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Abstract

This thesis evaluates the eXplainable Artificial Intelligence (XAI)
method SHapley Additive exPlanations (SHAP) for interpreting fake
news detection using the Bidirectional Encoder Representations for
Transformers (BERT) model. The focus lies on evaluating SHAP’s
explanations on two fake news datasets based on three Co-12 crite-
ria, which are criteria introduced to categorize the evaluation of XAI
methods: correctness, output completeness, and continuity. Results
indicate that SHAP provides correct, output complete, and continuous
explanations for the fake news datasets. Future work is suggested to
explore multiple models, explainability methods, and diverse datasets,
as well as human-grounded and application-grounded evaluation ap-
proaches to enhance interpretability and thereby trust in AI systems.
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1 Introduction

The impact of fake news on both our lives and global a↵airs has been
vividly demonstrated by recent events such as the 2016 U.S. presidential
elections [20], the COVID-19 ‘infodemic’ [1], and the dissemination of dis-
information during the Russia-Ukraine war [2]. Although misinformation in
the media is not a novel occurrence, the emergence of social media plat-
forms [135] alongside the rise in AI-generated fake news [144] has escalated
its reach to unprecedented levels.

The sheer volume of fake news has rendered traditional detection meth-
ods, relying on manual verification and journalistic practices, inadequate to
keep pace with the rapid dissemination of such content [13]. Understanding
the significant role fake news can play in misleading the public and poten-
tially influencing democratic processes and social cohesion emphasizes the
necessity of automated fake news detection [156]. It is notable that fake
news tends to spread at a faster rate than genuine news, heightening the
urgency of e↵ective detection mechanisms [140].

While numerous approaches have shown promising outcomes in terms of
the accuracy of fake news classification [7], an important question arises: How
can one place trust in such classifications? A study conducted by Ribeiro
et al. [116] demonstrates that even a deliberately flawed classifier, which
only uses the presence of snow in the background to categorize images of
wolves and huskies, led one third of the test subjects (graduate students with
at least one machine learning class) to express trust in the model for real-
life applications. This indicates that even individuals with some familiarity
with the subject might trust an inadequate classifier, highlighting the limited
transparency surrounding the behavior of such models. This black box nature
of most Artifical Intelligence (AI) models results in a lack of understanding
regarding their decision-making processes [24].

Addressing this challenge, the field of eXplainable Artificial Intelligence
(XAI) aims to shed light on the inner workings of these complex models.
This becomes especially crucial when considering the interpretation of AI
outcomes in sensitive domains, such as fake news detection, healthcare, or the
justice system [40]. By introducing methodologies that provide comprehen-
sible explanations for AI model decisions, eXplainable Artificial Intelligence
(XAI) bridges the gap between the inherent complexity of these models and
the need for understandable and trustworthy outcomes.

8



1.1 Research Questions

To explore the e↵ectiveness of such XAI methodologies in the context of fake
news detection, this research work focuses on evaluating the SHapley Addi-
tive exPlanations (SHAP) explainability method. This framework, proposed
by Lundberg and Lee [88], o↵ers a local and model-agnostic explanation
method. The aim is to assess SHAP’s explanations of fake news text data,
specifically addressing its correctness, output completeness, and continuity.
By investigating these aspects, we aim to contribute to the understanding of
how well SHAP functions in the context of interpreting Bidirectional Encoder
Representations for Transformers (BERT)-based fake news detection.

With this overarching goal, the following research questions have been
formulated:

RQ How can we e↵ectively evaluate the suitability of SHAP for interpret-
ing text data, particularly in the context of fake news detection using
BERT, with a focus on assessing correctness, output completeness, and
continuity, and what are the results of these evaluations?

To address the overarching research questions, we determine the following
sub-questions:

SQ1 To what extent does SHAP demonstrate correctness, align with
the original model’s behavior in terms of faithfulness, when ap-
plied to BERT’s fake news detection?

SQ2 How does SHAP perform in terms of output completeness, pro-
viding su�cient information to explain the output of the model
when explaining fake news detection by BERT?

SQ3 How well does SHAP demonstrate continuity, indicating the gen-
eralizability of its findings, for BERT’s fake news detection?

Through this investigation, we aim to contribute to the development of
more transparent and trustworthy AI systems, particularly in critical areas
like fake news detection.

1.2 Design Science Methodology

In this thesis, we evaluate the explainability method SHAP on its correctness,
output completeness, and continuity for two fake news datasets. As our
methodology, we use Design Science Research [63]. Design Science Research
has as one of its goals “to generate knowledge on how things can and should be
constructed or arranged” [19]. The methodology design process depicted in

9



Figure 1: Design Science Research Process

Figure 1 has been adapted from Pe↵ers et al.’s [106] design science research
methodology process model, which is the most widely referenced process
model [19]. This adapted model serves as the framework to e↵ectively address
our research questions.

First, we identify the problem. The evaluation of explainability meth-
ods on fake news data has yet to be explored widely. In general, there is
currently no benchmark for the evaluation of XAI methods, irrespective of
data type [21, 40, 47, 62, 66, 86]. This is a problem because it makes it
di�cult to compare di↵erent XAI methods and to assess their e↵ectiveness.
The objective of this thesis is to identify appropriate quantitative evalua-
tion methods that can be used to evaluate model-agnostic XAI methods on
fake news detection methods. The goal is to demonstrate the evaluation
and thereby contributing to the field the results of the evaluation as well as
the methodology used. We identify studies which aggregate and categorize
quantitative XAI evaluation methods. We then choose several subcategories
from Nauta et al.’s paper [100], which is one of the studies we identified, and
analyze the included evaluation methods, identifying the ones applicable for
text data. We also evaluate SHAP explaining fake news detection of two
datasets using the identified methods and compare the results to established
results. Finally, we communicate the results in this thesis.

1.3 Thesis Structure

The structure of this thesis is as follows:
In Chapter 2, we provide a background on the topic of eXplainable Artifi-

cial Intelligence. It starts with an introductory overview of XAI and proceeds
to discuss the resurgence of the field. Furthermore, the intended audience,
goals, and challenges addressed by XAI are examined. A definition of the
term ‘explainability’ is presented, culminating in the introduction of our tax-
onomy for model-agnostic XAI. This taxonomy is applied to a table showcas-
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ing model-agnostic methods, providing a succinct overview of popular XAI
methods.

In Chapter 3, our focus shifts to the introduction of BERT, a black box
model, used for fake news detection. A concise theoretical foundation is
laid before delving into its implementation within this thesis. This includes
a detailed account of the utilized datasets, the pretrained models employed,
and corresponding results obtained through their application to the datasets.

The topic of the upcoming Chapter 4 is SHAP, our chosen XAI method.
Firstly, a theoretical overview of SHAP is presented to establish a solid foun-
dation. Following that, the implementation details are outlined, showcasing
the explanations obtained using SHAP for our research.

In Chapter 5 the reader is introduced to current research on XAI eval-
uation. An extensive analysis of evaluation methods for assessing of cor-
rectness, output completeness, and continuity is provided. This includes the
availability of a GitHub repository, whether SHAP or Local Interpretable
Model-Agnostic Explanations (LIME) have been evaluated using the pre-
sented method, the text dataset used as well as the task for the text data
is presented. The implementation details and results of each evaluation
tests are then presented, the code for the evaluations can be found at
https://github.com/elengue/eval_SHAP_BERT_text.

The concluding Chapter 6, provides a summary of the main findings dis-
cussed throughout the thesis. Furthermore, it addresses the limitations en-
countered during the research process. Finally, potential avenues for future
work and areas of improvement are explored.
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2 Background

In this chapter, we introduce the current state of the art in XAI. It starts with
a general introduction to XAI, followed by an exploration of model-agnostic
XAI models.

2.1 XAI: the Renaissance of a Field

The denial of parole [145], the preference for male applicants in Amazon’s
recruitment tool [34] or Microsoft’s racist chatbot [9] are only a handful of
examples of AI gone wrong. These examples underscore the necessity of
oversight through explainable and transparent models, highlighting the rel-
evance of the field of XAI. While not a novel area of research, the field of
XAI has experienced a recent renaissance. The initial interest in this sub-
ject dates back to the 1980s, primarily focused on providing explanations for
decisions made by knowledge-based and expert systems [66, 67, 139]. Vilone
and Longo [139] have observed a surge of interest in recent years (2016 to
2020) identifying 250 scientific articles, which is quadruple the amount com-
pared to the previous 5-year period. This surge can be attributed to ad-
vancements in AI research, especially Deep Neural Network (DNN) which
demonstrate high precision but are characterized by highly complexity and
black box nature. Islam et al. [66] identify three events responsible for trig-
gering this new wave of XAI research. Firstly, the U.S. Defense Advanced
Research Projects Agency (DARPA)’s funding of the ‘Explainable AI (XAI)
Program’ [59]. Secondly, to encourage high and strong explainability, China
announced ‘The Development Plan for New Generation of Artificial Intel-
ligence’ [146]. Finally, the European Union in its General Data Protection
Regulation (GDPR) codified a ‘right to explanation’1. Although, what ex-
actly this right entails is still up to some debate [141], it certainly helped
jumpstart the renewed interest in XAI research. In addition, to the GDPR
the EU’s High Level Expert Group on AI published ‘Ethics Guidelines for
Trustworthy Artificial Intelligence’2 which includes as two of its seven key
principles transparency and accountability. Furthermore, alongside these de-
velopments, the EU is actively working on the Artificial Intelligence Act, a
comprehensive law regulating AI with a focus on ethical and safety consider-

1
https://gdpr.eu/article-22-automated-individual-decision-making/

2
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-

trustworthy-ai
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ations, with the aim of reaching a final agreement by the end of the year3,4.
While, these events serve as the cornerstones of the new wave of XAI research,
numerous other indications of interest have been observed for this field, such
as initiatives from various countries (Netherlands [6], Portugal [65], and the
United Kingdom[128]) as well as interest from various companies such as
Google’s AI design principles5[24]. Of which one of the major pillars is inter-
pretability with principles such as treating interpretability as a core part of
the user experience, communicating explanations to models users, designing
the model to be interpretable and understanding the trained model. Exam-
ples for other companies are IBM6 who introduced AI Explainability 360 an
open source toolkit helping people understand various machine learning mod-
els 7 and also established Trust and Transparency Principles8 which include
a requirement of new technologies such as AI systems to be transparent and
explainable, H20 Driverless AI9 which includes explanations as a part of its
solution or companies with their whole business based on XAI like Galileox10

or Minedxai11.

2.2 Audience and Goals of XAI

The field of XAI is a multidisciplinary research area, as multiple disciplines
contribute to its development. Naturally, Artificial Intelligence is a key com-
ponent, along with data science and related disciplines such as mathematics,
statistics, and computer science, as they provide the foundation to create
AI models. However, XAI also benefits from the fields of human sciences
or social studies, in particular human computer interaction and psychology,
which contribute to the understanding of how users interact with explain-
able AI systems. Moreover, ethics and philosophy play an important role in
voicing the need for explanations, thereby adding to the field [139]. Thus,
improvements in on field contributing to XAI can catalyze progress in other
fields as well as in the field of XAI [24].

Given the diverse disciplines involved in the field of XAI, di↵erences in

3
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

4
https://www.europarl.europa.eu/news/en/headlines/society/

20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence

5
https://ai.google/responsibilities/responsible-ai-practices/

6
https://research.ibm.com/topics/explainable-ai

7
https://aix360.mybluemix.net/

8
https://www.ibm.com/policy/trust-transparency-new/

9
https://h2o.ai/platform/ai-cloud/make/h2o-driverless-ai/#Ingest-item-

e50d9c2a21!

10
https://galileox.ai/

11
https://www.minedxai.com/
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motives and starting points arise, prompting an exploration of ’Who uses
XAI?’ alongside the goals and motivations for its use (’Why?’).

2.2.1 Audience

In order to define the concept of explainability, it is essential to take into
consideration the intended audience for the explanation. Miller et al. [93]
caution that in the field of XAI the developers are, for the most part, design-
ing according to their own requirements and not the needs of the intended
users of the explainability methods. In a recent study conducted by Cam-
bria et al. [22], they observed that surveys, which consider di↵erent groups of
users, cater to their intended audience. While, papers that do not explicitly
consider the aspect of audience usually target technical users with a tech-
nical understanding. In their roadmap, Cambria et al. [22] incorporate the
three most commonly mentioned types of users: ‘end user’, ‘developer’, and
‘decision maker’. While they do not formally define these roles, Mohseni et
al. [95] utilize a similar division of target groups, calling them ‘AI novices’,
‘data experts’, and ‘AI experts’. The ‘AI novice’ is the end user using the
model with little to no technical background knowledge. The ‘AI expert’
is the person who implemented the AI model or the explainability method.
The ‘data expert’ is the domain expert who actively uses the AI model as a
basis to make choices, do research, or analyze the data. As an example of
a more fine-grained categorization of the intended audience of XAI methods
by Arrieta et al. [12] include:

• Domain experts/users of the model such as insurance agents or medical
doctors who need to be able to trust the model itself and also might
want to derive scientific insights from the model.

