be fulfilled by users before, during, or after resource usage. Conditions are
environmental rules to be satisfied before or during usage. Mutability of attributes
and access continuity are two innovative ways that usage control improves on

2.2. DATA TRADING: CONTEXT AND OPPORTUNITIES 9

conventional access control models. Usage control frameworks must guarantee the
proper handling of attribute alteration. Similarly, because of the rules’ components
that must be fulfilled after resource access, continuity is a key feature of usage
control technologies. The most notorious usage control model is UCONABC [50].
The model represents rules by defining specific rights (e.g. operations to be executed)
related to sets of subjects (e.g. users who want to perform an operation), objects
(e.g. the resource to operate), authorizations, obligations and conditions. UCONABC

supports the definition of mutable subject and object attributes, which increases
the descriptive depth of the model. A usage control framework should require a
proper infrastructure to guarantee policies’ enforcement and monitoring ,in order
to detect misconducts and execute compensation actions (e.g. penalties and right
revocations). The state of the art offers interesting cases of study that approach
the technique. UCIoT [33] is a framework to enforce usage control policies in IoT
environments. UCIoT provides the features of a U-XACML-based usage control
framework on a distributed, peer-to-peer (P2P), decentralised architecture. Similarly,
the study carried out by La Marra et al. is a research concerning usage control in
industrial IoT scenarios [39]. The work interconnects a set of usage control systems
through distributed hash tables. Carniani et al. shift their focus to cloud computing
environments, designing a framework for usage policy enforcement in the cloud
platform OpenNebula [11].

2.2 Data trading: context and opportunities

The exponential growth in the amount of big data combined with improvements
in analytical techniques based on machine learning and AI methodologies has led to
great interest for large firms in daily user information [12]. Business organizations
and companies realized the prominence of data resources in today’s ultra competitive
environment and initiated major investments in information systems and data
warehouses aimed at improving the strategic, tactical and operational sphere of a
firm [28]. According to [20] the 92% of the considered firms agree that they need
to increase the use of outside data. The large amount of information required by
businesses is fundamental to implement decision making processes by means of
business intelligence techniques [46]. Due to the large and growing demand, data
become assets endowed with considerable value [60]. Such a scenario opens up
the opportunity to monetize information through exchange procedures that allow
individuals and companies to sell and buy data. To this end, the need for proper
structures to ensure data integrity, coordinate exchange processes and enforce data
owners and consumers’ rights is manifested [61].

2.2. DATA TRADING: CONTEXT AND OPPORTUNITIES 10

Data Marketplaces are platforms which offer the right environment to enable
the selling and purchasing of data sets and data streams [59]. The most popular
taxonomy regarding data trading systems provides a categorization based on the
information origin [16]:

• Personal data marketplace

• Business to Business (B2B) data marketplace

• Sensor/IoT data marketplace

Personal data marketplaces allow individuals to sell their own daily information (e.g.
location, shopping preferences, everyday habits). B2B data marketplaces involve the
information exchange between different companies. Finally, IoT data marketplaces
allow IoT devices to automate the selling of collected data. The purchase of data in
a marketplace can take place according to different models. According to the one-off
purchase model, data consumers pay for specific data resources at a fixed price. The
subscription model allows buyers to access the data for a specific period of time
based on the subscription duration. In the on-demand model, data consumers pay
for the data as and when they need it.

The world of data marketplaces is extremely composite and the innovative
initiatives are numerous. Datarade is a B2B data trading system, which counts more
than 1,000 commercial providers [17]. The commerce platform on which the system
is based is called Data Commerce Cloud. It enables companies to buy and sell
data across the globe. The Snowflake platform is a B2B cloud computing solution
whose architecture is composed of three layers: the cloud services layer, the compute
layer, and the data storage layer [57]. Similarly, Amazon Web Services (AWS)
Data Exchange is a service which allows AWS customers to subscribe to and use
third-party data in the Amazon Web Service cloud infrastructure [3].

Recent developments in the blockchain field have had important implications
for the data marketplace scene. Several features of such technologies are perfectly
matched to the needs of data trading scenarios [5]. Blockchain technologies enable,
by definition, the immutable recording of transactions generated in a data market-
place. Moreover, the majority of available blockchains allow distributed applications
implementing the logic of the market to be run by the blockchain infrastructure.
The distributed nature and the cryptographic methodologies of such technologies
increase the robustness and reliability that a marketplace application must guarantee
[48]. The literature offers several studies in which blockchains are used for data
trading purposes. Chuen et al. [13] propose a blockchain based architecture for
vehicle data selling . Hu et al. [30] employ the computational power of Smart
Contracts to store big data resources and regulate exchange processes, which are

2.3. BLOCKCHAINS AND ETHEREUM 11

endorsed in combination with an off-chain key management entity. Similarly, Xiong
et al. [73] designed a challenge response mechanism for a data market scenario,
based on the conjunction of smart contracts technologies and Machine Learning
algorithms. The Datum initiative proposes a decentralized and distributed NOSQL
database backed by a blockchain ledger, which permit users to safely store, share
and sell personal data from social networks, smart homes and IoT devices [27].
Its architecture involves the physical storage of data resources in the underlying
blockchain. Another interesting solution is proposed by the IOTA Data Marketplace
[31], which leverages an architecture based on the combination of a centralized cloud
backend for data purchase and consumption, and a blockchain infrastructure for
data storage and submission. Ultimately, despite the heterogeneity of the examined
solutions, they all involve no direct communication between data owners and data
consumers, with the blockchain infrastructure serving as middleware between the
two actors.

2.3 Blockchains and Ethereum

Blockchains are distributed data structures through which huge amounts of data
are safely stored and shared between users [45]. The key distinguishing features of
such technologies are the distribution and immutability of information inside the
system. The information sharing takes place via a distributed ledger in which data
is grouped into sequential structures called "blocks". The structure’s sequentiality
is achieved as each block contains a reference to the previous one. Due to their
distributed nature, blockchains must guarantee information consistency between
the nodes. This issue, which can be extended to the entire family of distributed
systems, is addressed by the use of shared protocols based on consensus algorithms
[42]. Despite the multitude of consensus algorithms, consistency in distributed
environments is still a subject of study, due to the lack of efficient solutions in terms
of performance and energy consumption [35].

Undoubtedly, the notoriety of these technologies lies in their application to
financial economics. The global scale spread of BitCoin, ideated by the pseudonym
Satoshi Nakamoto, established the standards for such technologies, which were later
used in the development of numerous other blockchains [45]. Nakamoto sensed that
the distribution and immutability of information would provide suitable technological
foundations for the development of a currency exchange system. In such a scenario,
a blockchain is used as a shared immutable ledger, through which users can send
and receive values. Transactions are the sending of value from a sender user to a
recipient user. When a new transaction is submitted to the system, it is placed,

2.3. BLOCKCHAINS AND ETHEREUM 12

after a validation procedure, along with other transactions, in a new block that is
appended to the end of the data structure. Each blockchain account is provided with
a unique public key (also called address) and a private key that are exploited for
identification purposes and to sign transactions via asymmetric key encryption. Due
to the cryptographic methodologies involved in the exchange process, blockchains’
currencies are named cryptocurrencies.

Since the Bitcoin explosion, numerous research projects and initiatives regarding
this area have given shape to several technologically diversified blockchain platforms.
Access control, consensus, network type and throughput are some of the main
taxonomy criteria [63]. During the last decade, blockchains gained recognition
among wider audiences, and applications based on these technologies have strongly
increased. The study proposed by Vadgama et al. [67] counts 271 new blockchain-
based projects born between 2010 and 2020. The use case contexts in which
blockchains are involved are numerous. Global supply chains management, healthcare
systems, finance, insurance and digital right management are some of them [43, 75,
76].

2.3.1 Ethereum and smart contracts

Ethereum is the decentralized platform that has opened a new era in the
blockchain realm. Its large-scale adoption ushered in the beginning of second-
generation blockchains. The declared aim stated by its founder Vitalik Buterin was
to combine the existing coin exchange functionality , introduced by Bitcoin, with
the opportunity to build Distributed Applications (Dapps) that run on the same
blockchain network [64]. Although the initial idea was to provide tools to automate
and facilitate payment processing, the freedom given to programmers makes the
possibilities for development virtually endless [44].

The enabler technology that allows Dapps to be executed is the Ethereum
Virtual Machine (EVM) [9]. It is a software distributed across all the blockchain
nodes, which, through virtualization and emulation procedures, is able to provide a
computing environment. Smart contracts are the most innovative and differentiating
element of Ethereum [41]. They collect immutable and deterministic code that
is executed by the EVM. Smart contracts appear as classes, equipped with state
variables and methods. Ethereum users can write their own smart contracts and
deploy them into the network. Once a smart contract is deployed, it is related to
a unique Etherum address, thanks to which users can invoke its execution. The
most commonly used programming language for smart contracts is Solidity 1, a
Turing-complete language, capable of performing all kinds of computations.

1https://docs.soliditylang.org/en/v0.8.17/

2.4. DECENTRALIZED WEB 13

The cryptocurrency underlying Ethereum is called Ether (ETH). The sending and
receiving of ETH is performed through transactions. Each transaction involves the
payment of a tax that is charged to the sender. Transaction fees are measured in Gas,
whose price expresses the equivalent of a single unit in ETH [10]. Transactions are
extremely relevant for smart contract interactions too. When a method invocation
causes the state of a smart contract to change (e.g. the change in the value of a
variable), a new transaction is generated. The Gas amount of such a transaction is
proportional with respect to the computational effort of the code to be executed.
The higher the computational burden, the greater the amount of Gas. Differently,
the invocation of a method that does not cause the smart contract state to change
(e.g. the reading of a variable) does not generate any transaction. Therefore, the
invocation does not involve any fee. Regarding consensus, the first algorithm used in
the Etherum network is Proof of Work (PoW). PoW assumes that each node, called
miners, votes with his "computing power" by solving hard computational problems
through brute force approaches. However, consumption, scalability and performance
issues with the algorithm have directed the Ethereum foundation to move to the
more sustainable Proof of Stake (PoS) [23]. In PoS, participant nodes with higher
coin ages have higher chances of being selected for the validation procedure [47].
The transition process of the Ethereum main-net to the PoS begun in December
2020 and will be completed in 2023 [22].

2.4 Decentralized web

Since its development, the Web has steadily evolved into an ecosystem of large
dimensions, in which the vast preponderance of personal information is controlled
by few mega-platforms that coordinate the majority of online activities. In July
2022, 4.70 billion people were using social media globally, making up 59.0 percent of
the world’s population, according to Data Reportal [24]. Web centralization and
the development of large platforms have undoubtedly brought several benefits. By
making web interactions more usable and friendly, it facilitated access for the general
public to important research and information tools. However, a small number of
stakeholders wind up having disproportionate influence on the content that the
public can produce and consume. The scale of the phenomenon emphasises the
need for initiatives aimed at safeguarding users’ rights in such a scenario. In order
to decentralize the Web and take personal users’ information out of the hands of
a select few firms, proponents of decentralized systems suggest related technology.
Nowadays, the state of the art proposes numerous solutions for web decentralization.

2.4. DECENTRALIZED WEB 14

2.4.1 Solid

Solid2, led by the inventor of the World Wide Web, Tim Barnes-Lee, aims
to significantly change how web applications operate today, bringing actual data
ownership and increased privacy. The Solid protocol is build upon W3C3, Semantic
Web and RDF standards [7]. The central idea of the project is to let users store their
data in personal servers called pods, rather than entrusting their data to centralized
applications. Pods are web-accessible storage systems that can be set up on private
servers owned and operated by users, as well as on public servers owned and operated
by pod providers [53]. By making Solid applications read and write data directly
from pods, the need to store confidential data in application infrastructures is thus
avoided. To work properly, applications can aggregate data from multiple pods spread
across the world. Solid applications operate data via REST-ful HTTP methods.
Authentication methods are necessary to identify individuals and applications which
want to access specific user information. Solid proposes an efficient and secure
method of decentralised authentication on the Web called WebID-TLS protocol
[70]. A WebID is a unique identifier for web agents(e.g. individuals, coorporate
,applications) [69]. It takes the form of an HTTP URI pointing to a document
that contains the necessary information for authentication. Pod services enabling
the generation and storage of such documents are called identity providers, and
they are queried during authentication processes. The Solid protocol preserves data
confidentiality through access control methodologies. Pods decide whether to grant
data operations via Access Control List (ACL) files. These documents specify the
permitted actions on specific data resources for different web agents (identified by
their WebID).

2.4.2 Digi.me

Digi.me [71] is a new ethical and sustainable approach for users to take ownership
of their data and share it discreetly with data-driven apps and services. The
distributed user-centric design of the project transfers power to users by facilitating
the private sharing of personal data with apps and businesses that adhere to the
protocol. The Digi.me architecture is composed of three main components. The
client app allows users to control and safely share information. The cloud data
storage holds and groups data spread over user’s online services (e.g. social media,
finance, health). Dropbox, Google Drive and Microsoft OneDrive are the cloud
data storages supported by digi.me. Finally the cloud platform coordinates the
processes between the client application, the cloud data storage, and third-party

2https://solid.mit.edu
3https://www.w3.org

2.4. DECENTRALIZED WEB 15

online services. Through the cloud platform, the client application can add data
into the cloud data storage from the web services and then safely share information,
maintaining a high degree of control.

2.4.3 InterPlanetary File System

The InterPlanetary File System (IPFS) is a distributed peer-to-peer filesystem
that aims to link all computing devices with a shared filesystem [6]. IPFS makes an
important contribution by streamlining, developing, and integrating verified methods
into a single, cohesive system. The distributed structure of the platform is composed
of numerous nodes, which, as a whole, constitute a P2P network [15]. Nodes connect
and transmit to each other objects representing files and other shared data structures.
Despite each node stores specific files, all the nodes in the network can access other
nodes’ files. Nodes are identified by a node id, which is a public-key cryptographic
hash. The hundreds of nodes in the IPFS network regularly exchange messages with
other nodes over the internet. A routing system is necessary in order to find other
peers’ network addresses and peers related to particular resource objects. To this
end, a Distributed Hash Table (DHT) is employed [14]. By swapping blocks with
peers via the BitSwap protocol, IPFS distributes files [18]. In BitSwap, peers have
a list of blocks they want to buy (a want list) and a list of blocks they are willing
to trade for (a have list). A credit-like mechanism encourages nodes to seed even
when they have no specific need for it. Indeed, they could have the blocks that
others are looking for. According to this, BitSwap nodes optimistically broadcast
blocks to their peers in the hopes that the debt will be paid. Peers keep track of the
amount of confirmed bytes they have with other nodes. As a result, they transmit
blocks to peers who are debtors probabilistically, through a function that falls as
debt increases.

16

Chapter 3

Use Case Scenario

The goal of this chapter is to provide an overview of the use case scenario that
motivates our work. The system, named DecentralTrading market, is a distributed
and decentralized application that enables users to sell and consume web data
resources. The market is backed by the Ethereum blockchain, which hosts its logic
via smart contracts. The main functions of the system are described below without
going into technical details, that will be addressed in the next chapters.

3.1 DecentralTrading Market

A new decentralized data market called DecentralTrading aims to facilitate
data access across decentralized web data stores. Bob and Alice sign up for the
DecentralTrading market. They both have their own Ethereum credentials (public
and private key), which are enough to join the application. By spending Ether(ETH),
Alice and Bob buy a DTsubscription, uniquely related to their Ethereum accounts,
which allows them to enter the market. Bob is interested in sharing his resources in
exchange for remuneration. Differently, Alice would like to access specific resources
in the market. In order to share his resources Bob sets up a personal online datastore
(pod) service on a machine of his choosing and initialize the data that he would like
to trade into the market. The market enables the employment of rules on resources
to set usage restrictions on shared data (e.g., medical datasets may only be used
for medical purposes, internet-browsing datasets must be deleted after one week).
Indeed, Bob decides to make its data available only for medical purposes and sends
metadata with respect to the resources that he would like to trade and the associated
rules to the DecentralTrading market. Alice is interested in Bob’s medical dataset.
She asks the DecentralTrading market for a reference to the data and generates a
certificate that proves her identity and that she has paid the subscription. Alice uses
the reference to contact Bob’s personal data store, which checks if the certificate is

3.2. JOINING THE MARKET 17

valid. Thereafter, it returns Bob’s medical dataset and the associated rules. Alice
can only use the data obtained from the market on their trusted devices (which is
part of the terms and conditions stipulated by the DecentralTrading market), which
ensures that Alice only uses the data for medical purposes. At any point in time,
Bob can ask the DecentralTrading market to check that his resource rules are being
adhered to.

3.2 Joining the market

The only currency considered by the DecentralTrading market is the DTtoken, a
digital asset created for the Ethereum platform. Users who want to enter the market
spend ETH to buy DTtokens. The exchange rate ETH/DTtoken is publicly accessible
on the Ethereum network. DTtokens are accumulated in Ethereum accounts and
used to buy rights to access the market. Such rights are represented by means of
DTsubscriptions. A DTsubscription collects several information, such as an identifier,
the coverage period, and the owner’s address of the subscription. By purchasing
DTsubscriptions, users have the right to use the market’s resources and get rewards
for sharing their data, for the specified period of time. Data owners earn DTokens
according to the amount of access to their resources. The greater the numbers of
accesses, the greater their remuneration will be. In this way, data providers are
expected to be able to recover the initial expense of market subscription.

Figure 3.1. Users spend DTtokens to purchase DTsubscriptions

3.3. RESOURCE SHARING 18

3.3 Resource sharing

DecentralTrading provides distinct functionalities for data owners and data
consumers. Resource sharing is the core function of the system. In order to sell their
resources, data owners use the Pod manager software implementing a web service
that is able to provide on-demand data according to the market logic. Through
such software, users are allowed to initialize data sources and data into the market.
Once a resource is initialized, it can be requested by data consumers having an
active DTsubscription. All the initialized resources can be removed at any time. Pod
managers enable the definition of rules called obligations, regarding the proper use
of the accessed resource. Three different types of obligations have been instantiated.
Temporal obligations express the maximum time a resource can be held in data
consumers’ devices. Access counter obligations put a limit to the number of accesses
to the resource in the utilizers’ devices. Domain obligations define which kinds of
applications can use the resource. Finally country obligations restrict resource usage
to specific countries.

Figure 3.2. Resources sharing

3.4 Resource usage

The functionality related to resource utilization aims at providing data consumers
tools to properly retrieve data from the market, ensuring providers fairness on
resource usage. To this end, trusted client software is employed. The software
allows data consumers to request data by providing evidence of their identity
and subscriptions, according to the market protocols. Once data is retrieved,
data consumers must interact with the trusted client, which manages the resource
utilization. Trusted clients are in charge of the log-keeping functionality. Indeed,
data consumers must be able to provide data owners with records attesting to the
fulfilment of obligation rules.

19

Chapter 4

Architecture and design of the
market

In order to contextualise the previously proposed use case scenario, the following
chapter offers the architecture underlying the market. The goal of this part of the
study is to clarify all the involved technologies and their roles in the architecture.
After an overall description of the big picture of the market, the focus is brought to
services related to on-chain market logic. The last two sections of the chapter will
cover the components for data ownership and data consumption.

4.1 The DecentralTrading infrastructure

The DecentralTrading market’s architecture is built upon Web-related standards
whose principles are combined and adapted to the purposes of the application. Two
key objectives were pursued during the design and implementation of the system:

(a) to produce a data trading system designed for resources (e.g., files, datasets,
pages) shared and retrieved through Web protocols.

(b) to instantiate a shared resource control protocol that would protect data
providers over the use of their data.

The choice of the components characterizing the architecture was carefully selected
according to the two above requirements. The architecture component’s of Decen-
tralTrading are categorized in three groups of technologies.

• Market logic technologies

• Data owner technologies

• Data consumer technologies

4.1. THE DECENTRALTRADING INFRASTRUCTURE 20

Market logic technologies deals with the infrastructure of the market. The Ethereum
blockchain is employed in this regard. Data owner technologies enable the safe
sharing of resources in the market. To this end, pod services are used. Finally, data
consumer technologies are custom client software, through which users access and
use market’s resources. We propose a Trusted Execution Environment solution in
this regard. In the following subsections, the principles and functionalities of the
three components are presented.

Ethereum platform
DecentralTrading Dapp

Indexing Tokenization Obligations

Pod Consumer’s
Device

TEE

Trusted app

Data store

Pod manager

Smart contract
invocation

Smart contract
invocation

HTTP
communication

Figure 4.1. Architecture diagram of the DecentralTrading application.

4.1. THE DECENTRALTRADING INFRASTRUCTURE 21

4.1.1 Ethereum and the on-chain infrastructure

The Ethereum blockchain platform is the core technology of DecentralTrading.
Its adoption provides a trusted and fully decentralized infrastructure capable of
validating and supervising all operations occurring in the market. Ethereum hosts
the market functionalities through multiple interconnected smart contracts , whose
methods are directly invoked by users. A dedicated smart contract has been designed
for each functionality. The adoption of the blockchain requires all the users of the
market to have Etherum credentials (public address and private key), in order to
authenticate and sign transactions.
The on-chain infrastructure must guarantee the proper handling of the DTtoken
currency, i.e., a custom digital asset that is used for payment purposes. The ledger
functionalities of Ethereum are extremely useful for managing DTtoken transactions.
The Ethereum platform is involved in the generation and storage of subscriptions
(named DTsubscriptions) that prove users’ rights to access the market.
Another fundamental task addressed by smart contracts is indexing. Resources that
are shared in the market must be properly registered and equipped with unique
identifiers. The Web URI of resources is related to initialized data, which, alongside
additional metadata coming from initialization, is managed through a specific smart
contract.
Resources’ utilization rules specified by data providers are managed by autonomous
smart contracts. The system architecture requires each pod service to be related
to a specific smart contract, implementing the logic for loading and changing the
utilization rules of stored resources. Through Ethereum authentication, it is ensured
that functions of such a smart contract are invoked only by the uniquely related pod
service.

4.1.2 Pods and data owners

Undoubtedly, the inspiration from decentralized web initiatives has been cen-
tral in the market design process. Among the several decentralized web projects
considered, Solid proposes features and principles that are highly suitable for De-
centralTrading’s goals. The main idea behind Solid is to move users’ data from few
and centralized Web application servers to personal data store named pods. Pods
are accessed via web services and are directly controlled by users, which provide
on-demand resources via HTTP. Solid applications request data directly from pod
services, leading to a complete decentralization of the Web.
Pods’ principles can be extremely useful in a data trading scenario, being adopted for
the fulfilment of (a). Such technologies offer data providers controlled environments
to store and share their resources with the market. Pods are able to communicate

4.1. THE DECENTRALTRADING INFRASTRUCTURE 22

with DecentralTrading’s smart contracts in order to accomplish its functionalities.
To this end, Ethereum credentials are associated with each pod, to enable such
components to authenticate and submit transactions for smart contract interaction.
Pod technologies physically control market resources in data providers’ filesystems.
This includes the implementation of protection mechanisms over initialized data. In-
deed, resources can be directly manipulated only through pod technologies, installed
on the data owner’s machine. Encryption and firewalling can be extremely useful in
this regard.
By interacting with pods, data owners share their resources through initialization
procedure. To this end, pods communicate with the on-chain component of the
market and submit resource metadata (e.g. the resource Web URI). Once a resource
is initialized by the pod, it can be accessed by other users having market rights.
Pods allow data owners to submit and modify utilization rules on their resources,
which are stored in Ethereum smart contracts.
Data consumers retrieve resources by contacting pods through HTTP requests. Pods
are able to authenticate such requests with the use of the blockchain infrastructure.
The validation procedure covers two key aspects. The first is related to the identity
of the sender. In addition, it is verified that the submitted subscription is valid and
covers the necessary rights to access the resource. Through Ethereum authentication,
it is ensured that functions of such a smart contract are invoked only by the uniquely
related pod service.

4.1.3 Trusted Execution Environments and data consumers

In order to guarantee (b), dedicated client technologies are involved in the
market architecture. The objective is to instantiate architecture components to
enable adoption of a usage control-inspired solution. Users who want to retrieve
data from the market make use of trusted applications running in Trusted Execution
Environments. TEEs are employed to guarantee the fulfilment of the rules imposed by
data owners over their resources. Trusted applications running in TEEs communicate
with the on-chain infrastructure of the market to retrieve resources’ metadata
(e.g., the web URI, references, rules). In order to physically obtain a resource, a
trusted client must send an HTTP request to the owner’s pod service. After proper
verification involving the Ethereum infrastructure, the pod can decide to send the
resource in the HTTP response. Once a resource is accessed, the TEE enables data
fair usage according to the rules specified by the owner. Details related to TEEs are
not addressed by this thesis and are covered by a separate study.

4.2. ON-CHAIN AND OFF-CHAIN COMMUNICATION 23

4.2 On-chain and off-chain communication

A crucial aspect to be addressed during the design phase regards the communica-
tion between the on-chain infrastructure of the market and the off-chain components.
Pod managers and trusted applications are coordinated by Ethereum-based services
and need to continuously exchange messages with on-chain smart contracts that
constitute the DecentralTrading application. The possible approaches that can be
adopted to the communication between off-chain and on-chain components strongly
affect the architecture of the framework. The following subsection will show three
different solutions and their effects in the DecentralTrading application.

4.2.1 Direct communication model

The simpler solution assumes off-chain and on-chain entities communicate directly,
without intermediary services. Trusted applications and pods are equipped with
Ethereum credentials to sign transactions and generate the execution of on-chain code.
Once a transaction is signed, it is submitted to Ethereum by third party providers
(e.g., Infura, Alchemy and Moralis) or by the off-chain component itself. The last case
requires pods and trusted applications to locally run Ethereum nodes. Such a scenario
leads to a complete decentralization of the architecture. Indeed, decentralized client
devices interact with the distributed infrastructure of the blockchain. The solution
involves Ethereum accounts related to off-chain components to pay for the costs
of transactions they generate. According to this, fees related to smart contract
execution are charged to the users. The biggest advantage this architecture brings
is high trustworthiness. Indeed, off-chain components are in close contact with the
on-chain infrastructure, and they are therefore responsible for the events that take
place in it. A complete decentralization of the architecture decreases the risks of
scalability and availability issues since all possible bottlenecks have been addressed.
Moreover, the approach proposes the simplest possible solution, reducing the overall
complexity of the architecture. Unfortunately, the model is not free of critical issues.
The biggest criticality concerns usability. Paying user fees severely diminishes the
attractiveness of the project. Payback mechanisms are needed in order to mitigate
the issue.

4.2.2 Middleware services model

The adoption of off-chain middleware services can represent a solution to the
user’s fees issue. This option involves off-chain servers that run Ethereum nodes
that are equipped with reserved credentials. The goal of such web services is to
intercept off-chain component requests and provide backend logic for pods and

4.2. ON-CHAIN AND OFF-CHAIN COMMUNICATION 24

trusted applications. Once a request is received by off-chain servers, backend logic is
eventually executed and a new transaction is generated to communicate with the
on-chain smart contracts of the market. By using their own credentials, web services
pay for users’ transactions, and usage costs are attributed to the infrastructure of the
market. Moreover, the solution provides a better separation between front-end and
back-end functionalities for the off-chain elements of the architecture, keeping the
complexity of the architecture acceptable. However, the employment of centralized
web services running Ethereum nodes can have negative effects on availability.
Such services can represent a vulnerability in this regard, and the bottleneck issue
may occur. Moreover, while indirect communication with the blockchain may
have positive effects on costs, it can negatively impact the trustworthiness of the
application. Indeed, such a solution hides the blockchain infrastructure from pod
technologies and trusted applications, which have no way to directly interact with
the market ecosystem.