• Users a↵ected by the model decisions who want to be able to under-
stand the decisions made about them as well as verify the fairness of
said decision.

• Data scientists/developers/product owners who are interested in new
functionalities and research of the model, as well as ways to improve
and confirm the model works e�ciently.

• Managers and executive board members who need to make sure all
regulatory requirements are met as well as make consider other uses
for the model.

• Regulatory entities/agencies who need to perform audits and ensure
the models comply with legal obligations.
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Considering this list of potential users/audiences, it becomes clear that each
group has di↵erent reasons for wanting or needing explanations, as well as
di↵erent thresholds of what is considered an explanation.

2.2.2 Goals of XAI

In addition, to considering the intended audience for explanations, it is also
important to understand specific motivations. Although the ultimate goal
of understanding black box models is quite clear, the specific reasons behind
this need can di↵er, leading to variation in the nature of the explanation
provided. Arrieta et al. [12] highlight that while, there is no consensus
on the goals of XAI in the literature they reviewed, several recurring themes
have emerged from the collective body of work. In order to provide additional
insights, they have compiled a table presenting an overview of the identified
goals in relation to the target audience and the respective papers where
these goals were found. In total, they present a list of nine goals which
are as follows: trustworthiness, causality, transferability, informativeness,
confidence,fairness, accessibility, interactivity, and privacy awareness. Doshi
and Kim [41] and Carvalho et al. [24] list a similar group of goals such as
fairness, privacy, reliability/robustness, causality, and trust.

Using a di↵erent way of categorizing the reasons for XAI, Adadi et al. [3],
along with Vilone and Longo [139] and Ding et al. [40] suggest four aspects
motivate the use of XAI. Which are to explain to:

Justify in light of issues arising from biased or discriminatory decisions
made by AI models, there is a growing demand to understand the
reasoning behind the model’s decisions. Specifically, the focus is on
explaining how a model arrives at a particular decision, rather than
providing descriptions of the model’s structure or inner workings. This
is particularly essential when the model produces unexpected results,
as the explanation could function as a justification, supports audits,
and acts as proof of the model’s fairness and ethical compliance to in-
still trust. Additionally, it helps to fulfill legal obligations such as the
EU GDPR’s ‘right to an explanation’.

Control explainability o↵ers increased transparency, enabling better con-
trol over AI models. It provides insights into the model’s functioning,
helping to identify mistakes and facilitating the debugging process to
prevent errors.
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Improve explanations of the model’s decision-making process enable iter-
ative improvements, leading to enhanced performance and increased
accuracy over time.

Discover the power to explain also opens the door to uncovering new knowl-
edge. By providing explanations, XAI allows to uncover previously
unknown causes, theories, or facts.

2.3 Explainability: Attempts at a Definition

There is currently no consensus on the exact definition of the term explain-
ability as well as related terms such as interpretability, transparency, or un-
derstandability [40]. However, surveys on XAI consistently highlight the
importance of establishing a common definition and suggest possible ways
and versions to achieve this [3, 12, 24]. Arrieta et al. [12] shed light on the
lack of common definitions within the community, attributing it to the incor-
rect usage of the terms ‘explainability’ and ‘interpretability’ interchangeably.
They propose a clear distinction between these terms: ‘interpretability’ refers
to the inherent quality of a model that makes it understandable to users (pas-
sive), while ‘explainability’ encompasses deliberate actions taken to make the
model clearer (active). In their work, Palacio et al. [104], conducted a com-
prehensive analysis of the definition of ‘explanation’ and ‘interpretation’ in
XAI literature and created a table presenting the various definitions found.
Additionally, they examined definitions provided by several common dictio-
naries. Based on their findings, the authors formulated their own definition
for ‘explanation’ as “the process of describing one or more facts, such that it
facilitates the understanding of aspects related to said facts (by a human con-
sumer)”. Habiba et al. [60] also provide a tabular overview of the di↵erent
definitions used by Lipton [84], Doshi-Velez and Kim [41], Gilpin et al. [53],
Miller [92], and Montavon et al. [96].

Nauta et al. [100], try to take a comprehensive approach by not making
a distinction between explainability and interpretability to ensure that no
aspects are excluded. They also treat explainable artificial intelligence and
interpretable machine learning as equivalent terms. Their definition of ‘expla-
nation’ is: “a presentation of (aspects of) the reasoning, functioning and/or
behavior of a machine learning model in human-understandable terms”.
Their definition is based on several other definitions such as van Lendt [136]
who coined the term XAI as well as adopting ‘human-understandable terms’
from Doshi-Velez and Kim [41]. Inspired by the definition of Gilpin [53]
‘reasoning, functioning and/or behavior’ are used to emphasize that di↵er-
ent methods of explanation are possible. Reasoning includes the process of
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reaching an explanation, functioning refers to the data structure and inner
workings of the AI model, and behavior highlights the high-level global be-
havior of the model. This thesis follows the same definition, since we use
Nauta et al. [100] as the basis of some of our work in the following chapters.

2.4 Categorizing XAI Methods

The resurgence of interest in XAI has resulted in a boom of proposed explain-
ability methods. Consequently, there is a need to categorize and organize
these di↵erent methods in order to gain a comprehensive understanding of
the available options and select the most appropriate ones for each situation.
Such categorization provides a valuable tool for researchers and practitioners
to navigate the vast landscape of XAI methods e↵ectively. Categorizing XAI
methods can be approached in various ways, with one fundamental consider-
ation being the stage at which interpretability is achieved. This distinction
indicates whether interpretability is inherent to the AI method itself, termed
‘intrinsic’ or ‘ante-hoc’ interpretability, or whether an explanation is required
after the model is trained, known as ‘post-hoc’ interpretability [42]. Intrin-
sic interpretability is achieved by building self-explanatory models, such as
decision trees, rule-based models, and linear models, which are inherently
interpretable due to their structures. Post-hoc interpretability, on the other
hand, involves developing a second model to provide explanations for an
existing model [116]. The key distinction between these two types is the
trade-o↵ between model accuracy and explanation precision. This trade-o↵
refers to the phenomenon that intrinsically interpretable methods often ex-
hibit lower accuracy compared to black box models, which require post-hoc
explainability methods[3].

Another important consideration in categorizing XAI methods is their
applicability, specifically whether they are ‘model-agnostic’ or ‘model spe-
cific’, which is only relevant for post-hoc explanations. When a method is
model-agnostic, it can be applied to any AI method, irrespective of its un-
derlying architecture. In contrast, a model specific method is tailored to
only work with a specific type of AI method, such as support vector ma-
chines or DNN [130]. For the purposes of this thesis, we exclusively focus
on post-hoc model-agnostic XAI methods. This choice is motivated by their
broader applicability and their enduring relevance, which stems from their
independence from specific black box models.

Other than the stage and applicability of XAI methods, there are numer-
ous other factors, that can be employed to categorize the di↵erent methods.
Sokol and Flach [129] identified 32 di↵erent criteria for categorizing and con-
trasting various XAI methods. However, while it is desirable to have a clear
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understanding of the distinctions among model-agnostic XAI methods, using
such an extensive list of criteria may be overwhelming and counterproduc-
tive, potentially leading to more confusion. This raises the question of what
are the most helpful criteria are for comparing a multiple XAI methods.
Speith [130] conducted a review of eleven papers introducing taxonomies for
categorizing XAI methods. He identified four di↵erent approaches to tax-
onomies: functioning-based, result-based, conceptual, and mixed. Each of
these approaches serves di↵erent purposes and provides valuable insights for
di↵erent types of users. As a result of his study, Speith introduced his own
taxonomy, which serves as a basis for the taxonomy presented in the next
chapter.

2.4.1 Overview of Model-Agnostic XAI Methods

Overall we found 15 di↵erent surveys [3, 18, 24, 33, 38, 40, 43, 67, 66, 69, 100,
113, 119, 120, 138] that categorize XAI methods, which in total led to over
150 unique model-agnostic XAI methods. LIME [116] was mentioned in 14
of the 15 papers. The goal of this thesis is to evaluate XAI on fake news data.
Thus, we do not provide a comprehensive categorization of all the methods we
encountered. Instead, we focus on methods mentioned multiple times, as this
suggests their significance. We excluded methods mentioned which are more
general concepts than concrete methods such as feature importance, feature
interaction, global surrogates, model distillation, saliency maps, sensitivity
analysis, and surrogate models, additionally we excluded DALEX [17] which
is an R and Python package of multiple explainability methods. This leaves
us with a total of 26 methods, which we categorized in Table 1, according to
the forthcoming taxonomy.

The taxonomy we employ in this thesis considers the following four crite-
ria: scope, input data, result, and output format. We introduce the criteria
in the subsequent sections. It is important to note that the categories within
this taxonomy are not mutually exclusive, allowing for flexibility in their
application.

Scope. We distinguish two forms of explainability: global explainability
and local explainability [42, 116].
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• ‘Local’ explainability looks at an individual prediction of a model to
see why it makes the decision it does [152].

• ‘Global’ interpretability looks at how the model operates globally by
inspecting the mechanisms and parameters of a complex model [3].

There are also models that o↵er both interpretability at the local and the
global level [40, 66].

Input Data. Input data describes which data types the XAI method ac-
cepts. We use the following categories as used by other surveys [18, 58],
‘tabular’ data which can either be numerical or categorical, ‘image’, ‘text’,
or ‘any’ meaning the method can be used for data of any type might it be
tabular, text, or image.

Others also include other categories such as time series [138], audi-
tory [69], sensory [69] or, graph data [40, 100] as input data. However,
for the sake of simplicity and due to their absence in the methods we catego-
rized, we chose to omit them from our taxonomy. Schwalbe et al. [120] take
a di↵erent approach all together and split the input data into symbolic data,
which includes tabular, natural language, and graph data and non-symbolic
data which includes images, point clouds, and audio.

Result. This category focuses on the output or result of the XAI method.
There are three categories for result which were used by McDermid [91].

• ‘Surrogate Models’ are interpretable models, which were created based
on the black box models.

• ‘Feature Relevance’ give information on which features influences the
result in which way.

• ‘Examples’ are given to illustrate the black box model’s reasoning.

Output Format. The category Output Format describes in what format
the explanation of the XAI method is delivered. It included in the taxon-
omy due to its significance in method selection, as di↵erent output formats
may be more suitable based on factors such as speed, ease of use, and user
type. Within this category, the following formats, as used by Vilone and
Longo [138], are di↵erentiated:
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• ‘Numerical’ explanations presented in numerical form.

• ‘Rule’ explanations expressed in one of two forms, either as decisions
trees or as IF-THEN rules that include AND/OR operators.

• ‘Textual’ explanation provided in written text form.

• ‘Visual’ explanations conveyed through visual representations, such as
plots.

• ‘Mixed’ explanations encompass combinations of the aforementioned
output formats.