4.2.3 Gas station network model

Through a Gas station network solution, it is possible to introduce off-chain
intermediate services between pods/trusted applications and Ethereum without
running into the centralization issue and charging fees to users. An Ethereum
transaction can be signed and sent without the original sender (the end-users) having
to pay for gas, using a decentralized network of relayers called Gas station network.
The off-chain components of the architecture sign a message containing details
about a transaction they would like to execute and transmit it to the decentralized
network of relayer servers. Such messages are called meta transactions. Relay
servers will validate a transaction after receiving a request to relay it from the
off-chain components. Then, the relayer submits a native Ethereum transaction
to the mempool, signs it, and sends it back to the client for verification. The
client can simply select a different relay server and attempt to send a transaction
if something goes wrong. A Gas station network involves on-chain entities as well.
A RelayHub contract is the on-chain reference point for relay servers to submit
transactions. A Paymaster contract keeps an ETH balance in the RelayHub and
has the capability to execute any business logic to approve or disapprove the code
execution (and the related expense). This feature can be employed to verify if a
DTsubscription is related to the off-chain component that wants to interact with
the on-chain infrastructure of the market. Finally, a forwarder contract is in charge
of generating the code execution of the market smart contracts, once all checks are
successful. Market’s smart contracts must implement specific interfaces so that their
execution can only be invoked by the forwarder contract. The decentralized structure

4.3. COMPONENTS COORDINATION 25

of the relayers network ensures decentralization. The Gas station network approach
has considerable effects on usability by providing a mechanism for the on-chain
infrastructure interaction without the need for immediate payment of execution fees.
Although they do not interact directly with market’s smart contracts, pods and
trusted applications are fully aware of the code executed on Ethereum. This ensures
a high degree of trustworthiness. The major issue related to such a solution involves
the increased complexity of the architecture. The inclusion of a larger number of
components has negative performance effects on throughput, latency and costs.

Model Pros Cons

Direct communication

- Low complexity
- High trustworthiness
- Decentralization preserved
- Low latency

- Fees charged to users
- Low usability

Off-chain middleware services
- Accettable complexity
- Fees not charged to users

- Low trustworthiness
- No decentralization
- High latency

Gas station network
- Fees not charged to users
- Decentralization preserved
- High trustworthiness

- High complexity
- High latency

Figure 4.2. Pros and cons for the proposed communication models.

4.3 Components coordination

Several basic interaction scenarios have been identified and grouped in order
to describe how the components of the architecture cooperate. In the following
subsections, the main functionalities of the system are addressed, focusing on the
coordination between pods, trusted applications and the on-chain infrastructure of
the market.

4.3.1 Pod initiation

The process starts when data owners make a request to their pod manager to
initialise a new DecentralTrading pod. Users must provide their Ethereum credentials
to the pod manager. The pod manager sets up the pod in the local filesystem, by
defining a new address and default obligation rules. Subsequently, a transaction
is signed by the pod manager using user’s credentials and information about the
pod’s metadata(e.g., the Web URI and the default policy) is sent to the Ethereum
blockchain. The on-chain infrastructure of the market registers the new pod and
deploys the smart contract for the obligation rules. Finally, the pod manager receives
back the pod’s id and its obligations smart contract address.

4.3. COMPONENTS COORDINATION 26

Pods

manager

DecentralTrading DappData owner

Request the initiation of a new pod Set up the new pod

with default obligation rules

Send information about the default

obligation rules and the Web location

Record information and

deploy a new obligation

smart contract

Pod id and obligation

 smart contract's address

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.3. UML sequence diagram for the pod initiation process.

4.3.2 Resource initiation

Data owners add data to their pods by interacting with the pod manager. The
resource initiation process enables the adding of a new resource to the Dencentra-
Trading app. The process is initiated when the data provider asks the pod manager
to add a resource to his pod. The pod manager first adds a copy of the resource
in the pod’s location of the filesystem. Subsequently, the pod manager uses the
Ethereum credentials to forward, via transaction, the necessary metadata (i.e., a
reference to the resource) to the DecentralTrading app, which adds the resource to
the index. Once the resource is indexed, it can be accessed by the data consumers
of the market.

Data
owner

Pod

manager

Ask the pod manager

to add a new resource

to the pod

Add the resource

in the pod filesystem

and store its metadata

DecentralTrading Dapp

Record new

resource metadata

Send new resource metadata

Resource id

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.4. UML sequence diagram for the resource initiation process.

4.3. COMPONENTS COORDINATION 27

4.3.3 Resource indexing

The resource indexing process involves data consumers, and allows them to
retrieve a link to a resource that is indexed in the DecentralTrading app. Given that
data consumers may not know the exact location of a resource they are interested in,
they asks the on-chain infrastructure for a Web URI. The process is initiated when
a data consumer requests information about one or more resources initialised in
the market. The trusted application from which the data owner makes the request,
runs in a trusted execution environment, and read the resource information directly
from the DecentralTrading on-chain infrastructure. This information is subsequently
stored in the data owner’s trusted execution environment.

DecentralTrading
Dapp

Resource reference

Trusted application

Read information

about the resource Web location

 Store the information in its

trusted execution environment

Data consumer

Ask the trusted application

to get a resource reference

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.5. UML sequence diagram for the resource indexing process.

4.3.4 Resource access

The resource access process is used to retrieve a resource from a DecentralTrading
pod. In order to access a resource, data consumers’ trusted applications, running in
a trusted execution environment, make a request to the pod manager, which includes
a certificate that proves users have paid the market fee. The trusted application
contacts the pod manager using a reference, previously obtained via resource indexing
process. The pod manager first checks the identity of the data consumer through the
authentication mechanism. Once the identity is verified, the pod manager contacts
the on-chain infrastructure to check the validity of the certificate. If so, the pod
manager sends back the resource to the trusted application, which stores it in its
trusted data storage.

4.3. COMPONENTS COORDINATION 28

Trusted application Pod
manager

Use the resource's Web

location to access the resource

r
Resource

Store the resource in

the trusted execution environment

DecentralTrading DappData consumer

Ask the trusted application

to retrieve a market resource

Verifies the data

consumer's identity

Check the market rights

for the verified identity

Market rights

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.6. UML sequence diagram for the resource access process.

4.3.5 Obligation modification

The policy modification process updates obligation rules in the DecentralTrading
app. For instance, data owners may decide to change the purpose for which a
particular resource or pods may be used. Here we assume that such updates are
permitted according to the general rules of the market. The data owner makes
a request to his pod manager to change an obligation rule. The pod manager
changes the rule locally and uses the pods’s credentials to send the modification
to the on-chain infrastructure of the market. The old rule is overwritten. The
DecentalTrading app notifies every data consumer that has a copy of the involved
resources that the rule has been updated. Trusted applications update their local
rule, check if any action needs to be executed locally, and if so, execute the required
action.

Trusted applicationData owner Pod

manager

Request to modify an obligation rule

for a resource/pods Modify the local

obligation rule

Send the new obligation rule

DecentralTrading Dapp

Record

the modification

Record

the modification

Modify the obligation rule
Notify obligation rule change

Execute actions

according to the rule change

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.7. UML sequence diagram for the obligation modification process.

4.3. COMPONENTS COORDINATION 29

4.3.6 Obligations monitoring

The policy monitoring process is used in order to continuously check if obligations
rules are being adhered to. The pod manager initiate the monitoring (for instance
via a scheduled job) and forwards the request to the on-chain infrastructure. The
DecentralTrading app in turn communicates with all devices that have a copy of
the resource in their trusted execution environment, and requests evidence that the
usage policies are being adhered to. The trusted applications running in a trusted
execution environment send back the evidence to the on-chain infrastructure, which
performs verifications and communicates the result to the pod manager that initiated
the monitoring process.

Pod
manager

DecentralTrading Dapp Trusted application

Check obligations

Record resource

usage informationSend resource

usage information

TextStart the

monitoring routine

Check resource usage

Resource usage information

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 4.8. UML sequence diagram for the obligations monitoring process.

30

Chapter 5

Implementation

Once the design of DecentralTrading has been defined, we moved to the implemen-
tation of the architecture’s components. The thesis addresses the implementation,
focusing on the data ownership perspective and the on-chain infrastructure. The
goal of this part of the study is to produce smart contract prototypes implementing
the market logic and a proof of concept for the pod manager. The design and
the implementation of data consumption technologies involving Trusted Execution
Environments and trusted applications are covered by a separate study.
The first part of the implementation concerns the realization of the Ethereum appli-
cation’s components, which are grouped into three key modules: the tokenization,
the indexing and the obligations modules. Utilities, implementation details and code
structure are clarified for each of these. After that, the discussion broadens to the
pod manager’s proof of concept. The key subjects that are addressed by this part
concern details on the physical structure of pods, how market resources and obliga-
tion rules are managed by the pod manager application and the implementation of
data provision procedures.
The goal of the chapter is to discuss in a concrete way what was designed in the
architecture chapter and how the components considered were implemented. Among
all the possible design solutions concerning the on-chain/off-chain communication
presented in Section 4.2, the model chosen is the direct communication model (Sec-
tion 4.2.1). The design assumes the off-chain components run the backend logic
locally and directly send transactions to the blockchain by using their Ethereum
credentials. The full code of the implementation is available at the following url:

https://github.com/dave0909/DecentralTrading

In order to provide an implementation overview that references the actual code
produced, mentions to filenames and functions in the previously proposed repository
are used.

https://github.com/dave0909/DecentralTrading

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 31

5.1 The on-chain smart contracts of the market

The components of the application running on the Ethereum ecosystem represent
the core functionalities of DecentralTrading. Through the on-chain infrastructure,
a distributed application is implemented in order to provide users with a third-
party entity to validate and coordinate all the exchanges that take place in the
market. Smart contracts are the enabler technologies to this end. Indeed, the
DecentralTrading distributed application is composed of several communicating
smart contracts, which are deployed by one or more authority accounts related to
the owners of the infrastructure. The role of owner refers to service providers and is
necessary for performing maintenance, moderation and supervision procedures of the
infrastructure. The market smart contracts are grouped into three main modules:

• Tokenization module: manages subscriptions and user’s right to enter the
market.

• Indexing module: represents the logic for controlling metadata related to
pods and resources initialized in the market.

• Obligations module: handle the storage and modification of obligation rules
related to pods and resources.

Smart contracts contained in such modules fulfil several functions and functional
dependencies that can be instantiated among them to enable communication between
different components. Each smart contract is characterized by a public address
that enables the interaction and the function invocations. It is assumed that smart
contract addresses are freely disclosed as well as their code in order to increase
trustworthiness with users.

All the smart contracts in DecentralTrading are written in Solidity, the native
Ethereum programming language. The development environment adopted for the
implementation is Remix IDE1, an open source Ethereum Integrated Development
Environment for writing, compiling and debugging Solidity code. Remix enables
the integration of different Ethereum networks. During the implementation phase,
Ganache2 has been fundamental in simulating the blockchain environment. The
software enables the execution of the Ethereum blockchain protocol, which is uniquely
run by the node of the local machine. Remix IDE is able to communicate with the
local blockchain hosted by Ganache. After the implementation phase, the smart
contracts have been tested on the Ropsten3 network. Ropsten is the most famous

1https://remix-project.org
2https://trufflesuite.com/ganache/
3https://ropsten.etherscan.io

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 32

Ethereum testnet, which offers a distributed environment that runs the same protocol
as the Ethereum mainnet without the need to pay fees for code execution. Ropesten
allowed us to test the on-chain infrastructure in a realistic blockchain environment.

Tokenization
Module

Indexing
Module

Obligations
Module

DecentralTrading’s smart contracts

DTtoken

DTtokenMarket

DTsubscription

DTindexing DTobligations

Figure 5.1. Smart contracts of the on-chain infrastructure.

5.1.1 Tokenization

The Tokenization module collects smart contracts implementing the exchange
logic to enter the market and earn a profit. In order to acquire the rights to be part
of the DecentralTrading application, users safely interact with these smart contracts
using their Ethereum personal credentials in order to be uniquely identified. Digital
fungible and non fungible tokens (NFTs) are the main technologies handled by the
smart contracts of the tokenization module, and their use is employed to model the
market currency and subscriptions. The immutability of information and ledger
functions of Ethereum offer the perfect environment to store transactions of the
digital assets involved in DecentralTrading.

The smart contracts which characterize the module are:

• DTtoken.sol

• DTtokenMarket.sol

• DTsubscription.sol

In the following paragraph code details and their functionalities are addressed.

5.1.1.1 DTtoken.sol

The DTtoken smart contract is used to model and represent the custom currency
employed for data trading purposes in DecentralTrading. The digital asset is named

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 33

DTtoken. The smart contract aims at keeping track of the accounts’ balances and
providing users the functionality to manage their amounts of DTtokens. Moreover,
several functions, designed for the infrastructure owners, are implemented in order
to control the flow of currency minted. DTtoken inherits the Ownable and ERC20

abstract smart contracts. The purpose of these abstract entities is to provide stan-
dard functions to model the behaviour of the inheriting smart contract.
Ownable implements basic access control mechanisms to preserve functionalities
solely accessible to an owner account. In the case of the DTtoken, the owner
role is embodied by the service provider of the market. The abstract smart con-
tract implements ownership by using a private address field named _owner and the
onlyOwner() modifier usable in the header of functions that can only be invoked by
the owner. Ethereum Request for Comment 20 (ERC20) is an Ethereum standard
for Solidity smart contracts aimed at the implementation of fungible tokens. A
fungible token can be compared to any kind of interchangeable asset, right, or access.
By inheriting the implementation of ERC20 offered by the library OpenZeppelin,
DTtoken receive the necessary code to execute token transactions between parties.
Several fields of the DTtoken smart contract are used to provide descriptive informa-
tion about the DTtoken. These include the private variables _name , _sybmbol and
_totalSupply. DTtoken offers different standard functions, inherited by ERC20, pub-
licly accessible to users through transactions or calls. The totalSupply() costant
function returns to users the amount of minted DTtokens. The balanceOf() func-
tion deliver the balance of DTtokens of a given address. The transactional utilities of
the smart contract are implemented through transfer() and transferFrom(). The
transfer() function allows the invoking user to send a given amount of DTtokens
to an input address. Differently, by using the transferFrom() function, a smart
contract may automate the transfer procedure and transmit a certain quantity of the
token on the owner’s behalf. To this end, the approve() is necessary. This function
takes as input a spending address and an amount. Once a user invokes the approve()

function, the specified spender is enabled to move an approved input amount (or less)
to a specified account via transferFrom(). The functions decreaseAllowance()

and increaseAllowance() are both related to the approve() function. Indeed,
they are able to increase or decrease the allowance previously granted through the
approve() function. Two functions mint() and burn(), uniquely accessible by the
user owner of the smart contract, have been added to the functions inherited from
ERC20. To both is placed the onlyOwner() modifier in the header. The method
mint() generates and adds a given amount of DTtokens in the balance of an input
account. Oppositely, the burn() method decreases the balance of an input account
by a given amount. The functions have been implemented to deliver service providers

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 34

an increased level of control over the on-chain infrastructure aimed at performing
moderation procedures.

1 contract DTtoken is ERC20,Ownable {
2
3 constructor() ERC20("DTtoken","DTt") {}
4
5 function mint(address account, uint256 amount) public onlyOwner returns (bool)
6 {
7 _mint(account, amount);
8 }
9

10 function burn(address account,uint256 amount) public onlyOwner virtual
11 {
12 _burn(account, amount);
13 }

Listing 5.1. Solidity code for the DTtoken smart contract.

5.1.1.2 DTtokenMarket.sol

The main purpose of DTtokens is to offer users a currency with which Decen-
tralTrading’s subscriptions can be purchased. However, a dedicated distribution
mechanism for DTtokens is necessary, to permit users to safely acquire amounts
of currency by spending ETH. Again, Ethereum offers a suitable environment for
such needs. The DTtokenMarket smart contract represents a reference point for
users who want to buy or sell their DTtoken, by exchanging them with ETH.
The smart contract is characterized by its own DTtoken balance and maintains
as a field a reference to the DTtoken smart contract, in order to directly manage
its transactions. DTtokenMarket is charged with tokens by the service providers,
through earlier mentioned mint() function of the DTtoken smart contract. Once
DTtokenMarket has accumulated enough tokens, it is ready to sell and exchange
them for ETH. The buyTokens() function is the method users refer, to buy an
input amount of DTtokens from the smart contract. This method uses two different
modifiers. The areTokensAvailable modifier checks if the smart contract balance
has the requested amount of DTtokens to be sold. The isEtherEnough modifier
verifies if the transaction generated by the user contains the right amount of ETH
to be exchanged for DTtokens. If both the checks performed by the modifiers are
successful, the transfer of tokens from the DTtokenMarket balance to the user’s
balance will take place. The price of a single unit of DTtoken in ETH is expressed
as a public field of the smart contract.

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 35

1 contract DTtokenMarket
2 {
3 DToken dToken;
4 uint public weiValue;
5 constructor(address tokenAddress){
6 dToken=DToken(tokenAddress);
7 weiValue=500000000000000;
8 }
9 modifier areTokensAvailable(uint requiredTokens)

10 {
11 require(dToken.balanceOf(address(this))>=requiredTokens,
12 "The requested amount is not available");
13 _;
14 }
15
16 modifier isEtherEnough(uint etherAmount, uint neededEther)
17 {
18 require(etherAmount>=neededEther,
19 "Insufficient amount of ether");
20 _;
21 }
22
23 function buyTokens(uint amount) areTokensAvailable(amount)

↪→ isEtherEnough(msg.value,weiValue*amount) payable public returns (bool
↪→ success){

24 dToken.transfer(msg.sender,amount);
25 return true;
26 }
27 }

Listing 5.2. Solidity code for the DTtokenMarket smart contract.

5.1.1.3 DTsubscription.sol

The DecentralTrading market membership is currently managed by means of
temporal subscriptions. Users who have accumulated DTokens in their accounts can
spend them in order to acquire the rights to enter the market. Users with active
subscriptions are allowed to perform operations involving the on-chain infrastructure
of the market. The subscription to DecentralTrading is named DTsubscription and
it is modelled by the homonymous smart contract DTsubscription. Similarly to
DTtoken, the smart contract inherits Ownable to define functions restricted to the
service provider’s account. DecentralTrading subscriptions are implemented in the
form of non fungible tokens (NFT). A NFT is a certificate which represents the
ownership and authenticity of digital and non-digital goods. The main difference with

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 36

classic fungible tokens is that NFTs contain specific information (e.g., identifiers, serial
numbers, names) which makes them unique, non-interchangeable, and identifiable.
Ethereum Request for Comments 721 (ERC721) is the most famous NFT standard
for Ethereum smart contracts. It defines the main functionalities an NFT smart
contract should implement in order to properly represent non-fungible tokens and
manage their lifecycle. The DTsubscription smart contract extends the ERC721
implementation proposed by the OpenZeppelin library, in the form of an abstract
smart contract. Several state variables are used in order to add more information to
nature of the NFT. The fields name_,symbol_ and duration are some of them. The
price field expresses the amount of DTtokens necessary to purchase a DTsubscription.
A reference to the DTtoken smart contract is stored as a state variable. The integer
variable mintedTokens is crucial to keeping track of all the generated DTsubscription
and assigning them a unique identifier. The distinctive information that characterize
each token are represented by means of the struct SubscriptionInfo. The object
contains three main attributes:

• registeredOn: an integer field representing the unix epoch in which the
DTsubscription has been generated.

• expiresOn: an integer field representing the unix epoch after which the
DTsubscription is no more. valid.

• subscriptionType: an enum field that distinguish the type of DTsubscription.

Ownership and identification information are added to the struct SubscriptionInfo

via mapping variables. The mapping tokenOwner relates an integer NFT identi-
fier to the Ethereum address of the owner. Differently, the idToSubscriptionInfo

mapping uses an integer identifier as a key and a SubscriptionInfo object as a value.
Functions such as transferFrom(), approve(), ownerOf() and safeTransferFrom()

work similarly to the ERC20 version, offering users mechanisms to control their
NFTs. Subscriptions are generated through the purchaseSubscription() function.
This method allows user to buy DTsubscriptions, by spending DTtokens. The
function requires the buyer user to have invoked the approve() method of the
DTtoken smart contract. In this way, the DTsubscription smart contract can use
the tranferFrom() method to retrieve the necessary DTtokens from the buyer. If
the procedure is successful, a new DTsubscription is generated and assigned to
the sender user. Different functions have been implemented to check the validity
of a user’s subscriptions. The method isSubscriptionActive() checks if a given
integer identifier is related to a subscription that has not expired yet and returns
a boolean value. The function verify_subscription() determines if a given sub-

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 37

scription identifier is owned by an input address. Through get_subscriptions()

users obtain the identifier of all the subscriptions owned by the input address.

1 . . .
2
3 function purchaseSubscription() public returns(uint)
4 {
5 dToken.transferFrom(msg.sender,address(this),price);
6 mintedTokens+=1;
7 _mint(msg.sender,mintedTokens);
8 tokenOwner[mintedTokens]=msg.sender;
9 idToSubscriptionInfo[mintedTokens]=SubscriptionInfo(block.timestamp,block.timestamp

↪→ + subscriptionDuration,SubscriptionType.FULL_SUBSCRIPTION);
10 return mintedTokens;
11 }
12
13 function isSubscriptionActive(uint256 _tokenId) public view returns (bool state){
14 SubscriptionInfo memory token = idToSubscriptionInfo[_tokenId];
15 if(token.expiresOn<block.timestamp){return false;}
16 else{return true;}
17 }
18
19 function verify_subscription(uint256 _tokenId,address claim_owner)public view

↪→ returns(bool){
20 address real_owner=tokenOwner[_tokenId];
21 return isSubscriptionActive(_tokenId) && real_owner==claim_owner;
22 }
23
24 . . .

Listing 5.3. DTsubscription smart contract’s fragment

5.1.2 Indexing

The indexing module offers several functionalities for data owners and data
consumers regarding the resources initialised for the DecentralTrading market. The
main goal of this component is to keep track of market’s data. Data owners’
technologies interact with this module in order to index their pods and resources.
Users’ register resources and share valuable metadata which can be used for data
retrieval. Similarly, data consumers make use of the smart contract to find references
for registered resources through search functionalities. The core smart contract of
the module is DTindexing. Its code details are addressed in the next paragraph.

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 38

5.1.2.1 DTindexing.sol

The DTindexing smart contract groups all the functionalities of the market
regarding pods and resources. This smart contract allows data owners to register
their pods and data. Pods and resources’ identification is performed by means of serial
identifiers stored as integer fields. These correspond to the private state variables
podsCounter and resourceCounter. The two fields are incremented and assigned
whenever new pods and resources are initialized. Pods’ descriptive information are
modelled through the Pod struct. The variables of such a struct are:

• id: integer identifier of the pod.

• podType: Enum type expressing the nature of the pod.

• owner: address of the user owner of the pods.

• podAddress: address with which pod managers sign transactions on behalf
of the pod.

• baseUrl: bytes field containing the web reference of the pod service.

• isActive: boolean value defining if the pod can be contacted.

Similarly, the Resource struct contains information for initialized resources:

• id: integer identifier of the resource.

• owner: address of the user owner of the resource.

• podId: integer identifier of the pod storing the resource.

• url: bytes field containing the web reference to retrieve the resource.

• isActive: boolean value defining if the resource can be retrieved.

Pod and Resource structs are stored into array variables named podList and
resourceList. The registerPod() allows pod managers to initialize new pods
in DecentralTrading. It takes as input a bytes web reference for the pod service,
the address of the owner and the pods type. The function creates a new Pod

struct and stores it in the podList. Since every pod is related to an Obligation

smart contract (see Section 5.1.3), the method performs the deployment of such
an entity. Finally, the function emits a NewPod event containing the id and
the address of the Obligation smart contract for the new pods. The method
registerResource() works similarly, generating a new Resource object and stor-
ing it in the resourceList state variable. Oppositely, deactivateResource() and

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 39

deactivatePod() make pods and resources no more accessible. The smart contract
offers different search functions that can be extremely useful for data consumers.
The methods getSocialPods(),getFinancialPods(),getMedicalPods() returns
to market users the pod information according to their type. The three functions
make use of the private method searchByType(), which takes as input a pod
type to be searched. Through getPodResources() users obtain a list of Resource

structs which are stored in the pods having the input id. The function makes use
of the validPodId modifier to check if the given id is related to an active pod.
The getResource() method accepts as input an integer identifier and returns the
Resource struct having the given id. In this case, the validResourceId modifier
verifies the validity of the input resource identifier.

1 . . .
2 modifier validResourceId(uint id)
3 {
4 require (id<resourceList.length,"The given id is unknown");
5 Resource memory resource= resourceList[id];
6 require(resource.isActive==true,"The resource is not active");
7 _;
8 }
9 modifier validPodId(uint id,uint idSubscription,address owner)

10 {
11 require (id<podList.length,"The given id is unknown");
12 Pod memory pod= podList[id];
13 require(pod.isActive==true,"The pod is not active");
14 require (pod.podAddress==owner,"The sender is not the pod");
15 _;
16 }
17 function registerPod(bytes memory newReference,PodType podType,address podAddress)

↪→ public returns(int)
18 {
19 int idPod=podsCounter;
20 podList.push(Pod(podsCounter,podType,msg.sender,podAddress,newReference,true));
21 DTObligations obligation = new DTObligations(address(this),podAddress);
22 emit NewPod(podsCounter,address(obligation));
23 podsCounter+=1;
24 return idPod;
25 }
26 function registerResource(int podId,bytes memory newReference) public

↪→ validPodId(uint(podId),idSubscription,msg.sender) returns(int)
27 {
28 int idResource=resourceCounter;
29 resourceList.push(Resource(resourceCounter,msg.sender,newReference,podId,true));
30 emit NewResource(resourceCounter);
31 resourceCounter+=1;

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 40

32 return idResource;
33 }
34 . . .

Listing 5.4. DTindexing smart contract’s fragment.

5.1.3 Obligations

One of the main purposes of DecentralTrading is to ensure data owners have a
high degree of control over shared resources. Most data markets do not propose any
mechanism for controlling data once it has been retrieved. DecentralTrading offers
usage control inspired procedures to allow data providers to define restrictions on
resource utilization. To this end, obligation rules have been designed. Obligations
are stored in the Ethereum blockchain and their access and modification take place
through smart contract interaction. The design of DecentralTrading involves the
deployment of several DTobligation smart contracts, as many as there are pods in
the market. Indeed, each pod manager is owner of a specific DTobligation smart
contract. The next paragraph addresses the DTobligation implementation.

5.1.3.1 DTobligation.sol

As with many smart contracts of the on-chain infrastructure of the market,
DTobligation extends the Ownable abstract smart contract in order to establish
the ownership of the related pod technology’s credentials. Through Ownable, the
functionality of writing and modifying obligation rules is reserved only for transactions
signed through the pod’s credentials. The actual implementation includes four
types of obligations. The AccessCounterObligation struct models a restriction
on the resource accesses in the client device and, it is composed by an integer
field accessCounter and a boolean variable exists which is set on true, when
the rule is defined. The CountryObligation struct represents limitations on the
country in which a resource can be used. Its main fields are countryCode, which
represents countries’ identifier, and the exist variable. DomainObligation struct
expresses for which purposes resources can be used. Finally, TemporalObligation

imposes a maximum duration for resource usage. Obligation rules are grouped via
ObligationRules struct. An ObligationRules struct can refer to a specific pod
resource or more generally to the pod. In the latter case, all the resources of the
pod that do not have a specific ObligationRules object inherit the struct related
to the pod. An ObligationRules object is composed of the following fields:

• idResource: integer variable containing the identifier of the resources to
which the rules refer. If the rules refer to the pods, a default value is set.