Vilone and Longo [138] argue that textual explanations may not be ideal for
XAI novices.
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Table 1: Table of model agnostic methods mentioned more than once by
our chosen surveys

Method Scope Input
Data

Result Output
Format

Found in

ALE (Accumulated
Local E↵ects) Plot
[11]

global tabular feature
summary

visual [24, 43,
67]

Anchors [117] local,
global

any (text,
image,
tabular)

feature
summary

rules [18, 24,
40, 43, 66,
69, 100,
138]

BreakDown [131] local tabular feature
summary

mixed
(text,
visual)

[24, 67]

CaCE (Causal Con-
cept E↵ect) [55]

local,
global

image feature
summary

numerical [33, 40]

CAM (Class Acti-
vation Maps) [132,
157]

global, lo-
cal

image feature
Summary

visual [33, 66]

CEM (Contrastive
Explanations Ap-
proach) [37]

local tabular,
image

examples visual [120]

CIU (Contextual
Importance and
Utility) [10]

local tabular feature
summary

mixed (vi-
sual, text)

[18, 40]

Counterfactuals
CERTIFAI
[141, 123, 72, 48]

local tabular,
image

examples text [3, 24, 38,
43, 66, 67]

DeConvolutional
Nets [154, 103]

local image feature
Summary

visual [33, 66]

DGN-AM (Activa-
tion Maximization
Deep Generator
Network) [46]

global image feature
Summary

visual [3, 38]

DiCE (Diverse
Counterfactual
Explanations) [98]

local any (text,
image,
tabular)

examples rules [18, 40]

FACE (Feasible
and Actionable
Counterfactual
Explanations) [110]

local any (text,
image,
tabular)

examples visual [18, 66]

GLocalX (Global
through Local
Explainability)
[122]

local,
global

tabular surrogate
model

rules [18, 40]

Grad-CAM++ [26] local image feature
summary

visual [33, 69]
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ICE (Individ-
ual Conditional
Expectation) [54]

global, lo-
cal

tabular surrogate
model

visual [3, 24, 43,
67, 138]

Influence Function
[75]

image examples text [24, 38,
67, 138]

LRP (Layer-wise
Relevance Propa-
gation) [14]

local any (text,
image,
tabular)

feature
summary

visual [3, 18, 40,
138]

LIME (Local In-
terpretable Model-
agnostic Explana-
tions) [116, 115]

local any (text,
image,
tabular)

surrogate
model

mixed
(visual,
text, nu-
merical)

[3, 18, 24,
33, 38, 40,
43, 58, 67,
69, 100,
113, 120,
138]

LORE (LOcal
Rule-based Ex-
plainer) [57]

local tabular surrogate
model

rules [18, 40]

MAPLE (Model
Agnostic Su-
Pervised Local
Explanations) [108]

local tabular surrogate
model

numerical [18, 38,
40, 100]

MMD-critic (Max-
imum Mean Dis-
crepancy) also
called Prototypes
and Criticisms [74]

local,
global

image examples mixed (vi-
sual, text)

[3, 24, 40,
67, 100,
138]

PDP (Partial De-
pendence Plot) [15,
45, 50, 56]

global tabular surrogate
model

visual [3, 24, 38,
43, 67,
120]

RISE (Randomized
Input Sampling for
Explanation) [107]

local image feature
Summary

visual [33, 120]

SHAP (SHapley
Additive exPlana-
tions) [88, 87]

local,
global

any (text,
image,
tabular)

feature
summary

mixed [3, 18, 24,
33, 38,
43, 67, 69,
100, 113,
138]

SKOPERULE [51] local,
global

tabular feature
summary

visual [18, 40]

SpRAy (Spec-
tral Relevance
Analysis) [79]

local,
global

image surrogate
model
manner

visual [33, 138]
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3 Black box model: BERT

In a benchmark study, Khan et al. [73] considered approaches from tra-
ditional machine learning, deep learning models, and advanced pretrained
language models, which in total lead to 19 di↵erent machine learning ap-
proaches tested on three di↵erent fake news datasets. They found advanced
pretrained language models, especially BERT based models [35], performed
better on all three datasets. Therefore, we use a BERT based model as the
black box model.

This chapter details the implementation of the black box model for fake
news classification. We provide a short theoretical background on the chosen
models and the dataset. We chose BERT and fake news datasets as the data
and black box model to be explained due to their high relevance. BERT has
proven to be very e↵ective for texts tasks and fake news is a highly relevant
topic.

3.1 Theoretical Background

BERT [35], which stands for Bidirectional Encoder Representations for
Transformers, is an advanced pre-trained language model [73]. BERT whose
architecture is based on the transformer architecture introduced by Vaswani
et al. [137] has made waves in the Natural Language Processing (NLP)
community since its introduction by Google in 2018 [134].

A universal language representation can be learned through pre-training
on a large dataset. Pre-training can help the use of smaller datasets as it
helps to prevent overfitting as regularization factor [112].

Pretraining for BERT was done on two di↵erent tasks. Masked Language
Model (MLM), which is sometimes also referred to as the clove task. For
MLM 15% of the tokens are at random replaced with a special [MASK]
token. In order to prevent a mismatch between pretraining and fine-tuning
where the [MASK] token will not be present, the tokens are only replaced
80% of the time with the [MASK] token in 10% of the cases the token will
be replaced by another random token and in the remaining 10% the token
will not be replaced. The goal is to predict the masked token [35]. Next
Sentence Prediction (NSP) is the other task BERT is trained on and used
to make the model understand the relationship between sentences. For this
task, sentence pairs (sentence A and B) are extracted from a corpus. In 50%
of the cases, the training example’s sentence B is the actual next sentence
and in the rest it is a random sentence [35]. Bidirectionality from both sides
is necessary.
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Figure 2: BERT input representation [35]

Figure 2 depicts the input representation, the first layer is the token
embedding, including special tokens such as the [CLS] token for the beginning
of each sequence and the [SEP] token which indicates the separation between
two sentences or segments. The second layer is the segment embedding, which
additionally to the [SEP] token denotes to which segment a token belongs.
The third layer is the positional embedding, which is used to give information
about the position of the tokens, since no recurrence or convolution is used
that would provide such information [35].

Attention, as the title of the paper ‘Attention is all you Need’ already
suggests, is an important part of the model. In the paper, Vaswani et al. [137]
point out three ways in which the model uses attention. Firstly, in the layers
of the encoder-decoder where input is the output of the previous decoder layer
as well as the output from the encoder layer. It enables the consideration of
all positions of the input sequence. Secondly and thirdly in the self-attention
layer of the encoder as well as the decoder, allowing for every position of the
encoder to consider every position of the previous layer and for the decoder
to consider, including up to the position of the decoder.

3.2 BERT Implementation

We used Flores and Hao’s [49] BERT fine-tuned classifiers retrieved from
GitHub12 as the black box model to be explained. In their paper, they create
three adversial attacks as benchmarks for fake news detection and test them
on two BERT classifiers.

12
https://github.com/ljyflores/fake-news-adversarial-benchmark
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Id Statement Label
2359.json I kicked crooked cops and government o�cials o↵ the public pen-

sion rolls.
1

7313.json State revenue projections have missed the mark month after
month.

0

7234.json Obamacare includes a $63 charge every American will begin pay-
ing (in 2013) as a way to cover some of the increased costs asso-
ciated with providing health insurance to those with pre-existing
conditions.

1

11243.json Buying the naming rights to the new Falcons stadium is the
largest marketing deal in Mercedes-Benz history.

0

9119.json If the legislature refuses to expand Medicaid, 27 states are going
to get our money Virginia taxpayer money into their states to
provide health care for their citizens, paid for by us.

1

Table 2: Five random rows of the LIAR dataset

3.2.1 Datasets

The Datasets used are the LIAR dataset13 and the Kaggle Fake News
dataset14. The LIAR dataset [143] consists of statements made on social
media (such as Facebook posts or Tweets) as well as statements made in
political debates, TV ads, interviews, or news releases etc. The labels for
this dataset were created by the editors of POLITIFACT.COM and are
fine-grained with 6 categories: ‘pants-fire’, false’, ‘barely-true’, ‘half-true’,
‘mostly-true’, and ‘true’. In the context of Flores and Hao’s work, they con-
sider both multi-label and binary classification. For this thesis, only binary
labels are considered. Therefore, the labels were collapsed to only reflect true
or false with the labels ‘pants-fire, ‘false’, and ‘barely-true’ being converted
to ‘false’ or the value 0 and the labels ‘half-true’, ‘mostly-true’, and ‘true’
changing to true or the value 1. Table 2 shows an excerpt of 5 random rows
of the LIAR dataset, consisting of the ‘id’, the ‘statement’, and the ‘label’.

The other fake news dataset used is the Kaggle Fake News15 which was
created for the task of developing a machine learning program, which can
identify if an article is fake news. The Dataset is part of a Kaggle competition
run by the UTK Machine Learning Club. The version of the data used by
Flores and Hao and subsequently used by us contains three columns an ‘id’
column which is an ascending number to uniquely identify each input row, a
‘statement’ which is the title column of the original dataset and contains the
title of a news story to be classified and a ‘label’ column which has binary

13
https://github.com/tfs4/liar_dataset

14
https://www.kaggle.com/competitions/fake-news/overview

15
https://www.kaggle.com/competitions/fake-news/overview
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Label LIAR Fake News IMDB

0 false reliable (true) negative
1 true unreliable (false) positive

Table 3: Statement labels and their meaning per dataset

Id Statement Label
3260 20 wines for under $20: the fall edition - the new york times 0
15337 have the dallas police improved? depends on whom you ask - the new

york times
0

11578 cannabis aficionados develop thc-a crystalline: the strongest hash in
the world at 99.99% thc

1

18850 how we can win the propaganda war 1
11722 russian grannies make deal with lipton 1

Table 4: Five random rows of the Fake News dataset

values which according to the dataset description mark 0 as reliable and 1 as
unreliable. Which is the opposite label as compared to the LIAR dataset, we
decided not to change this di↵erence but caution the reader to it and remind
the reader whenever relevant. As an overview, Table 3 shows the label values
and the corresponding meaning for each dataset. Table 4 shows the first five
rows of the dataset to get an impression of its content.

The datasets were obtained from the Google Drive link16 provided by Flo-
res and Hao’s on their GitHub page17. For the rest of this thesis, these are the
LIAR or Fake News dataset we refer to. Due to computational limitations
1,000 randomly selected rows of the ‘fake news.csv’18, the ‘liar valid.csv’,
and the ‘liar valid.csv’ located in the raw data folder were used for all subse-
quent experiments. The datasets were loaded using the pandas read csv()

19

function and sampled using the .sample()
20 method with 1000 rows and

random state=42 specified to ensure reproducibility.
In addition, to the LIAR and Fake News dataset, we included the In-

ternational Movie Database (IMDB) dataset in our evaluations. The IMDB
dataset is designed for sentiment classification tasks and widely used to eval-

16
https://drive.google.com/drive/folders/10zdrFakmNSOeOmQufYwQvTiESwP8pNyz

17
https://github.com/ljyflores/fake-news-adversarial-benchmark

18The naming for the csv files for the Fake News dataset may be confusing as only
fake news.csv and fake news train.csv are present. However, we verified that the data
from fake news test.csv is not contained in fake news.csv and the data in the encoded
fake news test.pt corresponds to the contents of fake news.csv

19
https://pandas.pydata.org/docs/reference/api/pandas.read_csv.html

20
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.sample.

html
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Statement Label
Stop me if you hard this one before, some cheerleaders, their coach and a
couple guys are trapped within a cabin in the woods ...

0

i enjoyed this film immensely, due to pungent scenes (humorous as well as
ironic, some even ”tragical”), believable performan ...

1

While The Twilight Zone was a wonderful show, it was also very uneven–with
some great episodes, some lousy ones and many in ...

0

algernon4’s comment that Ms Paget’s ”ultra lewd dance in (this film) is the
most erotic in the history of films” is certainly one ...

1

Family guy. When the show first aired, it was fresh, original, and actually
quite funny. Now, I have stopped watching it. It has ...

0

Table 5: Five random rows of the IMDB dataset

uate XAI methods for text data, as demonstrated in Chapter 5.1 Table 9.
Using this dataset provides us with the opportunity to compare the results
of our experiments with those of others on the same dataset.

The dataset consists of movie reviews from the movie review website,
International Movie Database (IMDB). We retrieved the dataset function
from Huggingface’s datasets package21. Specifically, we loaded the test
set of the IMDB dataset using the ‘imdb’ and ‘test’ parameters in the
load dataset()

22 function. Similar to the other two datasets, we shu✏ed the
data, setting the seed to 42 to ensure reproducibility, using the shuffle()23

method. The shu✏ed dataset was then formatted to a pandas dataframe
using the set format

24 method and the first 1000 rows were selected and
stored in a csv file. From now on, we refer to this data as the IMDB dataset.
The dataset consists of a column originally called ‘text’, which we renamed
‘statement’ to ensure consistency over all three datasets. The ‘statement’
column contains the movie reviews ant the ‘label’ indicates the sentiment of
the reviews, with 0 representing negative or 1 representing positive reviews.
Table 5 shows five random rows of the dataset. Only the first few lines
displayed, since the reviews can be quite lengthy.