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 41

• acObligation: AccessCounterObligation struct variable.

• countryObligation: CountryObligation struct variable.

• temporalObligation: TemporalObligation struct variable.

• domainObligation: DomainObligation struct variable.

• exists: boolean variable which expresses if the object have been instantiated.

The smart contract stores obligation rules thanks to the fields defaultPodObligation

and resourcesObligation. The first of them stores the ObligationRules object
associated with the pod, while resourcesObligation is a mapping variable which
links integer resources identifiers to ObligationRules structs. Among the fields of
the contract we find the dtIndexing variable, which keeps a reference to DTindexing

smart contract of the market. The addDefaultAccessCounterObligation(),
addDefaultTemporalObligation(), addDefaultDomainObligation() and
addDefaultCountryObligation() functions are invoked by pod managers in order
to set the default rules associated with the pod. All of them make use of the
onlyOwner modifier to ensure that the functions are invoked only by the owner
pod. The isValidTemporal modifier is employed by addDefaultTemporalObli-
gation() to check if the input time duration is a consistent value. The meth-
ods addAccessCounterObligation(), addTemporalObligation(), addDomainObligation()

and addCountryObligation() offer the same functionalities as the previous func-
tions, but referencing specific resources. Indeed, they all require an input resource
identifier in order to record a new rule. In this case, the isTheResourceCovered

modifier verifies that the given id belongs to a resource of the pods. Default
and specific resource rules can be deleted thanks to dedicated methods such as
removeDefaultAccessCounterObligation() and removeAccessCounterObligation().
Finally, through reading functions, market users can read the stored obligation rules.
The method getDefaultObligationRules() returns the
ObligationsRules object stored in the defaultPodObligation field. Similarly,
getObligationRules() requires an input identifier to retrieve the ObligationsRules

struct belonging to the resource from the resourcesObligation mapping variable.

5.1. THE ON-CHAIN SMART CONTRACTS OF THE MARKET 42

1 . . .
2 struct ObligationRules{
3 int idResource;
4 AccessCounterObligation acObligation;
5 CountryObligation countryObligation;
6 TemporalObligation temporalObligation;
7 DomainObligation domainObligation;
8 bool exists;
9 }

10 function addDefaultTemporalObligation(uint temporalObligation)public
↪→ isValidTemporal(temporalObligation) onlyOwner()

11 {
12 uint d=1 days;
13 require(temporalObligation>d,"The temporal obligation must be at least 1 day");
14 defaultPodObligation.temporalObligation.exists=true;
15 defaultPodObligation.temporalObligation.usageDuration=temporalObligation;
16 }
17 function removeDefaultTemporalObligation() onlyOwner() public
18 {
19 defaultPodObligation.temporalObligation.exists=false;
20 defaultPodObligation.temporalObligation.usageDuration=0;
21 }
22 function addTemporalObligation(int idResource,uint deadline)

↪→ isTheResourceCovered(idResource) public isValidTemporal(deadline)
↪→ returns(ObligationRules memory) onlyOwner()

23 {
24 if (resourcesObligation[idResource].exists){
25 resourcesObligation[idResource].temporalObligation=TemporalObligation(deadline,true);
26 }
27 else{
28 resourcesObligation[idResource].exists=true;
29 resourcesObligation[idResource].idResource=idResource;
30 resourcesObligation[idResource].temporalObligation=TemporalObligation(deadline,true);
31 }
32 return resourcesObligation[idResource];
33 }
34 function removeTemporalObligation(int idResource) isTheResourceCovered(idResource)

↪→ public hasSpecificRules(idResource) onlyOwner()
35 {
36 resourcesObligation[idResource].temporalObligation.exists=false;
37 resourcesObligation[idResource].temporalObligation.usageDuration=0;
38 }
39 . . .

Listing 5.5. DTobligations smart contract’s fragment.

5.2. THE POD MANAGER 43

5.2 The pod manager

Once the on-chain infrastructure of DecentralTrading is addressed, the focus of
the discussion is brought to the data owner’s technologies. The thesis proposes a
prototype implementation of the pod manager software. The goal of the prototype
is to provide data owners with the functionality to properly manage their resources
in the data market. The software is able to physically control the user’s resources in
specific locations of the filesystem. Pod managers communicate with on-chain smart
contracts of the infrastructure to initialize and deactivate resources. Moreover, the
software implements web services to deliver resources to data consumers through
the HTTP protocol. The implementation details inherent in these issues will be
addressed in detail in the following subsections.

5.2.1 The pod manager application

A pod manager software is the core technology to enable the sharing and the
control of the resources in DecentralTrading. The application has been designed to be
installed on users’ machines and to interact with local filesystems. The pod manager
prototype is developed in the Python language, which guarantees elasticity and
dynamism during the implementation phase. Python supports the Web3.py module,
allowing the creation of communication protocols with Ethereum and on-chain smart
contracts of DecentralTrading. Through the use of Tkinter, the prototype offers a
Graphical User Interface aimed at simplifying the interaction with the pod manager’s
functionalities. The core structure of the user interface is in the app.py file. The
controller entity of the application is the App class, extending Tk. The class contains
the necessary logic to control window settings and to coordinate the view transitions.
The views of the application are implemented by means of Frame classes extensions.
Each class is characterized by methods and variables required for the execution of
the view’s functionalities.
The first view that the user interacts with is modelled through the WelcomePage

class. It manages the physical generation of pods in the local filesystem and their
initiation into DecentralTrading. The page offers a form aimed at creating a new pod
by asking the user for descriptive information and its Ethereum credential to sign
the initiation transaction (see Section 5.2.3). The function of WelcomePage which
starts the initiation operation is submit_validation(). The function inspects the
form fields and, in the case of a positive outcome, initiates the procedure by invoking
register_pod(). The method communicates with the on-chain infrastructure and
sets up the filesystem location of the pod generating configuration files through
generate_config_files() (see Section 5.2.2). Once a pod and the associated

5.2. THE POD MANAGER 44

metadata are generated, the view allows users to select the location in order to
perform control operations.
The selection of a pod filesystem causes the transition to the pod management
view, implemented through the PodManagement class. It reads the pod information
from the configuration files in the location and stores them into class variables
such as self.pod_address,self.pod_owner and self.pod_id. The view collects
the core functionalities to manage pods and their resources. The class functions
start_server() and stop_server() deals with the pod web service for data pro-
vision (see Section 5.2.4). In order to initialize new resources, users must select
an existing file from the filesystem, that will be copied into the pod location. The
functions register_resource() and add_resource_to_config() use the input
file information to initiate the resource both in Ethereum’s smart contracts and in
the local configuration file. All the Ethereum transactions involved in pod man-
agement operations are signed using the pod credentials. By interacting with the
PodManagement view, users visualize the list of the pod’s initialized resources. Users
can perform the dectivation operation on each resource to remove it from the mar-
ket. The method remove_resource() is crucial for such a purpose, by starting
the procedure to physically remove the resource from the filesystem, invoking the
involved smart contract function and synchronising the local configuration files.
PodManagement collects the functionalities to manage the default pod’s obligation
rules. Indeed, the view shows the actual state of the rules and offers users visual
tools to submit transactions and modify them. The resource list of the view permits
data owners to get market details for each initialized file on a dedicated page. Such
details are represented and shown through the ResourceManagement class.
Once the class is initialized through the initialize_layout() method, it stores
relevant information in state variables such as self.resource_information. Such
data is displayed in dedicated sections of the view. The page is designed to enable
the modification of the obligation rules specifically associated with the resource.
Indeed, users can specify access counter, temporal, country and domain obligations
for the given resource. The submission of the new rule generates a new Ethereum
transaction for the smart contract invocation. Moreover, the function changes the
local configuration files containing the resource rules information. The resource page
is consequently reloaded after the operation. A similar functionality is provided
by remove_obligation() that allows users to deactivate a selected rule for the
specified resource.

5.2. THE POD MANAGER 45

5.2.2 Physical organization of pods

One of the main functionalities of a pod manager is to organize and control
the resources in the local filesystem. A pod is presented as a folder located in a
specific location of the filesystem. The aim of the pod manager action is access
to the location and execute physical changes to the resources stored therein. The
pod manager software offers users intermediary operations to indirectly interact
with the pod’s location. Indeed, besides market resources, a pod’s location contains
sensitive metadata that are crucial for the proper running of the pod manager and to
correctly interact with DecentralTrading’s entities. To this end, pod’s resources are
protected through encryption and firewalling methodologies, aimed at isolating the
location from inconsistencies and confidentiality issues. In this way, users are forced
to manage their initialized resources solely through the pod manager that holds the
rights to overcome the designed preventive measures. Pod’s resources can be stored
in the root location or in nested folders, placed inside the root. DTconfig.json

and DTobligations.json are the two meta-resources containing descriptive and
confidential information about the pods. Both the JSON files locally store data that
is replicated in on-chain smart contracts. Therefore, synchronization procedures
aimed at preserving the consistency of replicated information are necessary.
DTconfig.json is characterized by the following attributes:

• id

• owner

• address

• private_key

• URI

• resources

The id variable is the pod’s integer identifier, generated during the pod registration
procedure. It is used to uniquely identify the pod inside the market. The owner

field stores the public key of the market user that generated the transaction for the
pod initiation. The file maintains the pod’s Ethereum credentials in address and
privatekey. The two variables are critical to allowing the pod manager to sign
authenticated transactions on behalf of the pod. They are both generated during the
pod creation and are uniquely assigned to it. URI keep in memory the web reference
of the pod’s web service for data retrieval purposes. Finally, resources is a json list
object, aimed at storing the initialized resources of the pod. Each resource object is
characterized by a resource id and the relative location in the pod.

5.2. THE POD MANAGER 46

DTobligations.json collects information regarding the obligation rules associated
with the pod and its resources. The attributes of the json file follow the structure:

• "default"

• "idresource1"

• . . .

• "idresourceN "

The default key attribute defines the general obligations related to the pod,
inherited by all the resources not having specific rules. Differently, rules belonging
to specific resources are associated with the market id of the resource. Obligations
are modelled as json objects characterized by attribute fields, each of which defines
the value of a different rule (access counter, domain, country, temporal).

Pod manager

Pod’s machine

Encrypted content

DTconfig.json DTobligations.json

Resources

Pod’s location

Figure 5.2. Structure of pods.

5.2.3 Blockchain interaction

The pod manager prototype makes use of dedicated code components aimed at
providing communication mechanisms with the on-chain smart contracts of Decentral-
Trading. Indeed, the Ethereum infrastructure safely stores crucial resource metadata
that guarantees the proper functioning of the market. The DTaddresses.py file con-
tains the addresses of the deployed DTindexing and DTsubscription smart contracts.
The two references are stored in the variables DTINDEXING and DTSUBSCRIPTION.
The files containing the logic for the blockchain interaction are:

• DTsubscription_oracle.py

5.2. THE POD MANAGER 47

• DTindexing_oracle.py

• DTobligation_oracle.py

The term “oracle’ refers to communication mechanisms used in blockchain-based
processes to enable the communication between on-chain smart contracts and off-
chain entities. In that case, the use of the term is figural, having chosen the design
philosophy of the direct communication model between off-chain entities and smart
contracts (see Section 4.2.1).
DTsubscription_oracle.py is in charge of implementing the interaction with the
DTsubscription smart contract and performing subscription verifications. To
this end, the DTsubscription_oracle class has been designed. The initializa-
tion of the class requires as input the address of the smart contract and pod
private key that are stored in the self.indexing_address and self.private_key

variables. The class field self.contract_abi memorizes the Application Binary
Interface string for the function invocations. The main method of the class is
pull_subscription_verification(), which takes as input a subscription id and a
public address. The method queries the blockchain, invoking the verify_subscription()

function of DTsubscription and determines if the subscription id is active and re-
lated to the given address.

1 class DTsubscription_oracle:
2
3 def __init__(self, *args, **kw):
4 self.indexing_address=args[0]
5 self.private_key=args[1]
6 self.contract_abi=CONTRACT_ABI
7 self.account= Account.from_key(self.private_key)
8 self.provider=Web3(Web3.HTTPProvider(’HTTP://127.0.0.1:7545’))
9 self.contract_instance =

↪→ self.provider.eth.contract(address=self.indexing_address,
↪→ abi=self.contract_abi)

10
11 def pull_subscription_verification(self,id_subscription,claim):
12 result=self.contract_instance.functions.verify_subscription(

↪→ id_subscription,Web3.toChecksumAddress(claim)).call()
13 print("is subscription verified: ",result)
14 return result

Listing 5.6. DTsubscription_oracle Python class.

DTindexing_oracle.py contains the DTindexing_oracle class that allows the
proper invocation of the DTindexing smart contract’s functions. The instantiation

5.2. THE POD MANAGER 48

process follows the principles of the previous class, by storing in state variables the
necessary information to execute contract calls. The register_pod() method is
used by the pod manager during the generation of a new pod. The function accepts as
input the pod metadata obtained from the form filling and generates new Ethereum
credentials to be associated with the pod. Subsequently, the private_key_owner

variable is used to sign the transaction for the invocation of the registerPod()

method. The method is executed by the blockchain environment, which initialize
the new pod and, in the case of a positive outcome, emits an NewPod event con-
taining the id. The operation of the other functions of the classes is quite similar
to the latter. The add_resource() method is used to initialize new resources
in the pod and invokes the on-chain registerResource() function. Oppositely,
deactivate_resource() allows users to delete a resource from the pod by generat-
ing a transaction for the invocation of the deactivateResource() smart contract
method. Finally, get_resource_information() queries the on-chain infrastruc-
ture about an initialized resource, in order to retrieve its metadata by calling
getPodResources().