21
https://huggingface.co/docs/datasets/index

22
https://huggingface.co/docs/datasets/v2.9.0/en/package_reference/

loading_methods#datasets.load_dataset

23
https://huggingface.co/docs/datasets/v2.9.0/en/package_reference/main_

classes#datasets.Dataset.shuffle

24
https://huggingface.co/docs/datasets/v2.9.0/en/package_reference/main_

classes#datasets.Dataset.set_format
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3.2.2 Model and Tokenization

We use he already fine-tuned models, by Flores and Hao, which were retrieved
from the Google Drive Link25 provided on the Github page26. The models,
the liar model2 (trained on the LIAR dataset with binary labels) and the
fn model (trained on the Fake News dataset), were instantiated using the
BertForSequenceClassification.from pretrained()

27,28 method. The
‘bert-base-uncased’29 tokenizer30, which was also used during training, and
is deployed in tandem with the models. Regarding the IMDB dataset,
we use the fine-tuned model ‘textattack/bert-base-uncased-imdb’31 from the
text attack package. The model was loaded in a similar manner to the
other models and tokenizers, with the only di↵erence being the usage of
the AutoModelForSequenceClassification32 and AutoTokenizer

33 classes
and ‘textattack/bert-base-uncased-imdb’ instead of the usage of the model
path for both the model and the tokenizer. Figure 3 gives a visual repre-
sentation of the steps taken to create the SHAP values for each dataset and
highlights the di↵erences based on color.

Table 6 gives an overview of the tokens for the 1,000 row samples of the
datasets, including information on the number of unique and total tokens, as
well as the average amount of tokens per statement. These figures confirm
that the statements for the IMDB Dataset are significantly longer than the
other two datasets. When comparing the two datasets for fake news classifi-
cation, we observe that the LIAR dataset to have more total tokens, whereas
the Fake News dataset contains more unique tokens. Table 7 shows the first
example of the Fake News dataset as tokens and words split up to token
level. The [CLS] and [SEP] tokens representing the beginning and the end of
a sequence respectively, and are special tokens within the tokenizer and the
model.

25
https://drive.google.com/drive/folders/1XFoYNmYP-

DD3Bj7zg9AXzDT7VmGtf0aG

26
https://github.com/ljyflores/fake-news-adversarial-benchmark

27
https://huggingface.co/docs/transformers/model_doc/bert#transformers.

BertForSequenceClassification

28
https://huggingface.co/docs/transformers/main_classes/model#

transformers.PreTrainedModel.from_pretrained

29
https://huggingface.co/bert-base-uncased

30
https://huggingface.co/docs/transformers/v4.26.1/en/model_doc/bert#

transformers.BertTokenizer

31
https://huggingface.co/textattack/bert-base-uncased-imdb

32
https://huggingface.co/docs/transformers/model_doc/auto#transformers.

AutoModel

33
https://huggingface.co/docs/transformers/v4.26.0/en/model_doc/auto#

transformers.AutoTokenizer
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Figure 3: Outline of how SHAP values were computed

Dataset Unique Tokens Total Tokens Avg Token per
Statement

LIAR 3,985 24,148 24.15
Fake News 4,517 18,669 18.67
IMDB 22,407 288,544 288.55

Table 6: Statistics about the amount of unique tokens, total tokens and
average tokens per statement for each dataset

3.2.3 Results

Table 8 shows the results for precision, recall, f1-score, support (indicating
the number of instances in the sample have the label 0 and 1, for label
descriptions, refer to Table 3), and accuracy across the 1,000 samples of the
LIAR, Fake News and IMDB datasets. These results were computed using
classification report

34 from the sklearn package. The results clearly
show the di↵erences in the model’s ability to classify the inputs between the
datasets. For the LIAR dataset, the results are only slightly better than
chance for a binary classification task. However, these results are on par
with the best results mentioned by Flores and Hao [49]. They report a
98.9 accuracy score for the Fake News dataset by Kaliyar et al. [71] and a
27.3 accuracy score by Ding et al. [39] for the 6-label LIAR dataset, which

34
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.

classification_report.html
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Tokens [101, 2322, 14746, 2005, 2104, 1002, 2322, 1024, 1996, 2991, 3179, 1011,
1996, 2047, 2259, 2335, 102]

Words [’[CLS]’, ’ 20’, ’ wines’, ’ for’, ’ under’, ’ $’, ’ 20’, ’ :’, ’ the’, ’ fall’, ’ edition’,
’ -’, ’ the’, ’ new’, ’ york’, ’ times’, ’[SEP]’]

Table 7: Example of tokenization

LIAR Fake News IMDB
0 1 0 1 0 1

Precision 0.58 0.54 0.97 0.99 0.89 0.88
Recall 0.53 0.59 0.99 0.98 0.88 0.89
F1-score 0.55 0.57 0.98 0.98 0.88 0.88
Support 515 485 495 505 512 488
Accuracy 0.56 0.98 0.88

Table 8: Precision, recall, f1-score, support, and accuracy for the datasets

Flores and Hao’s model outperforms with an accuracy score of 29.4. In
contrast, Flores and Hao only report their own accuracy score of 57.4 for the
binary classification of the LIAR dataset, which is the version we are using
exclusively used in this thesis. We, on the other hand, achieve an accuracy
score of 56 % for the same binary version of the LIAR dataset, which is close
to the result reported by Flores and Hao.
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4 XAI Model: SHAP

This chapter details the implementation of the XAI model. We provide a
short theoretical background on SHAP, before presenting our implementation
of SHAP on BERT and the datasets presented in the previous chapter.

4.1 Theoretical Background

SHapley Additive exPlanations, abbreviated as SHAP, is a local and model-
agnostic explanation method, introduced by Lundberg and Lee [88]. Its
significance in the field of eXplainable Artificial Intelligence is in part at-
tributed to its robust theoretical foundation [97]. It is based on Shapely
values, originating from cooperative game theory [18] and measures how to
fairly distribute a reward among a group of players based on their contribu-
tion to the outcome [97].

For model explanation SHAP defines the problem as the game in which
the features act as the players and the model’s prediction represents the out-
come. Thus, Shapley values are employed to compute feature importance, as
they fairly distribute the impact of each feature to the model’s prediction [16].
However, the exact computation of Shapley values becomes infeasible quickly
due to the need to calculate all possible feature combinations. Therefore, ap-
proximations are utilized to make the computation manageable [97].

4.1.1 Properties and Versions of SHAP

SHAP as one such approximation, uses additive feature attribution methods,
to create an explanation [138]. It possesses three major properties: local accu-
racy, ensuring its output matches with the output of the original model with
simplified input when explaining a particular instance; missingness, which
prevents missing input features from impacting SHAP values; and consis-
tency, ensuring that an increase in the model’s marginal contribution leads
to a corresponding increase in the SHAP value [88]. Lundberg and Lee [88]
propose five di↵erent methods for computing SHAP values. The first is Ker-
nel SHAP, a model-agnostic approach that combines LIME and Shapley val-
ues. The other four methods namely Linear SHAP, Low-Order SHAP, Max
SHAP, and Deep SHAP are model-specific. In addition, the authors released
an o�cial library35, which has been continually expanded. New additions to
the library include Gradient SHAP, Tree SHAP (both model specific), and

35
https://github.com/slundberg/shap
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Figure 4: Local SHAP graph explaining a sentiment analysis example [97]

Partition SHAP36, a faster version of Kernel SHAP that incorporates hierar-
chies and leverages Owen values from game theory for computation [97]. For
detailed insights into the workings of the Partition Explainer, refer to [142].

4.1.2 SHAP’s Visualisations

The SHAP package o↵ers various visualization options for local as well as
global explanations. Thereby providing the options to create graphs explain-
ing individual instances as well as overall trends. Figure 4, created by Mosca
et al. [97], is a schematic example of a graph for a local explanation, specif-
ically applied to sentiment analysis. The base value represents the model’s
average prediction. Each token or word is treated as a feature that con-
tributes to the di↵erence between the base value and the current output,
which is the result. For the given instance, ‘Sorry!’, ‘went’, and ‘I’ have neg-
ative contributions, pushing the SHAP value towards the current output. On
the other hand, ‘better’, ‘wish’, and ‘that’ represent negative contributions,
shifting the result closer to the base value. The graph shows how individual
features a↵ect the final prediction.

While SHAP is primarily designed as a local XAI method, it does o↵er
the option to create global explanations. As an example of such a global
visualization, we present Figure 5, which depicts global explanations. In
order to ensure better understanding of the global graphs, we chose a graph
presenting the results for a model utilizing tabular data, as they are in our
opinion more intuitive. In this graph, extracted from the ‘An introduction to
explainable AI with Shapley values’ article in the SHAP documentation37 the
average most influential factors for an adult to earn over $50,000 annually are
depicted. Additionally, it assesses the average impact of each variable on the

36
https://github.com/slundberg/shap/blob/b6e90c859fdfc6bc145242d9a8082d4ad844e995/

shap/explainers/_partition.py

37
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%

20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html#nlp_

model
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Figure 5: Example of a summary plot with tabular data to facilitate better
understanding retrieved from the SHAP documentation38

SHAP values. It shows that the ‘relationship’ variable has the most impact,
it shows on the bottom that the three least influential categories have been
omitted. Summary plots for text data di↵er from those of tabular data due
to the nature of the data type. Text data does not always contain the same
variables per instance as tabular data does. In the example above, every
entry in the dataset has a value for relationship, age etc. Whereas for text
data the variables are the tokens, which make up words, every instance will
therefore only have a fraction of the overall variables present, as not all the
words present in the whole dataset will also be present in each instance. This
results in a higher amount of variables and a relatively low average impact
per variable. In Figure 6, we provide the summary plots created for this
thesis, following the pattern for text data explained above.

4.2 SHAP Implementation

In this thesis, we implement SHAP using the SHAP python package39. We
adapt an example from the package’s documentation40 to suit the specific re-
quirements of the study. The computation of the SHAP values is executed on

39
https://github.com/slundberg/shap

40
https://shap.readthedocs.io/en/latest/example_notebooks/overviews/An%

20introduction%20to%20explainable%20AI%20with%20Shapley%20values.html#nlp_

model
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1 .values = array([ 0., 0.00490105, 0.00268453, 0.00688738,

0.00365818, 0.00770843, 0.0048399 , 0.00829434, 0.0130564 ,

0.00249624, 0.00745153, 0.0097388 , 0.00669724, -0.00151104,

-0.00126433, -0.00331485, 0.])

,!

,!

,!

2

3 .base_values = 10.309349060058594

4

5 .data = array(['', ' 20', ' wines', ' for', ' under', ' $', ' 20', '

:', ' the',' fall', ' edition', ' -', 'the', ' new', ' york', '

times', ''], dtype='<U8')

,!

,!

Listing 1: Example of the content of shap values

a NVIDIA A100-SXM4-40GB, utilizing Google Colab Pro. For each dataset
containing 1,000 samples and using a batch size of 20, the computation times
for the SHAP values are as follows: 54 minutes and 29 seconds for the LIAR
dataset, 36 minutes and 18 seconds for the Fake News dataset, and1 hour 10
minutes and 36 seconds for the IMDB dataset. The Partition Explainer41,
a model-agnostic explainer that calculates Owen values as an approximation
for SHAP values, was employed.

Listing 1 illustrates the output for a single instance of the SHAP values.
The first list, denoted as ‘.values’, contains the SHAP values, which corre-
spond to the .data list. These values signify the influence each token (.data
element) exerts on the overall classification. The ‘.base value’ represents the
mean prediction of the model. The Figures 7a, 7b, and 7c show the local
explanation for one randomly selected sentence from each dataset. As a brief
reminder of the dataset introductions provided in Section 3.2.1 the meaning
of 0 and 1 di↵ers per dataset. In the LIAR datasets, 0 corresponds to fake
news, and 1 corresponds to real news. Conversely, in the Fake News datasets,
0 represents reliable/real news and 1 represents unreliable/fake news. For the
IMDB dataset, 0 indicates a negative review, while 1 denotes a positive re-
view, see Table 3. These Figures can be interpreted similarly to the example
graph shown in Figure 4. Specifically, Figure 7a features a base value of -7.5.
Notably, the most influential tokens are ‘o�cial’ and ‘government’, which
are depicted with the most solid color and occupy the longest space on the
chart. Overall, the blue/negative arrows have more value than the red/pos-

41
https://github.com/slundberg/shap/blob/b6e90c859fdfc6bc145242d9a8082d4ad844e995/

shap/explainers/_partition.py
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itive arrows, and the ‘f(inputs)’ is lower than the base value. According to
Table 2, the example in question holds a true label of 1, indicating a true
statement. In Figure 7b, we observe the local explanation for a randomly
selected example of the Fake News dataset, which, as shown in Table 4 bears
a true label of 0, indicating a reliable statement. The base value is 10.309,
and the ‘f(inputs)’ is 10.381 with the majority of tokens being red/positive.
Finally, Figure 7c shows the local explanation of the IMDB example, which
holds a true label of 0, signifying a negative review as shown in Table 5. The
base value is -2.1, and the ‘f(inputs)’ is -8.3 with the big majority of tokens
being blue/negative.