1 def get_resource_information(self,resourece_id):
2 contract_instance = self.provider.eth.contract(address=self.indexing_address,

↪→ abi=self.contract_abi)
3 return contract_instance.functions.getPodResources(resourece_id,0).call()
4
5 def register_Pod(self,pod_reference,pod_type,public_key_owner,private_key_owner):
6 public_key_pod,private_key_pod=DTaccount_generator().generate_account()
7 tx=self.contract_instance.functions.registerPod(pod_reference,pod_type,

↪→ Web3.toChecksumAddress(public_key_pod)).buildTransaction({’gasPrice’:
↪→ Web3.toWei(21, ’gwei’),’nonce’:
↪→ self.provider.eth.getTransactionCount(public_key_owner)})

8
9 signed_txn = self.provider.eth.account.sign_transaction(tx,

↪→ private_key=private_key_owner)
10 tx=Web3.toHex(self.provider.eth.sendRawTransaction(signed_txn.rawTransaction))
11 retVal = self.provider.eth.waitForTransactionReceipt(tx)
12 processed_receipt=self.contract_instance.events.NewPod().processReceipt(retVal)
13 id=processed_receipt[0][’args’][’idPod’]
14 obligation_address=processed_receipt[0][’args’][’obligationAddress’]
15 return id,public_key_pod,private_key_pod,obligation_address

Listing 5.7. Fragment of the DTindexing_oracle class.

DTobligation_oracle.py implements the logic to correctly interact with the
DTobligation smart contract. The DTobligation_oracle class offers the function-
ality to modify the obligation rules stored in the blockchain. Obligations can be

5.2. THE POD MANAGER 49

generally associated with the whole pod or with specific resources. The functions
set_default_access_counter_obligation(), set_default_ temporal_obligation(),
set_default_country_obligation(),set_default_domain_obligation() are em-
ployed to set new values for the default rules of the pod. Oppositely, deactivate_default_

access_counter_obligation(), deactivate_default_ temporal_obligation(),
deactivate_default_country_obligation() and deactivate_default_domain

_obligation() delete the limitations previously introduced by the pod regarding the
default rules. In a similar manner, functions to modify or remove rules related to spe-
cific resources such as set_domain_obligation() and deactivate_domain_obligation()

are implemented. Such functions require an input parameter that defines the identi-
fier of the resource whose rules are to be changed.

1 def set_default_temporal_obligation(self,temporalObligation):
2 tx=self.contract_instance.functions.addDefaultTemporalObligation(

↪→ temporalObligation).buildTransaction({’gasPrice’: Web3.toWei(21,
↪→ ’gwei’),’nonce’:
↪→ self.provider.eth.getTransactionCount(self.account.address)})

3 signed_txn = self.provider.eth.account.sign_transaction(tx,
↪→ private_key=self.private_key)

4 tx=Web3.toHex(self.provider.eth.sendRawTransaction(signed_txn.rawTransaction))
5 print(self.provider.eth.waitForTransactionReceipt(tx))

Listing 5.8. Fragment of the DTobligation_oracle class.

5.2.4 Data provision and requests authentication

The architecture of DecentralTrading assumes data consumers retrieve resources
by communicating with pods through the existing HTTP standard. Indeed, pods
share the market web references that are used by consumers to access specific
resources. Such a scenario requires pod managers to be able to handle RESTful
interactions to deliver on-demand initialized data. In order to properly manage data
provision, the pod manager prototype implements a web service which listens to
HTTP requests, authenticates senders, verifies their market rights over the claimed
resource, and correctly delivers data through HTTP responses.
DTpod_service contains the core functionalities to this end and represents them
through the DTpod_service class. It extends BaseHTTPRequestHandler, which
provides a number of classes, instance variables, and methods to handle GET and
POST requests. The serve_forever() method activates the web service and keeps
the pod manager waiting for new http requests. Oppositely, force_stop() ends the
request handling and the web service. The do_POST() function is the main method
of the class. Indeed, due to confidentiality reasons, the web service only responds

5.2. THE POD MANAGER 50

to POST requests and ignores GET ones. Indeed, POST enables the inclusion of
parameters inside the body of the request, while the GET method specifies the
parameters in the visible URL. Such parameters are crucial for the authentication
procedure. In order to correctly demand a resource, requests must specify an URL
composed of the web domain name of the service followed by the relative path of
the requested resource inside the pod’s filesystem.
Through the authentication mechanism, pod managers clarify the identity of the
request user, and decide if the delivery of the resource is granted. Authentication
is based on the Ethereum’s elliptic-curve cryptography algorithm. The main idea
behind the mechanism is to make senders sign a message, which is sent alongside
the request. The string message is characterized by the following structure:

folder/…./folder/Resource.extension :*:*
Location of the resource in the pod Separator

1664558775

Rounded Unix epoch

Encrypted with the user’s private key

Figure 5.3. Structure of the authentication message.

The first part of the message refers to the relative path of the requested resource,
which is concatenated with the “:*:*’ separator. The last part of the message
specifies a Unix epoch rounded by 5 minutes. This last part is employed to create
a limited validity temporal interval for the message. Once the message is built,
it is signed by the sender through its private key. To this end, the Web3 library
offers the sign_message() function that takes the hashed message and the private
key as input. The function produces a string containing the signature of the given
message. In order to be processed by the pod manager web service, a POST request
must contain in its body the following attributes:

• auth_token: the signature of the message.

• claim: the public address related to the claimed identity.

• subscription_id: the identifier of a DTsubscription owned by the claimed
identity.

Once the request is received, the doPOST() method checks that the previously
mentioned fields are present in its body. If they are set, the method proceeds with the
authentication and rights verification operations. The authentication is managed by
doPOST() through the DTautenthicator class, contained in DTauthenticator.py.
The authenticate function is the core method of the class. The function uses the

5.2. THE POD MANAGER 51

url of the requested resource and the rounded unix epoch to build the unsigned
message. After that, the received auth_token field is used in combination with the
unsigned message to extract a public key by means of the Web3 recover_message())

function. Finally, the claim field is compared with the extracted public key and
a boolean value is returned to doPOST(). If claim and the extracted public key
are equal, the claimed identity is verified and the execution continues. Otherwise,
an HTTP error is sent as a response to the sender. The following verification step
checks if the verified Etherum user is part of the DecentralTrading market. To this
end, the subscription_id field of the request is exploited. Indeed, the Ethereum
on-chain infrastructure is queried to determine if subscription_id is associated to
an active DTsubscription, owned by the verified identity. The interaction with the
DTsubscription smart contract is managed through the DTsubscription_oracle

class (see Section 5.2.3). The pull_subscription_verification() method returns
to doPOST() the boolean result of the verification. If the verification succeeds, data
provision procedures are adopted. The method in charge of retrieving the requested
resource to be sent is send_head(). The function uses the relative path of the
resource contained in the request URL to get the file from the pod’s filesystem. If
an IOError exception is raised and the resource is not found, the function sends a
404 message error. Otherwise, the header of the response is set according to the
resource type(e.g. text, html, image) identified via gues_type() and the file content
is returned to doPOST(). Finally the resource is written in the response body, and
it is forwarded to the sender.

1 class DTauthenticator():
2 def __init__(self, *args, **kw):
3 self.w3=Web3(Web3.HTTPProvider(’HTTP://127.0.0.1:7545’))
4 def rounded_to_the_last_30th_minute_epoch(self,unix_time):
5 date_time = datetime.fromtimestamp(unix_time)
6 now = date_time
7 rounded = now - (now - datetime.min) % timedelta(minutes=5)
8 return rounded.timestamp()
9 def get_time_in_rome(self):

10 rome_tz= pytz.timezone("Europe/Rome")
11 time_in_rome = datetime.now(rome_tz)
12 return time_in_rome
13 def encode_unsigned(self,resource,time):
14 msg_to_hash=resource+":*:*"+time
15 msghash = encode_defunct(text=msg_to_hash)
16 return msghash
17 def authenticate_signature(self,signature,msg_hash,claim):
18 return claim==self.w3.eth.account.recover_message(msg_hash,

↪→ signature=signature)
19 def authenticate(self,resource,signature,claim):

5.2. THE POD MANAGER 52

20 time_in_rome=self.get_time_in_rome()
21 rounded=self.rounded_to_the_last_30th_minute_epoch(int(time_in_rome.timestamp()))
22 msg_hash=self.encode_unsigned(resource,str(rounded))
23 bytes_signature=HexBytes(signature)
24 return self.authenticate_signature(signature,msg_hash,claim)

Listing 5.9. DTauthenticator Python class.

1 def send_head(self):
2 path = self.translate_path(self.path)
3 f = None
4 if os.path.isdir(path):
5 if not self.path.endswith(’/’):
6 self.send_response(301)
7 self.send_header("Location", self.path + "/")
8 self.end_headers()
9 return None

10 else:
11 self.send_error(404,"Pod resource not found")
12 ctype = self.guess_type(path)
13 try:
14 f = open(path, ’rb’)
15 except IOError:
16 self.send_error(404, "Pod resource not found")
17 return None
18 self.send_response(200)
19 self.send_header("Content-type", ctype)
20 fs = os.fstat(f.fileno())
21 self.end_headers()
22 return f

Listing 5.10. Function send_head() of the DTpod_service class.

53

Chapter 6

Evaluation

In order to discuss the implementation of the addressed DecentralTrading com-
ponents, a quantitative assessment is offered. The main goal of this chapter is
to distinguish the on-chain functionalities of DecentralTrading’s smart contracts
according to the users for whom they are intended and evaluate their individual
costs. The users considered are data owners, data consumers, and service providers.
The purpose of the evaluation is to highlight the most onerous functionalities and
provide a guideline for future code improvements. The functionality grouping points
out which users spend the most in the current version of the infrastructure. Runs
performed for quantitative evaluation are also employed in order to verify the proper
operation of on-chain components and to conduct a functional validation of the
implemented code.
The first section describes the object of evaluation and the methodology by which it
is assessed. After that, an objective depiction of the results is offered. Finally, the
presented findings are analyzed and interpreted.

6.1 Methodology

Costs are the major factor considered by the evaluation procedure. The Decen-
tralTrading data market collects several smart contracts on the Ethereum platform
designed to coordinate and validate application parties. Smart Contracts’ code
execution is performed in Ethereum through the Ethereum Virtual Machine (EVM),
a distributed execution environment. Each node of the network executes the EVM
and simultaneously runs the instructions resulting from smart contract invocations.
Smart contracts collect Turing complete code and they can potentially execute
forever, consuming huge amounts of electricity and locking up every single node on
the blockchain. To safeguard the operation of the platform, the Ethereum protocol
associates the execution of smart contracts with a fee charged to the invoking user,

6.2. RESULTS 54

according to the complexity of the code to be executed. The higher the compu-
tational burden, the higher the fee. Such a fee is measured in Gas. Numerous
automated tools enable the cost analysis of Solidity smart contracts. Because the im-
plementation of DecentralTrading smart contracts has been conducted using Remix
IDE, an integrated solution to the development environment has been adopted to
perform the cost analysis. Specifically, Gas Profiler and Static Analysis Tool are
the plugins used for the purpose of the assessment. The evaluation procedure starts
with the identification of the target users (data owners, data consumers, and service
providers) for each function produced. Subsequently, Remix IDE is connected to
the Ethereum environment offered by Ganache. Ganache enables the execution of a
local Ethereum blockchain that replicates the Ethereum protocol and supports the
generation of transactions for testing purposes. Once the testing environment is set
up, the smart contracts to be evaluated are properly deployed to the local Ganache
blockchain, respecting the functional dependencies between them. In order to test
smart contract functions, valid input parameters are collected in order to generate
transactions, resulting in the successful execution of the code. In addition to cost
evaluation, the said transactions are used to validate the functions implemented.
The outputs and post-conditions resulting from code execution are collected and
verified in order to build a functional validation of the smart contracts. The Gas
Profiler and Static Analysis Tool plugins are used to determine the Gas amount
related to code runs. The obtained results are collected in several tables, each of
which is related to a specific smart contract. Evaluation tables associate each public
function with the target user and the related gas cost.

6.2 Results

Result tables are characterized by three main fields. The “function” field expresses
the evaluated method’s name. The “cost” field contains the amount of gas spent
by the method. Finally, “charged to” clarifies the target user that is supposed to
use and pay for the method execution. The Gas cost of a function is calculated by
the EVM according to the machine instructions to be executed. Each instruction
requires a specific cost, and the final result is given by the sum of all the involved
costs. The final cost has a variable range due to the specific execution context (e.g.,
number of loops, the complexity of input parameters). For this reason, the values
reported are approximations, useful in providing an order of magnitude for each
of the assessed methods. The following subsections show the final results for each
smart contract.

6.2. RESULTS 55

6.2.1 DTtoken

DTtoken provides functionality to control the homonymous ERC20 token. The de-
ployment operation, thanks to which DTtoken is published by service providers, costs
1623406 units of Gas. The method increaseAllowance() is the most onerous func-
tion of the smart contract with 46000 units of Gas. Oppositely, decreaseAllowance()

spends only 15828 units of Gas. The smart contract offers two view functions that
do not generate transactions, resulting in no Gas expenditure. The majority of the
smart contract’s methods involve all the user typologies. However,mint(), burn()

and deployment are solely targeted at the market’s service providers.

Function Cost (Gas) Target User
deployment 1623406 Service Providers
mint() 37640 Service Providers
burn() 36730 Service Providers
transfer() 36811 Service Providers, Data Owners, Data Consumers
transferFrom() 45752 Service Providers, Data Owners, Data Consumers
increaseAllowance() 46000 Service Providers, Data Owners, Data Consumers
decreaseAllowance() 15828 Service Providers, Data Owners, Data Consumers
allowance() - Service Providers, Data Owners, Data Consumers
balanceOf() - Service Providers, Data Owners, Data Consumers

Table 6.1. Gas analysis results for the DTtoken smart contract.