Figure 6 presents the global explanations obtained for our analysis. The
graph illustrates the most influential tokens per dataset, where token impor-
tance is computed as the mean of the local SHAP values for each token. For
the sentiment analysis of the IMDB dataset, Figure 6c showcases the three
most influential tokens: ‘insanity’, ‘STUNNING’, and ‘UNBELIEVABLE’.
These tokens are plausible choices as they convey strong emotions, aligning
well with sentiment analysis objectives. Moving on to the fake news datasets,
Figures 6a and 6b depict the top global features representing the most in-
fluential tokens for the LIAR and Fake News datasets, respectively. For the
LIAR dataset, the top three tokens are ‘delaying’, ‘operation’, and ‘attorneys’
while for the Fake News dataset’s most influential tokens are ‘pole’, ‘ising’,
and ‘minor’. Given the nature of sentiment analysis and fake news detection,
it is more straightforward to perform a brief sanity check on the sentiment
analysis results. However, assessing the validity of fake news detection results
becomes more challenging, especially considering the low accuracy score of
the Fake News dataset.
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(a) Top global SHAP features - LIAR dataset

(b) Top global SHAP features - Fake News dataset
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(c) Top global SHAP features - IMDB dataset

Figure 6: Global most impactful SHAP Values

(a) Random sample from LIAR dataset

(b) Random sample from Fake News dataset

(c) Random sample from IMDB dataset

Figure 7: SHAP text plot for one random example per dataset
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5 Evaluation of XAI method

This chapter provides an overview of how XAI methods are currently quan-
titatively evaluated and assesses SHAP explanations of the BERT fake news
classification model based on selected criteria.

5.1 Background: Evaluation of XAI Methods

The necessity to evaluate XAI methods is underscored by two primary rea-
sons [90, 158]. Firstly, the need arises for establishing metrics that facilitate
the comparison of various methods, enabling users to make informed deci-
sions based on evaluation outcome. Especially due to the lack of ground-
truth for post-hoc explainability, since the inner workings of the model are
unclear [40, 62]. Secondly, evaluations are imperative to ascertain the fulfill-
ment of defined objectives and thereby the accomplishment of explainability
within a given application.

5.1.1 An Absence of Standardized Evaluation Approaches

The absence of a benchmark or standardized approach for evaluating
eXplainable Artificial Intelligence (XAI) frameworks is a significant con-
cern [21, 40, 47, 62, 66, 86]. This lack of a common evaluation standard
especially hinders e↵ective comparison between di↵erent frameworks, mak-
ing it challenging to assess the performance of such methods, as noted in
various surveys [12, 21, 41, 47, 85, 100]. Hedström et al. [62] even argue that
currently XAI papers employ questionable and one-sided evaluation method-
ologies. These practices not only have the potential to limit the access to
the current state of the art, but may also in the long run negatively impact
the reputation of the XAI field. Their observation is supported by Nauta
et al. [100], who conducted a systematic review of over 300 papers on the
topic of XAI and found that one third of the surveyed papers relied solely
on anecdotal evidence to evaluate the explainability of the examined model.
Commonly in connection with the lack of evaluation standards, a lack of
common definitions and terms is mentioned since using the same term for
(slightly) di↵erent concepts only adds to the confusion [3, 12, 40, 85, 104].
Consequently, as we build part of this thesis on Nauta et al.’s work [100],
we generally depend on their definitions, unless otherwise specified. For
the definition of the term ‘explainable’ for this thesis, see Section 2.3. The
study by Doshi-Velez and Kim [41] is a highly influential work frequently
cited in discussions regarding the categorization of the evaluation of explain-
able artificial intelligence (XAI) [3, 86, 158]. In their work, they propose
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three distinct categories of evaluation methods. The first category is called
‘functionally-grounded’ evaluation, which involves assessing XAI methods
using proxy tasks without human involvement. The second category, termed
‘human-grounded’, engages real human participants in attempting to solve
simplified tasks using the XAI methods. Lastly, the third category, referred
to as ‘application-grounded’, focuses on evaluating XAI methods by involv-
ing real humans in solving real-world tasks. Overall, a separation between
tasks involving human participants and those without human involvement is
common [40, 66, 86, 139, 158]. The scope of this thesis lies on evaluations
without human participants and with quantitative measures. Recent stud-
ies try to organize existing evaluation methods into categories to enable a
way to organize results and to classify which aspects of explainability are
tested [85, 86, 100].

5.1.2 Classification Approaches of XAI Evaluation

Löfström et al. [85], conducted a semi-structured meta survey of fifteen sur-
veys, wherein they categorize the evaluation criteria into three main aspects:
model, explanation, and user. Under the model explanation criterion, the
identified ‘performance’, ‘fairness’, and ‘privacy’. The explanation aspect
encompasses ‘reliability’, ‘identity’, ‘separability’, ‘novelty’, ‘representative-
ness’, and ‘fidelity’. While the user aspect includes ‘appropriate trust’, and
‘explanation satisfaction’.

Furthermore, Lopes et al. [86] propose a taxonomy that splits evaluation
methods into two categories: human-centered and computer-centered. With
the human-centered methods, they further identified four subcategories: ‘ex-
planation usefulness’ and ‘satisfaction’, ‘performance’, ‘understandability’,
and ‘trust’ with the latter two subdivided into three additional subcate-
gories each. In contrast, the computer-centered category encompasses ‘in-
terpretability’ with subcategories ‘clarity’, ‘broadness’, and ‘simplicity’ and
‘fidelity’ with the subcategories completeness and soundness.

Quantus42 an evaluation framework for neural network explanations in-
troduced by Hedström et al. [62] aims to facilitate the quantification of XAI
and allows for the evaluation of image, time-series, and tabular data. While
usage for text data is in development, at the time of writing this thesis, it
is not yet available. The framework encompasses over 30 evaluation metrics,
categorized into six di↵erent categories: ‘faithfulness’, ‘robustness’, ‘localiza-
tion’, ‘complexity’, ‘randomization’, or ‘axiomatic’ metrics.

Additionally, Nauta et al. [100] performed a systematic literature re-

42
https://github.com/understandable-machine-intelligence-lab/Quantus/
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view of 312 papers that introduced a XAI method and performed a quan-
titative evaluation of the proposed method. In the context of their survey,
Nauta et al. create a definition of explainability consisting of 12 distinct fea-
tures, under which they grouped the quantitative evaluation methods used
in the surveyed papers. The authors argue that explainability should not
be treated as a binary characteristic but rather a collection of properties,
the features of their definition of explainability, each of which can be met
to varying degrees. The criteria, which they call Co-12 properties are ‘cor-
rectness’, ‘output completeness’, ‘consistency’, ‘continuity’, ‘contrastivity’,
‘covariate complexity’, ‘compactness’, ‘compositionality’, ‘confidence’, ‘con-
text’, ‘coherence’, and ‘controllability’. The properties sometimes contradict
each other, meaning that fulfilling one criterion such as completeness may
compromise another, like compactness. The authors emphasize that the sur-
vey results o↵er several benefits, such as enabling the examination of XAI
methods, providing a benchmark and criteria for evaluating di↵erent meth-
ods based on the Co-12 properties, identifying the strengths and weaknesses
of various methods, and o↵ering for developing new methods with the focus
on certain properties. In the context of this master thesis, we chose to evalu-
ate the correctness, output completeness and continuity properties of Nauta
et al.’s Co-12 criteria [100]. The reason for this decision lies in the belief
that these properties hold central significance. In our opinion, an explana-
tion cannot be considered useable even if all other Co-12 criteria are fulfilled
when it lacks correctness, completeness, or consistency.

5.1.3 Evaluation of Correctness, Output Completeness, and Con-
tinuity

To comprehensively understand the evaluation criteria correctness, output
completeness, and continuity investigated in this study, we conducted a thor-
ough analysis of all the papers listed by the Nauta et al. [100] for these prop-
erties. Table 9 presents a summary of papers from Nauta et al.’s survey [100]
that pertain to the evaluation of XAI methods specifically explaining models
using text data. The table includes the author name and citations, the Co-12
properties evaluated, the availability of a GitHub repository, whether SHAP
or LIME were evaluated, the text dataset was used in the evaluation and
the corresponding task the model was designed to solve. Notably, the table
highlights that none of the surveyed papers evaluated an explanation method
for a text-based model using fidelity. Consequently, we excluded this metric
from our evaluations.

The following sections introduce the categories and methods collected and
defined by Nauta et al. [100], which we employ for our evaluation.
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Author Evaluation
Methods

Git-

Hub

SHAP
1
Lime
+

Dataset for
Text Data

Task for Text
Data

Camburu et al.
[23]

Stability for
Slight Varia-
tion

x x SNLI Natural Lan-
guage Infer-
ence; Model
that pro-
vides natural
language ex-
planations

Chen et al. [27] Incremental
Deletion

1 1, + IMDB Sentiment
Classification

Chen et al. [28] Preservation
Check

1 1, + IMDB Sentiment
Classification

Chen et al. [29] Incremental
Deletion

1 1, + IMDB, AG
News, Yahoo
Answers

Classification

Cheng et al. [31] Single Deletion 1 x Yelp, Movie-
lens

Recommender
Systems

Han et al. [61] Incremental
Deletion

1 x Stanford
Sentiment
Treebank,
Multi-Genre
NLI (MNLI),
HANS

Sentiment
Classifica-
tion, Natural
Language
Inference

Kumar and
Talukdar [76]

Preservation
Check; Dele-
tion Check

1 x Stanford NLI
dataset

Natural Lan-
guage Infer-
ence; Model
that pro-
vides natural
language ex-
planations

Li et al. [81] Preservation
Check; Stabil-
ity for Slight
Variation

x x Machine
Translation

Translation

Liang et al. [83] Model Param-
eter Random-
ization Check;
Preservation
Check; Dele-
tion Check;
Stability for
Slight Varia-
tions

1 1 IMDB Sentiment
Classification
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Luo et al. [89] Preservation
Check

1 x Real World
Chinese Finan-
cial Website
Documents

Sentiment
Classification
on Financial
Data

Mohankumar et
al. [94]

Incremental
Deletion

1 x IMDB, Stan-
ford Sentiment
Treebank,
Yelp, Ama-
zon, Twitter
ADR, 20
Newsgroups,
MIMIC ICD9
(Anemia,
Diabetis),
SNLI, Quora
Question Para-
phrase, bAbI,
CNN News
Articles

Sentiment
Classification,
Classifica-
tion, Natural
Language
Inference,
Paraphrase
Detection,
Question
Answering

Ramamurthy et
al. [99]

Incremental
Deletion

x + ATIS Classification

Serrano and
Smith [121]

Single
Deletion;
Incremental
Deletion

1 x IMBD, Yelp,
Amazon,
Yahoo

Sentiment
Classification,
Classification

Yeh et al. [149] Preservation
Check

1 1 IMDB Sentiment
Classification

Yuan et al. [151] Preservation
Check

1 x MR (Movie
Reviews), AG
News

Sentiment
Classification,
Classification

Table 9: Table of papers listed by Nauta et al. [100] who evaluate text data

5.1.4 Correctness

In the context of evaluation methods, the correctness category seeks to ad-
dress the question of how faithful, or how closely, the explanations mimic the
underlying model they aim to explain. It is crucial to distinguish this notion
of correctness from the user’s perception of how reasonable the explanations
are.

Model Parameter Randomization Check. The Model Parameter Ran-
domization Check, proposed by Adebayo et al. [4], serves as a ‘sanity check’
to assess the dependence of explanations on a trained model’s parameters.
This check involves comparing the explanations obtained for the trained
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Author Metric
Liang et al. [83] Model randomization test as suggested by Adebayo et al. [4]: to

evaluate calculate cosine correlation between binary masks (the one
created from randomization and the original one).

Table 10: List of metrics for Model Parameter Randomization Check for
text data

Author Metric
Cheng et al.
[31]

Evaluate the e↵ectiveness: Pearson correlation coe�cient between the
influence reported by the method and the influence computed from
leave-one-out retraining (removing a feature and retraining the model
multiple times).

Serrano and
Smith [121]

Investigate if zeroing the highest attention weight results as compared
to randomly chosen weight result in a decision flip.