6.2.2 DTtokenMarket

DTtokenMarket enables the distribution of DTtokens in exchange for ETH. The
only costs associated with smart contracts are those associated with deployment and
the textttbuyTokens() function. The deployment of the smart contract by service
providers requires 442560 Gas. Data owners and data consumers buy tokens from
the smart contracts, spending 45516 units of Gas.

Function Cost (Gas) Target User
deployment 1623406 Service Providers
buyTokens() 37640 Data Owners, Data Consumers

Table 6.2. Gas analysis results for the DTtokenMarket smart contract.

6.2. RESULTS 56

6.2.3 DTsubscription

DTsubscription offers functionalities aimed at controlling and modelling mar-
ket subscriptions. The DTsubscription deployment procedure costs 2502600 Gas
units. The smart contract is characterized by several Gas-free functions such as
balanceOf(), get_Subscription(), isSubscriptionActive() and verify_Subscription().
Oppositely, purchaseSubscription() and burn() involve Gas expenditures. The
purchaseSubscription() method is employed by data owners and data consumers
to generate subscriptions by exchanging their DTtokens. The operation of the
function costs 180792 units of Gas. The burn() function, used by service providers,
implements the revocation of a subscription by spending 204592 Gas units.

Function Cost (Gas) Target User
deployment 2502600 Service Providers
purchaseSubscription() 180792 Data Owners, Data Consumers
burn() 204592 Service Providers
balanceOf() - Data Owners, Data Consumers
get_subscriptions() - Service Providers, Data Owners, Data Consumers
isSubscriptionActive() - Service Providers, Data Owners, Data Consumers
verify_subscription() - Service Providers, Data Owners, Data Consumers

Table 6.3. Gas analysis results for the DTsubscription smart contract.

6.2.4 DTindexing

Through DTindexing, pods and resources’ metadata are initialized and stored in
the Ethereum ecosystem. In order to publish the smart contract on the network,
service providers spend 4824135 Gas units. Data owners and data providers are
the user typology to which most of the smart contract functionalities refer. The
registerPod() method is the most expensive DTindexing function. Indeed, such
a function costs data owners 2703393 units of Gas. The Gas consumption of
registerResource() turns out to be significantly lower, with a value of 143004.
The less expensive function of the smart contract is deactivateResource(), which
costs to data owners 21465 Gas units. Data consumer-oriented functions do not
involve the generation of transactions since they provide read-only functionalities.
Gas expenditure in those cases is zero.

6.2. RESULTS 57

Function Cost (Gas) Target User
deployment 4824135 Service Providers
registerPod() 2703393 Data Owners
registerResource() 143004 Data Owners
deactivateResource() 21465 Data Owners
getFinancialPods() - Data Consumers
getSocialPods() - Data Consumers
getMedicalPods() - Data Consumers
getPodResources() - Data Consumers
getResource() - Data Consumers

Table 6.4. Gas analysis results for the DTindexing smart contract.

6.2.5 DTobligation

DTobligation contains functionalities solely directed at data owner users. The
smart contract is deployed during the indexing of a new pod at a cost of 2650030 Gas.
DTobligation offers methods and functions to modify the obligation rules related to
the pod or to a specific resource contained therein. Among the functions for adding
rules, the most expensive one turns out to be addAccessCounterObligation() with
a value of 138768 Gas units. Differently, the adding of a domain restriction through
addDefaultDomainObligation() costs data owners 44219 Gas units per invocation.
Methods implemented for rules deactivation determine a lower expense than the
previous ones. Among them, removeDomainObligation() requires 38111 Gas units
per execution, while removeDefaultTemporalObligation() turns out to be the
cheapest (16079 units of Gas). Finally, the methods getDefaultObligationRules()

and getObligationRules(), which are also aimed at data consumers, are free of
charge.

6.2. RESULTS 58

Function Cost (Gas) Target User
deployment 2650030 Data Owners
addDefaultAccessCounterObligation() 62627 Data Owners
addDefaultTemporalObligation() 62638 Data Owners
addDefaultDomainObligation() 44219 Data Owners
addDefaultCountryObligation() 62561 Data Owners
addAccessCounterObligation() 138768 Data Owners
addTemporalObligation() 97737 Data Owners
addCountryObligation() 97728 Data Owners
addDomainObligation() 79452 Data Owners
removeDefaultAccessCounterObligation() 23780 Data Owners
removeDefaultTemporalObligation() 16079 Data Owners
removeDefaultDomainObligation() 24747 Data Owners
removeDefaultCountryObligation() 23758 Data Owners
removeAccessCounterObligation() 28184 Data Owners
removeTemporalObligation() 28151 Data Owners
removeCountryObligation() 28173 Data Owners
removeDomainObligation() 38111 Data Owners
getDefaultObligationRules() - Data Owners, Data Consumers
getObligationRules() - Data Owners, Data Consumers

Table 6.5. Gas analysis results for the DTobligation smart contract.

6.3. DISCUSSION 59

6.3 Discussion

A Gas to EUR conversion is necessary in order to better contextualize the
obtained results. The Gas price considered for the conversion is the average value
of 10.96 GWei (0.00000001096 ETH) [2]. The current ETH exchange rate is about
1440.00 EUR [21].
The first considerations concern infrastructure maintenance costs, which are borne
by service providers. The approximate value of publishing DecentralTrading smart
contracts on the Ethereum network is given by the sum of the deployment operations.
Considering the previously mentioned exchange rates, the publication cost of all
smart contracts is around 148.239 EUR (9392701 Gas units). Deployment operations
prove to be the most onerous to perform because of the large number of instruc-
tions involved. This point highlights the need for careful and strict code analysis
procedures aimed at identifying bugs and critical issues before smart contracts are
published. However, publication fees are one-off costs, and smart contract availability
is constantly guaranteed by the network after the deployment. The remaining service
providers’ functionalities result in significantly lower costs. Indeed, the mean value
per function invocation for service providers is about 1.46756 EUR (92987.33333
Gas units).
Data owners’ interaction costs are quantified according to the target operation to be
performed. A pod initialization procedure requires about 42.6660 EUR (2703393
Gas units). Such a high cost is due to the deployment of the DTobligation smart
contract, which is charged to data owners. Resource management functionalities
turns out to determine the highest average per invocation result, with a mean value
of 1.297857773 EUR (82234.5 Gas units). Differently, subscription management
interactions require lower per invocation costs, with an average result of 0.97508665
EUR (61783.16667 Gas units). Obligation management operations are the least
expensive for data owners, costing an average value of 0.845061703 EUR (53544.5625
Gas units) per invocation. Globally, considering all the functionalities, data owners
spend an average value of 0.915300946 EUR (57995.04167 Gas units) for each smart
contract invocation.
Since the thesis addresses the data ownership perspective of the application, the
number of functionalities intended for data consumers is limited, and they mainly
consist of Gas-free read-only functions that are not considered in the average calcu-
lation. The average expenditure per invocation in this case turns out to be slightly
higher than data consumers, with an average value of 0.97508665 EUR.
In conclusion, the cost assessment pointed out rather high user fees. The infrastruc-
ture costs can be sustained by service providers thanks to revenues coming from
DTsubscriptions. However, it is necessary to delineate a business model in which

6.3. DISCUSSION 60

data owners generate a profit that overcomes interaction costs. A solution based
on the number of accesses to shared resources may prove suitable for such pur-
poses. However, cost reduction practices are necessary to increase market usability.
These include changes to the overall architecture and on-chain code optimization
operations.

0 0,2 0,4 0,6 0,8 1 1,2 1,4

Average per invocation expense (EUR)

1.46755 €

0,84506 €

1,29785 €

0,97508 €

Figure 6.1. EUR per invocation expenditure comparison for data owners’ routine operations.

0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6

Average per invocation expense (EUR)

1,46755 €

0,91530 €

0,97508 €

Figure 6.2. EUR per invocation expenditure comparison for data owners, data consumers
and service providers.

61

Chapter 7

Conclusion and future work

The primary objective of the study conducted for the thesis was to draw attention
to a question that the scientific community finds intriguing by offering a cutting-edge
technology-based solution. Nowadays, blockchain technology is being widely adopted
and finding application in many computer science fields. These technologies find a
natural contextualization in the topic of digital markets, where the need for integrity
and traceability is crucial.
The preliminary study of the state of the art was critical to achieving a full un-
derstanding of the theoretical representation of the problem. This phase of the
study has been crucial for the in-depth study of issues such as big data, privacy
preservation, and the decentralized web.
The design phase allowed us to establish the conceptual foundations upon which
the DecentralTrading market was built. During this step, different alternatives
concerning the market architecture have been theorised by distinguishing between
the data owner and data consumer perspectives of the application. This resulted in
the integration of the blockchain, pods and trusted execution environments.
The theoretical concepts defined by the DecentralTrading design were actualized in
the implementation of functioning prototypes concerning the data owners’ viewpoint.
The implementation phase required the coordination of various technologies such as
the Solidity and Python programming languages. For implementation purposes, the
use of the Ganache and Remix IDE environments was essential. This phase led to
the implementation of pod technologies to control market data and to interect with
the on-chain infrastructure.
In order to discuss the prototype realized, the study included a quantitative evalua-
tion whose main focus was costs. Indeed, such a theme represented the major critical
issue for the system’s usability. The evaluation involved the generation of more
than 300 transactions, grouped according to their target user. Transaction costs
were collected thanks to the Remix IDE Gas Analyzer tool, and their values were

62

carefully discussed. Through the assessment, the need for cost reduction practices
and code optimization procedures were manifested.
The alternatives considered during the design stage allow us to outline a solid path
for the DecentralTrading market’s future improvements. Considerable changes can
be introduced to the market architecture in order to improve its usability. The
communication between on-chain and off-chain components will be changed, and
the direct communication model will be turned into the Gas Station model. The
decentralized off-chain network of relayers will permit users to interact with on-chain
smart contracts without directly spending Gas/ETH. The transition to the Gas
Station communication model will enable a more sustainable cost policy for data
owners and data consumers and will improve the overall usability of the system.
The world of blockchain is constantly evolving, and the innovations being made in
these areas may open up new opportunities for the market. The most significant
change in the short term is the release of Ethereum version 2.0, which will result in
the transition from the Proof of Work to the Proof of Stake consensus algorithm. The
consensus mechanism change could significantly improve the performance and cost
of the components running on the blockchain. However, the complete replacement of
the blockchain environment cannot be excluded if the right conditions are met. So far,
Ethereum has been the most appropriate choice for its smart contract programming
versatility and support, although it does highlight limitations. Numerous blockchain
environments, such as Algorand1 and Hyperledger2 are making significant progress in
the field of smart contracts by adopting more sustainable fee policies. Comparative
environmental procedures will be required in order to determine which the best
solution for DecentralTrading is.
A key focus of future work will also be on improving the pod prototype implemen-
tation. Although the issues of off-chain authentication and data provision have
already been extensively addressed, there remain other questions that need to be
covered more specifically. First among these is undoubtedly the integration with the
study inherent in data consumers and trusted execution environments, conducted in
parallel with this thesis. Moreover, encryption mechanisms to protect pods’ data
within users’ filesystem will be added to the implementation.
Finally, by including the results of the study inherent in data consumers, the design
and implementation of different mechanisms for remunerating data owners based
on accesses will be possible. This will also result in the implementation of new
smart contracts that can model alternative business models supporting different
subscription mechanisms.

1https://www.algorand.com
2https://www.hyperledger.org

63

Bibliography

[1] Ines Akaichi and Sabrina Kirrane. “Usage Control Specification, Enforcement,
and Robustness: A Survey”. In: arXiv preprint arXiv:2203.04800 (2022).

[2] Avarage Gas price estimation. https://ycharts.com/indicators/ethereum_

average_gas_price.. Accessed: 2022-09-25.

[3] AWS Data Exchange. https : / / aws . amazon . com / it / data - exchange/.
Accessed: 2022-09-02.

[4] Shaun Azzopardi, Joshua Ellul, and Gordon J Pace. “Monitoring smart con-
tracts: Contractlarva and open challenges beyond”. In: International Confer-
ence on Runtime Verification. Springer. 2018, pp. 113–137.

[5] Prabal Banerjee and Sushmita Ruj. “Blockchain Enabled Data Marketplace–
Design and Challenges”. In: arXiv preprint arXiv:1811.11462 (2018).

[6] Juan Benet. “Ipfs-content addressed, versioned, p2p file system”. In: arXiv
preprint arXiv:1407.3561 (2014).

[7] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web”. In:
Scientific american 284.5 (2001), pp. 34–43.

[8] Vitalik Buterin et al. “A next-generation smart contract and decentralized
application platform”. In: white paper 3.37 (2014), pp. 2–1.

[9] Vitalik Buterin et al. “Ethereum white paper”. In: GitHub repository 1 (2013),
pp. 22–23.

[10] David Carl and Christian Ewerhart. “Ethereum gas price statistics”. In: Uni-
versity of Zurich, Department of Economics, Working Paper 373 (2020).

[11] Enrico Carniani et al. “Usage control on cloud systems”. In: Future Generation
Computer Systems 63 (2016), pp. 37–55.

[12] Rubén Casado and Muhammad Younas. “Emerging trends and technologies
in big data processing”. In: Concurrency and Computation: Practice and
Experience 27.8 (2015), pp. 2078–2091.

https://ycharts.com/indicators/ethereum_average_gas_price.
https://ycharts.com/indicators/ethereum_average_gas_price.
https://aws.amazon.com/it/data-exchange/

BIBLIOGRAPHY 64

[13] Chuan Chen et al. “A secure and efficient blockchain-based data trading ap-
proach for internet of vehicles”. In: IEEE Transactions on Vehicular Technology
68.9 (2019), pp. 9110–9121.