Table 11: List of metrics for Single Deletion for text data

model with those of a model of the same architecture but with randomly
initialized parameters. The rationale behind this check is that the explana-
tions should vary based on the model’s trained parameters. Hence, if the
explanations for both models appear similar, it indicates that the explana-
tion method may not rely significantly on the model parameters. This is of
course only a ‘sanity check’ and does not definitively determine the reliance
of the explanation method on the model parameters. As suggested by Nauta
et al. [100], to enhance the assessment’s robustness, it may be prudent to
repeat the parameter reinitialization process multiple times, to account for
the possibility of chance similarities between the reinitialized and trained
models. Table 10 lists the metrics for the Model Parameter Check for text
data.

Single Deletion. Single Deletion measures the change in model output
when one feature is deleted, based on the explanation’s feature importance
ranking. The underlying assumption is that removing or replacing a high
ranking feature will have a more pronounced impact on the model’s output
compared to a feature with lower importance according to the explanation
method. Additionally, this evaluation approach allows for the identification
of ‘null attributes’ - features that have no impact on the model’s output.
If the explanation is accurate, these null attributes should also be assigned
an importance score of zero [77]. Metrics for the Single Deletion test are
presented in Table 11.
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Incremental Deletion (or Incremental Addition). Similar to the Sin-
gle Deletion method, the Incremental Deletion (or Incremental Addition)
method involves the deletion or addition of features, but does so iteratively.
The process can be performed in a top-down manner, starting with the most
important features according to the explanation method, or in a bottom up
manner, starting with the least important features. Since manipulating in-
put features individually might be computationally expensive, due to the
presence of numerous features, some researchers choose to group the dele-
tions or additions, to reduce the costs, for example by considering the top
or bottom 10% of features. Several authors have been mentioned in this
context. Shrikumar et al. [124] consider the di↵erence in log-odds score to
be calculated between the original model output and the deletion iterations.
Samek et al. [118] propose the use of the Area over the Perturbation Curve
(AOPC) as a metric. However, Nauta et al. [100] caution against solely re-
lying on AOPC, as it assumes that only a handful of features account for the
majority of the importance, which might be valid for softmax scores, but not
necessarily for other measures. For our evaluation, we report both Log-odds
scores and AOPC scores.

Log-odds Score. The Log-odds score is computed by calculating
the negative logarithmic probabilities of the predicted class. This in-
volves taking the logarithm of the model’s probability for the predicted
class and subtracting the logarithm of the probability of not being the
predicted class, see Listing 2. The negative logarithmic probability af-
ter masking the data is subtracted from the for the original outputs
and averaged over all samples for our implementation. Lower log-
odds scores are preferable, as they indicate better performance [27].
Table 12 outlines the metrics related to Incremental Deletion for text
data.

AOPC. The Area over the Perturbation Curve (AOPC) quantifies
the average change in prediction probability for the predicted class
when deleting a percentage ‘k’ features from the inputs [102, 118].
Please refer to Listing 3 for our implementation details. Higher AOPC
values are considered favorable, as they suggest that the deleted words
have a substantial impact on the model’s decision [27].

Criticism of Single and Incremental Deletion. It is essen-
tial to consider criticisms regarding Single Deletion and Incremental
Deletion, which can inadvertently create out-of-distribution examples
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when features are deleted from the input [25, 64, 68]. One possible so-
lution for this problem is to retrain the model on the small input (e.g.
Remove and Retrain (ROAR) proposed by Hooker et al. [64]). How-
ever, this approach introduces a new issue, as the evaluation would
no longer be conducted on the original model. Alternatively, other
strategies involve using replacement values from the original data dis-
tribution, employing a synthetic dataset [68] or generating new data,
using for example a Generative Adversarial Network (GAN) [25].

Incremental Deletion/Addition and Output Completeness.
Incremental Deletion/Addition can evaluate not only evaluate the cor-
rectness criterion but also output completeness, assessing whether the
important features are su�cient to explain the behavior of the model.
Incremental Addition tests this by using only the important features
as input, and a complete output explanation should produce results
similar to the original input. In contrast, Incremental Deletion tests
for output completeness, when all features are deleted, where a wrong
decision from the model would be expected. Additionally, Incremen-
tal Deletion/Addition can also assess Compactness, a Co-12 feature
not evaluated in this thesis.

5.1.5 Output Completeness

The output completeness category evaluates the extent to which the model
behavior is explained by the explanation method.

Preservation and Deletion Check. The Preservation and Deletion
Check assesses the output completeness of the explanation method. This
evaluation method involves selecting the top x features presented by the
explanation method and then either using only those top features (preserva-
tion) or excluding them while using the rest (deletion) as input to the model.
The resulting accuracy score is expected to either show minimal change in
case of preservation, indicating that the top features are indeed important,
as suggested by the explanation method. Conversely, for deletion, a signif-
icant drop is anticipated, highlighting that the top features are crucial for
the model’s decision. Kumar and Talukdar [76] and Liang et al. [83] con-
duct both Preservation and Deletion Check, while the other authors listed
in Table 13 only conduct a Preservation Check.
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Author Metric
Chen et al.
[27]

Deleting top k% words and calculate the average change in the pre-
diction probability of the predicted class over the entire test data
(AOPC); Log-odds score: average di↵erence of negative logarithmic
probabilities of the predicted class of the original input and the in-
put where top k% of features are masked with special token <pad>;
cohesion-score evaluate the interactions between words within a given
text span.

Chen et al.
[29]

Calculate the change in log-odds scores of the original input and after
masking the top k% features based on their importance scores (k=0-
20%).

Han et al. [61] Sanity check: remove the 10% most positively, negatively, least influ-
ential or random training examples and report the average change in
prediction confidence of the retrained model to the original model

Mohankumar
et al. [94]

To assess importance ranking within hidden representations, the
method involves random permutations of attention weights and the
examination of resultant di↵erences in the model’s output (total vari-
ation distance), with the computation of Pearson correlation and JS
divergence between the attribution and the attention distribution.

Ramamurthy
et al. [99]

Explanation infidelity (following Yeh [148]): calculates how faithful
the explanations of the black box model under perturbations are
(changing numerical values to 0 or least frequent categorical value,
no mention of text data) averaging the result over all test data.

Serrano and
Smith [121]

Multiple weights test: erasing representations from the top of
the ranking downward until the model’s decision changes; Jensen-
Shannon (JS) divergences—of the model’s original output distribution
vs output distribution after removing (highest attention vs random
component) visualize the result of the subtraction of the two JS di-
vergences over the di↵erence in attention weights.

Table 12: List of metrics for Incremental Deletion for text data
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Author Metric
Chen et al.
[28]

Post-hoc accuracy: compute the accuracy of the model the top k (10)
word with the with (other) unselected words masked by zero paddings.

Kumar and
Talukdar
[76]

Sensitivity Analysis based on DeYoung [36] (based on Yu [150]): com-
prehensiveness: examining the impact of removing the explanation from
the inputs and su�ciency: examining the impact of keeping only the
explanations.

Li et al. [81] Principled metric based on fidelity: the potential of constructing an
optimal model (behaves similar to target model) based on the relevant
words selected by the explanation method from the input. Di↵erent
versions of this metric based on proxy models: multi-layer feedforward
network (FN), recurrent network (RN), self-attention network (SA) and
combination of all three as well as baseline of well-trained NMT model.

Liang et al.
[83]

Fidelity for selected features: FS-M consistency between model’s output
with unselected features masked by zeros vs original; FS-A consistency
between model’s output and an approximator; FU-M, FU-A: same as
above but with selected features masked all following Chen et al. [28].

Luo et al.
[89]

Acc-reduced: accuracy of the trained model when using the top k
weighted sentences as input; Over 50 rounds visualize average trends
and the standard deviation (reflects the distributions of Acc-reduced)
of top k weighted sentences (k=1-10) versus random sentences as input
for the trained model.

Yeh et al.
[149]

Append 5 nearest neighbors (out of 500-nearest neighbors) of each con-
cept (one concept at a time) to the end of all testing instances versus
5 random sentences and compare prediction score.

Yuan et al.
[151]

Matching rate: create new sentence out of 5 nearest neighbors repre-
senting 3 locations with the highest contribution to the decision, feed
the new input to model, to obtain another classification result. Calcu-
late the rate of new and the old classification result being equal (match-
ing).

Table 13: List of metrics for Deletion and Preservation Check for text data

5.1.6 Continuity

The continuity evaluation method aims to assess the generalizability of an
explanation.

Stability for Slight Variations. Stability for Slight Variations measures
the continuity of an explanation by investigating similarity between the ex-
planation for the original sample and a slightly altered sample. This metric
is referred to using di↵erent terms in the literature, such as ‘stability’ [8],
‘sensitivity’ [83, 148], and ‘robustness’ [111, 126]. The measurement of simi-
larity can vary, depending on the type of input data. For our evaluation, we
use Local Lipschitz values [8], which quantify the di↵erence between the ex-
planations for the original and the input data with small perturbations. This
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Author Metric
Camburu et al. [23] Sanity check: framework for creating inconsistent natural lan-

guage explanations via adversarial generation of new input.
Li et al. [81] we could not find such an evaluation in this paper.
Liang et al. [83] SEN: sensitivity score of the influence of adversarial examples

on the feature importance scores, proposed by Yeh et al. [148];
not reported for text dataset.

Table 14: List of metrics for Stability for Slight Variations for text data

approach is based on the idea that small changes in the input data should
not cause significant changes in the explanations. Naylor et al. [101] report
using this metric to assess the explanation’s robustness. Listed in Table 14
are the metrics relevant to evaluating Stability for Slight Variation with text
data.
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5.2 Evaluation of SHAP Explanations of the Fake
News Evaluation Model

This section describes the implementation and the results of the evaluation
of the correctness, output completeness and continuity of SHAP on fake news
and sentiment classification tasks. The code for this implementation can be
found at https://github.com/elengue/eval_SHAP_BERT_text.

When an evaluation method requires the deletion or masking of tokens,
we always mask the original tokens with the special [PAD] token, as it seemed
the most appropriate approach. This also ensured that the length of the input
data remained unchanged. Although we did not evaluate the e↵ect of the
input data length on classification, we deemed it appropriate to maintain a
constant length. In cases where a replacement scheme based on the output of
the SHAP values was used, we referred to it as the ‘selected’ treatment, where
specific tokens were selected based on their corresponding SHAP values. The
opposite of this is the randomized treatment, where the tokens to be masked
are randomly chosen. Additionally, the term ‘document’ is also sometimes
used and refers to a single statement from the input data.

For the correctness criterion, we conducted both the Model Parameter
Randomization Check and the Incremental Deletion test. Since an Incre-
mental Deletion Test is made up of multiple single deletions with di↵erent
variables, we do not report results for Single Deletion separately. Instead,
the results of the Incremental Deletion test can be considered as indicative
of the single deletion test.

5.2.1 Model Parameter Randomization Check

As a preliminary step, we perform the Model Parameter Randomization
Check as a ‘sanity check’. While Nauta et al. [100] recommend perform-
ing this check multiple times, we could only do so once per dataset due
to computational limitations. Nevertheless, the results showed a noticeable
di↵erence between the fine-tuned and the randomly initialized models, indi-
cating that the risk of coincidentally obtaining similar weights from random
re-initialization did not occur in our case.

During the implementation of this check, careful consideration was given
to which parameters should be randomized. Since our model is a fine-tuned
model of an already pretrained ‘bert-base-uncased’ model, there were several
options for randomization. For simplicity, we opted for a fully reinitialized
model, having the same architecture as both our fine-tuned and the ‘bert-
base-uncased’ model, but with weights are randomly initialized.
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Implementation. We employed the BertConfig
43 configuration class

to initialize the default model without pretrained weights. The
BertForSequenceClassification was instantiated using the empty config-
uration, as the default configuration corresponds to the ‘bert-base-uncased’
model architecture utilized for fine-tuning our models. Subsequently, the
randomized model was employed when loading the SHAP explainer and all
other steps remained consistent, including the use of the same 1,000 data
instances per dataset, as utilized for computing the original SHAP values.
The computations were performed using a NVIDIA A100-SXM4-40GB GPU
via Google Colab Pro, with run times comparable to the computation of the
SHAP values with 38 minutes and 17 seconds for the LIAR dataset, 57 min-
utes and 23 seconds for the Fake News dataset and one hour 15 minutes and
19 seconds for the IMDB dataset.

Results. In order to analyze the results, we first compare the text plots
of the SHAP values for one randomly chosen example per dataset of the
fine-tuned model and the corresponding example from both the fine-tuned
model and the corresponding example from the randomized model. Figure 8a
displays the results of the fine-tuned model for the LIAR dataset, while Fig-
ure 8b shows the results of the randomly initialized model. While, Figure 8
exhibits the most similarities in the proportions of positive and negative
values (represented by red and blue coloring), a closer examination reveals
distinct numeric values and highlighting. Similar comparisons are conducted
for the Fake News dataset in Figure 9, and the IMDB dataset in Figure 10.
These comparisons highlight a consistent pattern: there are clear distinctions
between the results produced by the fine-tuned models and the randomized
model. In essence, the local examples demonstrate clear di↵erences between
the two models for all datasets.

Next, we conduct a comparison at the global level, revealing substantial
di↵erences between the fine-tuned and randomized SHAP values. No single
word is in both the top tokens of the fine-tuned and randomized SHAP
values, as demonstrated in Figure 11, Figure 12, and Figure 13. In order to
quantitatively assess the di↵erence in SHAP values between the two models,
we calculated the Spearman Correlation Coe�cient as proposed by Liang et
al. [83]. The results were produced using the eval correlation

44 function
provided by Liang et al. in the GitHub repository for their paper. The results
are reported in Table 15, with both the absolute values and the original sign

43
https://huggingface.co/docs/transformers/model_doc/bert#transformers.

BertConfig

44
https://github.com/langlrsw/MEED/blob/master/imdb/eval_methods.py
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(a) SHAP values: fine-tuned model - LIAR dataset

(b) SHAP values: randomized model - LIAR dataset

Figure 8: SHAP values: fine-tuned vs. randomized model - LIAR dataset

(a) SHAP values: fine-tuned model - Fake News dataset

(b) SHAP values: randomized model - Fake News dataset

Figure 9: SHAP values: fine-tuned vs. randomized model - Fake News
dataset

values presented. Assuming that Liang et al. reported the results for the
absolute values, we obtained a similar result for the IMDB dataset with
12.16% compared to their reported value of 9.39%. Notably, IMDB dataset’s
Spearman Correlation Coe�cient is the highest among all datasets and both
treatments, with -11.86%, being a close second, which corresponds to the
value we report for the original values of the LIAR dataset. In summary,
these findings for the Model Parameter Randomization Check indicate that
the explanations are highly dependent on the model.
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(a) SHAP values: fine-tuned model - IMDB dataset

(b) SHAP values: randomized model - IMDB dataset

Figure 10: SHAP values: fine-tuned vs. randomized model - IMDB dataset

Fake News LIAR IMDB

Absolute Values -0.0063 0.0135 0.1216
Original Values -0.0126 -0.1186 0.0017

Table 15: Spearman Correlation Coe�cient for the Model Randomization
Test

52



(a) Global SHAP values: fine-tuned model - LIAR dataset

(b) Global SHAP values: randomized model - LIAR dataset

Figure 11: Global SHAP values: fine-tuned vs. randomized model - LIAR
dataset
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(a) Global SHAP values: fine-tuned model - Fake News dataset

(b) Global SHAP values: randomized model - Fake News dataset

Figure 12: Global SHAP values: fine-tuned vs. randomized model - Fake
News dataset
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(a) Global SHAP values: fine-tuned model - IMDB dataset

(b) Global SHAP values: randomized model - IMDB dataset

Figure 13: Global SHAP values: fine-tuned vs. randomized model - IMDB
dataset
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5.2.2 Incremental Deletion (or Incremental Addition)

In this evaluation, we conduct both an Incremental Deletion and an Incre-
mental Addition test. The Incremental Deletion involves masking tokens in
order of importance, starting with the most important tokens at a global level
and progressively removing less important tokens using the [PAD] token. On
the other hand, the Incremental Addition test consists of adding the globally
most important tokens to an empty string composed of [PAD] tokens until
all tokens are included. To measure the performance of these tests, we report
the Log-odds scores and Area over the Perturbation Curve (AOPC)metrics,
following the approach outlined by Chen et al. [27]. For detailed numerical
results, please refer to Appendix A.1.1 and A.1.2.

Implementation. To conduct the Incremental Deletion and Incremental
Addition tests, we first designed the ‘get global feature list’ function. This
function creates a global feature list containing all tokens in the dataset,
ordered based on the average SHAP values. The SHAP values are com-
puted for each token, representing their contributions to the model pre-
dictions. The global feature list facilitates understanding the relative im-
portance of tokens across the entire dataset. The SHAP package does not
o↵er a built-in functionality to generate global feature lists directly. How-
ever, for visualizations shap.plots.bar(shap values)

45 provides the same
results in graph form. Based on a suggestion from the SHAP GitHub
repository46, we implemented the ‘get global feature list’ function. The
replace global highest elements function is utilized to perform both the
Incremental Deletion and Incremental Addition tests. This function allows
us to replace either the top k% of features in the entire 1,000-sample dataset
(Incremental Deletion), or everything except the top k% of tokens (Incre-
mental Addition). Additionally, we also create datasets in which the same
amount of tokens are replaced as in the Incremental Deletion or Addition
test. However, instead of choosing the tokens based on the SHAP values, we
replace randomly selected tokens to establish a baseline for comparison.

The ‘replacement type’ variable in the ‘replace global highest elements’
function determines which test is executed. If ‘replacement type’ is set to
top, the Incremental Deletion test is performed, replacing the top k% of the
global features or a random sample of the same size from the ‘global features’
dataframe with the [PAD] token. On the other hand, if ‘replacement type’
is set to bottom, the Incremental Addition test is performed, replacing the
bottom 100-k% of the global features or a random sample of the same size

45which is equivalent to shap.plots.bar(shap values.abs.mean(0))

46
https://github.com/slundberg/shap/issues/632
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1 def neg_log_prob(modified_prob, original_prob, cls):

2 return np.log(modified_prob[cls] + 1e-6) - np.log(1 -

original_prob[cls] + 1e-6),!

Listing 2: Calculate the negative logarithmic probabilities

1 def AOPC(original_probs, modified_probs, cls):

2 return (original_probs[cls]-modified_probs[cls]).item()

Listing 3: Calculate the AOPC

with the [PAD] token. In order to measure the performance of these tests,
we report the average of the Log-odds score and the AOPC for each value
of k for each dataset. The softmax function is applied to the model outputs
to ensure their suitability for computation47. The Log-odds score and the
AOPC for each document in the 1,000 input data are computed. We used
the same implementation as Li et al.48 to compute the ‘lor selected’, see
Listing 2. Listing 3 shows our implementation of the AOPC.

Results. For the purpose of the Incremental Deletion and Addition test,
we examine the e↵ects of global token deletion and addition on the Log-odds
score and AOPC across varying values of k. These k values correspond to the
percentage of global tokens, ranging from 0% to 100% in increments of 10%.
In all figures, the solid lines represent the results of the selected treatment,
where tokens were masked in order of importance based on the SHAP values.
Conversely, the dashed and more transparent lines represent the results of
the random treatment, where tokens were masked randomly.

Incremental Deletion. The Log-odds scores and the AOPC scores
for the Incremental Deletion evaluation are depicted in Figures 14a
and 14b respectively. Both, the Fake News and the IMDB dataset
exhibit lower Log-odds scores and higher AOPC scores compared to
the randomized control, indicating better performance for the selected
treatment. However, in the Fake News dataset, at k values of 0.3 and
0.35, there is a slight deviation with a drop in the Log-odds score

47
https://github.com/icrto/xML/issues/1

48
https://github.com/Jianbo-Lab/LCShapley/blob/master/texts/utils.py
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and a spike in the AOPC in the random control. We speculate that
this anomaly may be due to random chance, leading to the selection
of important tokens. Overall, the results demonstrate the expected
behavior with convergence of selected and the randomized results at k
value of 0.6 for the Fake News dataset and at 0.9 for the IMDB dataset.
The di↵erence in converge points may be attributed to the average
token length disparity between the datasets, impacting classification.

For the LIAR dataset, the results do not entirely follow the ex-
pected trends. The random control exhibits lower Log-odds scores for
k values below 0.25, and both selected and randomized results show
similar scores at k values of 0.3 and 0.35. However, beyond this point,
the Log-odds and AOPC scores align with the expected behavior of
lower Log-odds scores and higher AOPC scores for the selected treat-
ment compared to the randomized control. Notably, the selected and
randomized values converge at a k value of 0.65. We suspect that
the unusual behavior observed in the LIAR dataset is a result of the
low accuracy score of the underlying model. This, in turn, impacts
the quality of the explanations and, consequently, the behavior in this
evaluation.
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(a) Log-odds Score for Incremental Deletion for all three datasets

(b) AOPC for Incremental Deletion for all three datasets

Figure 14: Results for Incremental Deletion for all three datasets
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Incremental Addition. The results of the ‘Incremental Addition’
test are shown in Figures 15a and 15b for the Log-odds scores and
AOPC, respectively. In this test, tokens are incrementally added to
the dataset, requiring a di↵erent interpretation of results. Smaller
AOPC values indicate that the addition of less relevant tokens has a
less impact on the model’s prediction, making the expected outcome.
Similarly, higher Log-odds scores are considered more desirable.

The results of the Incremental Addition Test exhibit similarities to
the Incremental Deletion test, albeit in reverse order. For the IMDB
dataset, the selected treatment shows a rapid increase in Log-odds
scores and a corresponding decrease in AOPC, while the randomized
treatment maintains higher AOPC scores and lower Log-odds scores
throughout all k values. The Fake News dataset, shows unstable be-
havior in the random treatment, with fluctuations starting at a k value
of 0.5 and continuing to the end. This behavior may be due to the
freshly randomized sampling of tokens for each k value, resulting in
varying proportions of significant or insignificant tokens. The selected
treatment in the Fake News dataset displays a more stable incline/de-
cline, with a notable increase/decrease at the k value of 0.7. At k
values of 0.5 and 0.6, the selected treatment’s Log-odds and AOPC
scores outperform the randomized treatment, corresponding to the
first significant spike observed in the randomized treatment. In the
LIAR dataset, both AOPC and Log-odds are similar up to a k value
of 0.3, after which they develop as expected, with higher Log-odds
scores of the selected treatment and lower AOPC scores. The treat-
ments then switch positions at a k value of 0.9 until k reaches 1.

Overall, the results of the Incremental Deletion and Incremental Addition
tests are as expected, the deletions/additions based on SHAP values have
higher impact on the metrics as compared to the random deletions/additions,
with noted and discussed exceptions for the LIAR dataset and some random
behavior in the Fake News dataset.
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(a) Log-odds Score for Incremental Addition for all three datasets

(b) AOPC for Incremental Addition for all three datasets

Figure 15: Results for Incremental Addition for all three datasets
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5.2.3 Preservation and Deletion Check

The Preservation and Deletion Check presents a di↵erent approach to eval-
uating token importance, it evaluates the output completeness criterion of
the Co-12 properties, which evaluates how much of a model’s behavior is ex-
plained by the explainability method. It focuses on local importance within
individual documents rather than global importance across the entire dataset,
as seen in the Incremental Deletion/Addition test. This evaluation method
involves deleting tokens from each document in the dataset in order of their
importance, as determined by SHAP. The results of the Preservation and
Deletion Check are reported using two evaluation metrics: The first metric,
referred to as the ‘acc-reduced’ by Luo et al. [89], and referred to as ‘post-hoc
accuracy’ by Chen et al. [28], measures the accuracy of the model after the
input is altered. In this thesis, we adopt the terminology used by Luo et
al. and refer to it as ‘acc-reduced’. The second metric assesses whether the
alteration of the input data leads to a di↵erent classification by the model.
Yuan et al. [151] refer to this metric as ‘matching rate’, while Liang et al. [83]
term it ‘consistency’. For clarity and intuitiveness, we refer to it as ‘label
flip’, as used by Flores and Hao [49], which is also similar to Serrano and
Smith’s [121] term ‘decision flip’. For detailed numerical results, please refer
to Appendix A.1.3 and A.1.4.

Implementation. The implementation of the Preservation and Dele-
tion Check is based on the version provided by Chen et al. [28] 49 of
these evaluations. For the Deletion Check, we created a function called
replace k highest elements, responsible for replacing k tokens with the
[PAD] token. The ‘replacement type’ can be set to top to replace the k ab-
solute highest SHAP values, thereby performing the Deletion Check. Alter-
natively, for the Preservation Check, the ‘replacement type’ is set to bottom

replacing everything except the k absolute highest SHAP value tokens. Addi-
tionally, as a benchmark, we also replace k tokens randomly. After perturbing
the data as specified above, the data is transformed, encoded, and fed back to
the model for classification. We then compared the resulting classification of
the perturbed data with the ground truth labels to calculate the ‘acc-reduced’
metric. Moreover, the comparison between the model’s classification of the
perturbed data and the original model’s results yields the ‘label flip’ metric.