[14] Frank Frank Edward Dabek. “A distributed hash table”. PhD thesis. Mas-
sachusetts Institute of Technology, 2005.

[15] Erik Daniel and Florian Tschorsch. “IPFS and friends: A qualitative comparison
of next generation peer-to-peer data networks”. In: IEEE Communications
Surveys & Tutorials 24.1 (2022), pp. 31–52.

[16] Data Marketplaces: What, Why, How, Types, Benefits, Vendors. https://

research.aimultiple.com/data-marketplace/. Accessed: 2022-09-02.

[17] Datarade.ai. https://datarade.ai. Accessed: 2022-09-02.

[18] Alfonso De la Rocha, David Dias, and Yiannis Psaras. Accelerating Content
Routing with Bitswap: A multi-path file transfer protocol in IPFS and Filecoin.
2021.

[19] Natarajan Deepa et al. “A survey on blockchain for big data: approaches,
opportunities, and future directions”. In: Future Generation Computer Systems
(2022).

[20] Digital Is Driving The Next Generation Of Data Marketplaces. https://

www.pitneybowes.com/content/dam/pitneybowes/us/en/white-papers/

pitney-bowes-forrester-data-us.pdf. Accessed: 2022-09-02.

[21] ETH/EUR exchange rate. https://www.google.com/finance/quote/ETH-

EUR.. Accessed: 2022-09-27.

[22] Ethereum 2.0 updates. https://ethereum.org/it/upgrades/.. Accessed:
2022-09-02.

[23] Arthur Gervais et al. “On the security and performance of proof of work
blockchains”. In: Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security. 2016, pp. 3–16.

[24] Global Social Media Statistics. https://datareportal.com/social-media-

users.. Accessed: 2022-09-02.

[25] Vipul Goyal et al. “Attribute-based encryption for fine-grained access control
of encrypted data”. In: Proceedings of the 13th ACM conference on Computer
and communications security. 2006, pp. 89–98.

[26] Neville Grech et al. “Madmax: Surviving out-of-gas conditions in ethereum
smart contracts”. In: Proceedings of the ACM on Programming Languages
2.OOPSLA (2018), pp. 1–27.

https://research.aimultiple.com/data-marketplace/
https://research.aimultiple.com/data-marketplace/
https://datarade.ai
https://www.pitneybowes.com/content/dam/pitneybowes/us/en/white-papers/pitney-bowes-forrester-data-us.pdf
https://www.pitneybowes.com/content/dam/pitneybowes/us/en/white-papers/pitney-bowes-forrester-data-us.pdf
https://www.pitneybowes.com/content/dam/pitneybowes/us/en/white-papers/pitney-bowes-forrester-data-us.pdf
https://www.google.com/finance/quote/ETH-EUR.
https://www.google.com/finance/quote/ETH-EUR.
https://ethereum.org/it/upgrades/.
https://datareportal.com/social-media-users.
https://datareportal.com/social-media-users.

BIBLIOGRAPHY 65

[27] Roger Haenni. “White paper v15”. In: Source: https://datum. org/assets/Datum-
WhitePaper.pdf (2019).

[28] Andrei Hagiu and Julian Wright. “When data creates competitive advantage”.
In: Harvard business review 98.1 (2020), pp. 94–101.

[29] Ibrahim Abaker Targio Hashem et al. “The rise of “big data” on cloud com-
puting: Review and open research issues”. In: Information systems 47 (2015),
pp. 98–115.

[30] Donghui Hu et al. “A blockchain-based trading system for big data”. In:
Computer Networks 191 (2021), p. 107994.

[31] Iota Data Marketplace. https : / / wiki . iota . org / blueprints / data -

marketplace/overview.. Accessed: 2022-09-02.

[32] Hristo Koshutanski and Fabio Massacci. “An access control framework for
business processes for web services”. In: Proceedings of the 2003 ACM workshop
on XML security. 2003, pp. 15–24.

[33] Antonio La Marra et al. “Implementing usage control in internet of things: a
smart home use case”. In: 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE.
2017, pp. 1056–1063.

[34] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori. “Usage control in
computer security: A survey”. In: Computer Science Review 4.2 (2010), pp. 81–
99.

[35] Jingming Li et al. “Energy consumption of cryptocurrency mining: A study of
electricity consumption in mining cryptocurrencies”. In: Energy 168 (2019),
pp. 160–168.

[36] Ninghui Li and Mahesh V Tripunitara. “On safety in discretionary access
control”. In: 2005 IEEE Symposium on Security and Privacy (S&P’05). IEEE.
2005, pp. 96–109.

[37] Hakan Lindqvist. “Mandatory access control”. In: Master’s thesis in computing
science, Umea University, Department of Computing Science, SE-901 87
(2006).

[38] T Soni Madhulatha. “An overview on clustering methods”. In: arXiv preprint
arXiv:1205.1117 (2012).

[39] Antonio La Marra et al. “A Distributed Usage Control Framework for Industrial
Internet of Things”. In: Security and Privacy Trends in the Industrial Internet
of Things. Springer, 2019, pp. 115–135.

https://wiki.iota.org/blueprints/data-marketplace/overview.
https://wiki.iota.org/blueprints/data-marketplace/overview.

BIBLIOGRAPHY 66

[40] Aashish Mehra. Big Data Market worth $273.4 billion by 2026, 2020.
https://www.marketsandmarkets.com/PressReleases/big- data.asp.
[Online; accessed 2-August-2022].

[41] William Metcalfe et al. “Ethereum, smart contracts, DApps”. In: Blockchain
and Crypt Currency (2020), p. 77.

[42] Du Mingxiao et al. “A review on consensus algorithm of blockchain”. In: 2017
IEEE international conference on systems, man, and cybernetics (SMC). IEEE.
2017, pp. 2567–2572.

[43] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish Jena. “An
overview of smart contract and use cases in blockchain technology”. In: 2018
9th international conference on computing, communication and networking
technologies (ICCCNT). IEEE. 2018, pp. 1–4.

[44] Debajani Mohanty. “Ethereum Use Cases”. In: Ethereum for Architects and
Developers. Springer, 2018, pp. 203–243.

[45] Satoshi Nakamoto. “Bitcoin: A peer-to-peer electronic cash system”. In: De-
centralized Business Review (2008), p. 21260.

[46] Solomon Negash and Paul Gray. “Business intelligence”. In: Handbook on
decision support systems 2. Springer, 2008, pp. 175–193.

[47] Cong T Nguyen et al. “Proof-of-stake consensus mechanisms for future blockchain
networks: fundamentals, applications and opportunities”. In: IEEE Access 7
(2019), pp. 85727–85745.

[48] Silas Nzuva. “Smart contracts implementation, applications, benefits, and
limitations”. In: School of Computing and Information Technology, Jomo
Kenyatta University of Agriculture and Technology, Nairobi, Kenya (2019).

[49] Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. “FairAccess:
a new Blockchain-based access control framework for the Internet of Things”.
In: Security and communication networks 9.18 (2016), pp. 5943–5964.

[50] Jaehong Park and Ravi Sandhu. “The UCONABC usage control model”. In:
ACM transactions on information and system security (TISSEC) 7.1 (2004),
pp. 128–174.

[51] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. “On data banks
and privacy homomorphisms”. In: Foundations of secure computation 4.11
(1978), pp. 169–180.

[52] Seref Sagiroglu and Duygu Sinanc. “Big data: A review”. In: 2013 international
conference on collaboration technologies and systems (CTS). IEEE. 2013,
pp. 42–47.

https://www.marketsandmarkets.com/PressReleases/big-data.asp

BIBLIOGRAPHY 67

[53] Andrei Vlad Sambra et al. “Solid: a platform for decentralized social applica-
tions based on linked data”. In: MIT CSAIL & Qatar Computing Research
Institute, Tech. Rep. (2016).

[54] Ravi S Sandhu. “Role-based access control”. In: Advances in computers. Vol. 46.
Elsevier, 1998, pp. 237–286.

[55] Ravi S Sandhu and Pierangela Samarati. “Access control: principle and prac-
tice”. In: IEEE communications magazine 32.9 (1994), pp. 40–48.

[56] Gustavus J Simmons. “Symmetric and asymmetric encryption”. In: ACM
Computing Surveys (CSUR) 11.4 (1979), pp. 305–330.

[57] Snowflake Marketplace. https://www.snowflake.com/en/data- cloud/

marketplace/. Accessed: 2022-09-02.

[58] Solid. https://solidproject.org/about. Accessed: 2022-03-30.

[59] Markus Spiekermann. “Data marketplaces: Trends and monetisation of data
goods”. In: Intereconomics 54.4 (2019), pp. 208–216.

[60] Sarah Spiekermann and Jana Korunovska. “Towards a value theory for personal
data”. In: Journal of Information Technology 32.1 (2017), pp. 62–84.

[61] Florian Stahl, Fabian Schomm, and Gottfried Vossen. The data marketplace
survey revisited. Tech. rep. ERCIS Working Paper, 2014.

[62] Wei Tan et al. “Social-network-sourced big data analytics”. In: IEEE Internet
Computing 17.5 (2013), pp. 62–69.

[63] Paolo Tasca and Claudio J Tessone. “Taxonomy of blockchain technologies.
Principles of identification and classification”. In: arXiv preprint arXiv:1708.04872
(2017).

[64] Sergei Tikhomirov. “Ethereum: state of knowledge and research perspectives”.
In: International Symposium on Foundations and Practice of Security. Springer.
2017, pp. 206–221.

[65] Sergei Tikhomirov et al. “Smartcheck: Static analysis of ethereum smart
contracts”. In: Proceedings of the 1st International Workshop on Emerging
Trends in Software Engineering for Blockchain. 2018, pp. 9–16.

[66] Huu Tran et al. “A trust based access control framework for P2P file-sharing
systems”. In: Proceedings of the 38th Annual Hawaii International Conference
on System Sciences. IEEE. 2005, pp. 302c–302c.

[67] Nikhil Vadgama and Paolo Tasca. “An analysis of blockchain adoption in
supply chains between 2010 and 2020”. In: Frontiers in Blockchain 4 (2021),
p. 610476.

https://www.snowflake.com/en/data-cloud/marketplace/
https://www.snowflake.com/en/data-cloud/marketplace/
https://solidproject.org/about

BIBLIOGRAPHY 68

[68] Martijn Van Otterlo. “A machine learning view on profiling”. In: Privacy, Due
Process and the Computational Turn-Philosophers of Law Meet Philosophers
of Technology. Abingdon: Routledge (2013), pp. 41–64.

[69] WebID Specification. http://www.w3.org/2005/Incubator/webid/spec/

identity/.. Accessed: 2022-09-02.

[70] WebID-TLS Specification. http://www.w3.org/2005/Incubator/webid/

spec/tls/.. Accessed: 2022-09-02.

[71] What is digi.me? https://digi.me/what-is-digime/. Accessed: 2022-03-30.

[72] Who is Using Big Data in Business? https://itchronicles.com/big-

data/who-is-using-big-data-in-business/#:~:text=Despite%20the%

20fact%20that%20only,at%20%2477%20billion%20by%202023.. Accessed:
2022-09-02.

[73] Wei Xiong and Li Xiong. “Smart contract based data trading mode using
blockchain and machine learning”. In: IEEE Access 7 (2019), pp. 102331–
102344.

[74] Shui Yu. “Big privacy: Challenges and opportunities of privacy study in the
age of big data”. In: IEEE access 4 (2016), pp. 2751–2763.

[75] Peng Zhang et al. “Blockchain technology use cases in healthcare”. In: Advances
in computers. Vol. 111. Elsevier, 2018, pp. 1–41.

[76] Kaspars Zıle and Renāte Strazdin, a. “Blockchain use cases and their feasibility”.
In: Applied Computer Systems 23.1 (2018), pp. 12–20.

http://www.w3.org/2005/Incubator/webid/spec/identity/.
http://www.w3.org/2005/Incubator/webid/spec/identity/.
http://www.w3.org/2005/Incubator/webid/spec/tls/.
http://www.w3.org/2005/Incubator/webid/spec/tls/.
https://digi.me/what-is-digime/
https://itchronicles.com/big-data/who-is-using-big-data-in-business/##:~:text=Despite%20the%20fact%20that%20only,at%20%2477%20billion%20by%202023.
https://itchronicles.com/big-data/who-is-using-big-data-in-business/##:~:text=Despite%20the%20fact%20that%20only,at%20%2477%20billion%20by%202023.
https://itchronicles.com/big-data/who-is-using-big-data-in-business/##:~:text=Despite%20the%20fact%20that%20only,at%20%2477%20billion%20by%202023.

	Introduction
	Structure of the document

	Background and state of the art
	Big Data and privacy preservation
	Access control
	Usage Control

	Data trading: context and opportunities
	Blockchains and Ethereum
	Ethereum and smart contracts

	Decentralized web
	Solid
	Digi.me
	InterPlanetary File System

	Use Case Scenario
	DecentralTrading Market
	Joining the market
	Resource sharing
	Resource usage

	Architecture and design of the market
	The DecentralTrading infrastructure
	Ethereum and the on-chain infrastructure
	Pods and data owners
	Trusted Execution Environments and data consumers

	On-chain and off-chain communication
	Direct communication model
	Middleware services model
	Gas station network model

	Components coordination
	Pod initiation
	Resource initiation
	Resource indexing
	Resource access
	Obligation modification
	Obligations monitoring

	Implementation
	The on-chain smart contracts of the market
	Tokenization
	Indexing
	Obligations

	The pod manager
	The pod manager application
	Physical organization of pods
	Blockchain interaction
	Data provision and requests authentication

	Evaluation
	Methodology
	Results
	DTtoken
	DTtokenMarket
	DTsubscription
	DTindexing
	DTobligation

	Discussion

	Conclusion and future work