Results. To evaluate the Preservation and Deletion Check, we examine the
e↵ects of token deletion and addition on the model’s accuracy and change

49
https://github.com/Jianbo-Lab/L2X/tree/master/imdb-sent
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in label prediction for varying values of k. For the LIAR and Fake News
datasets, we performed the Deletion and Preservation Check with k values
ranging from zero to 14 in one-token increments. As the IMDB dataset
has significantly longer documents, we chose a di↵erent range of k values,
deleting zero to 140 tokens in 10-token increments to ensure a comparable
perturbation, see Table 6.

Deletion Check. The Deletion Check’s expected behavior suggests
that the acc-reduced scores will decrease more rapidly for tokens
deleted based on importance SHAP values than randomly deleted to-
kens. Similarly, labels would flip sooner for inputs altered based on
token importance compared to random alterations. For k=0 so no
tokens having been changed, the flip rate is 1 indicating that no label
has flipped.

The obtained results, as shown in Figure 16a for acc-reduced and
Figure 16b for label flip, align with expected behavior. Each dataset
has di↵erent starting points, which are the accuracy scores of the
original model. The LIAR dataset has a poor original model accuracy
of 0.56, the Fake News dataset has an accuracy score of 0.98, and the
IMDB dataset one of 0.88, see Table 8 for detailed accuracy scores.

For the LIAR dataset, no significant di↵erence is observed between
the results based on the SHAP values and the ones based on random
replacement, for k values one to three. For k values four to seven, the
acc-reduced scores of random replacement are higher than the SHAP-
based ones, as expected. The values become similar again for k values
eight and nine, and once more, random replacement outperforms se-
lected treatment for k 10 to 14.

For the Fake News and IMDB datasets, the acc-reduced scores
clearly di↵erentiate between random replacement and the selected
treatment, consistent with the expected behavior. The di↵erence in
scores is more significant for the IMDB dataset compared to the Fake
News dataset.

The label flip metric follows the expected behavior for all datasets,
see Figure 16b, even for the LIAR dataset, where acc-reduced did not
exhibit the expected trend. This might imply that the label flip metric
is more informative when accuracy is low, making it a better metric in
such cases. This finding suggests that SHAP can provide meaningful
explanations even for models with poor accuracy.
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(a) Acc-reduced for Deletion Check for all three datasets

(b) Label Flip for Deletion Check for all three datasets

Figure 16: Results for Deletion Check for all three datasets
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Preservation Check. Results for the Preservation Check need to
be interpreted oppositely to the Deletion Check, as the evaluation
adds the most important tokens incrementally to an otherwise empty
input filled with [PAD] tokens.

The Preservation Check, see Figures 17a and 17b exhibits specific
characteristics, resulting in a rapid increase in ‘acc-reduced’ scores for
the IMDB dataset with selected features, compared to the datasets
classifying fake news. This di↵erence might be due to sentiment anal-
ysis’s reliance on a few tokens to determine sentiment, while fake news
classification may require more tokens for classification. Additionally,
the 10-token increments used for the IMDB dataset could have a more
substantial impact on the Preservation Check results.

Apart from the bigger di↵erence between the random and the se-
lected treatments for the IMDB dataset for both acc-reduced and label
flip metrics, the results for the Preservation Check are similar to the
Deletion Check. For the Fake News dataset, a clear di↵erence between
the random and selected treatment emerges starting at five tokens.
For the LIAR dataset, the acc-reduced scores are similar between the
random and the selected treatment, but for the label flip metric show
a di↵erence between, with the values closest for nine tokens.

Overall, the results of the Deletion and Preservation Check align with the
expected behavior, indicating that the explanations are output complete.
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(a) Acc-reduced for Preservation Check for all three datasets

(b) Label Flip for Preservation Check for all three datasets

Figure 17: Results for Preservation Check for all three datasets
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5.2.4 Stability for Slight Variations

The Stability for Slight Variations evaluation addresses the robustness of the
explanations by comparing the similarity of explanations between the origi-
nal and a slightly altered sample. None of the papers categorized by Nauta
et al. [100] evaluate Stability for Slight Variations of a text classification
task, Liang et al. [83] do not report their sensitivity (SEN) metric for their
text data evaluation and Camburu et al. [23] evaluate natural language ex-
planations. However, a study conducted by Naylor et al. [101] addresses this
gap with their methodology, available on their GitHub repository50. Naylor
et al. evaluated SHAP and LIME on traditional models such as Logistic Re-
gression, Random Forest, Explainable Boosting Machine. However, for the
transformer-based method Bigbird [153], they chose di↵erent explainability
methods - IntegratedGradients [133] and Saliency [125] - because of SHAP’s
and LIME’s lower quality explanations for deep learning models [8].

For calculating the ‘local Lipschitz values’ function that provides the nor-
malized di↵erence between the SHAP values of the original and the perturbed
input divided by the Euclidean distance of the original and perturbed em-
beddings normalized by the document length.

Implementation. To perform token perturbations, we initially attempted
to use the replacement algorithm introduced by Naylor et al. [101], which
employs a text perturbation method that replaces the token through next
neighbor sampling. However, this method frequently resulted in replacing
tokens with [unusedxxx] BERT tokens. The [unusedxxx]51 tokens are tokens
designed to be replaced with domain specific words when doing further pre-
training or fine-tuning and are otherwise randomly initialized, indicating an
issue with the replacement procedure. We opted to utilize the TextAttack
Python Package52 Token Replacement Schema. Specifically, we employed the
Word Swap by BERT-Masked LM

53 transformation, which generates possible
word replacements for a MLM. As the method for the word swap we chose
‘bert-attack’ which is TextAttack’s implementation of the data augmentation
technique introduced by Li et al. in their paper ‘BERT-ATTACK: Adver-
sarial Attack Against BERT Using BERT’ [82]. For single-token words, the
MLM, in this case, our fine-tuned BERT model, provides a replacement to-

50
https://github.com/mnaylor5/quantifying-explainability

51
https://stackoverflow.com/questions/62452271/understanding-bert-vocab-

unusedxxx-tokens

52
https://github.com/QData/TextAttack

53
https://textattack.readthedocs.io/en/latest/apidoc/textattack.

transformations.word_swaps.html#word-swap-by-bert-masked-lm
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ken. For multi-token words, the replacement is more di�cult, since not all
combinations of the sub-word tokens would make sense. The top-k possi-
ble replacements, all possible combinations of sub-words, are ranked based
on the perplexity measure from the MLMl. The RepeatModification()

54

constraint was set to prevent repeated modifications on words. Following
Naylor et al., we set the percentage of words to be swapped at 10% of the to-
kens per sample and used ‘high yield’ and ‘fast augment’ for computational
e�ciency. The ‘transformations per example’ was set to 100, with samples
being skipped if perturbations were not created within four minutes.

For the IMDB dataset, no perturbed texts could be created even when
setting the ‘transformations per example’ to 30 and the length of time before
skipping to the next document to up to 20 minutes led to no perturbed texts
at all. We assume the reason for this failure is due to the much higher
token length per document. Therefore, we only report results for the other
two datasets. Before calculating the local Lipschitz values, we check if our
perturbed texts include 15 instances with a Euclidean distance between the
embedding matrices of less than 0.75. We adjusted the EPSILON values,
representing the L-infinity ball’s radius, from 0.25 (the value employed by
Naylor et al. [101]) to 0.75. We arrived at this change after some trial
and error because we couldn’t find any perturbed texts with distances small
enough at the original 0.25 value. Consequently, we only use documents with
at least 15 perturbed texts having a radius of less than 0.75 to compute the
local Lipschitz values. We use the function local lipschitz provided in
Naylor et al.’s repository to calculate the local Lipschitz values. It takes the
di↵erence of the SHAP values of the original and the perturbed texts and
divides it with the Euclidean distance.

Results. Unfortunately, perturbed texts could not be generated for the
IMDB dataset, even with adjustments in the ‘transformations per example’.
Thus, we only report results for the LIAR and Fake News datasets. Addition-
ally, we set the epsilon value from 0.25, which is the value that Naylor et al.
used, to 0.75 because we did not get any perturbed texts for which the dis-
tances were small enough. The local Lipschitz values for both datasets were
calculated using the local lipschitz function, provided in Naylor et al.’s
repository. Specifically, for the LIAR dataset, the maximum local Lipschitz
value is 4.8080, whereas for the Fake News dataset, it amounts to 0.7237,
as illustrated in Table 16. Figures 18 and 19 display the local Lipschitz val-
ues in boxplot format for both datasets. For a figure showing both boxplots

54
https://textattack.readthedocs.io/en/latest/apidoc/textattack.

constraints.pre_transformation.html#repeat-modification

68



Fake News LIAR

Maximum Local
Lipschitz

4.8080 0.7237

Table 16: Maximum Local Lipschitz values for the Stability for Slight
Variation Test

Figure 18: Results for the Stability for Slight Variation for the LIAR
dataset

at the same scale, please refer to Appendix A.2 Figure 20. For the LIAR
dataset, there are several outliers with values between 4.8 and 2, while the
majority of values are closer to zero to two. The Fake News dataset shows
similar results but on a smaller scale, with outliers between 0.72 and 0.54,
and the majority of values ranging from 0.53 to 0.1. Comparing these results
with Naylor et al.’s findings for traditional machine learning models (rang-
ing from 0.1 to 2.1) and transformer-based models (maximum local Lipschitz
values of 21 and 32), our results (0.1 to 4.8) appear promising. However, it
is essential to consider the di↵erences in radius used, and potential selection
bias introduced by the perturbation method’s limitations. In summary, the
Stability for Slight Variations evaluation demonstrates promising results for
both datasets, indicating a degree of robustness in the explanations provided
by our approach.

69



Figure 19: Results for the Stability for Slight Variation for the Fake News
dataset

5.2.5 Summary of Results

This section provides an overview of the results of the previous section, specif-
ically Table 17 shows a summary of the results presented in the previous
sections.

For the Model Parameter Randomization Check, the Spearman Correla-
tion Coe�cients indicate that the explanations are highly dependent on the
model.

In terms of the Incremental Deletion and Incremental Addition tests, we
present the results for k=0.2, a value commonly used in the literature [27, 29].
It is worth noting that we are only presenting the result of one increment,
this would, strictly speaking, be considered preforming the Single Deletion
test. For the complete results, refer to Sections 5.2.2 and A.1. Overall,
the results of the Incremental Deletion and Incremental Addition tests align
with expectations. Deletions and additions based on SHAP values have a
higher impact on the metrics compared to random deletions and additions,
indicating the correctness of SHAP’s outputs. It is important to note, that
there were exceptions observed for the LIAR dataset, as well as some random
behavior in the Fake News dataset. Notably, for k=0.2, the Incremental
Deletion test showed the expected behavior, with the Fake News and IMDB
datasets exhibiting higher AOPC values and lower log-odds scores compared
to the random control, while the LIAR dataset did not follow the expected
behavior consistently. The Incremental Addition test results are numerically

70



closer, but they still follow the expected behavior of lower AOPC values
and higher log-odds scores. In this case, the LIAR dataset also follows the
expected behavior.

For the Deletion and Preservation Check, we present the results for k=10
for the LIAR and Fake News datasets and k=100 for the IMDB dataset, as
k=10 is commonly used in the literature [28, 89, 83]. We discussed the reasons
for the di↵erent k value for the IMDB dataset in Section 5.2.3. Overall, the
results of the Deletion and Preservation Check align with the expected behav-
ior, indicating that the explanations are output-complete. For the Deletion
Check, the accuracy scores are lower for the selected treatment compared
to the randomly perturbed control, as expected. This finding suggests that
the tokens identified by SHAP have more significant impact on the accuracy
as compared to randomly selected ones. The flip rate also follows expected
behavior, with higher values for the random treatment, indicating that the
selected treatment has a higher impact on the change in labels than the ran-
dom treatment. Regarding the Preservation Check, we mostly observed the
expected behavior, with higher acc-reduced and flip rate scores, except for
the randomized control for the LIAR dataset, which showed a higher accu-
racy reduction than the selected treatment. As discussed, see Section 5.2.3,
we assume this is due to the overall low accuracy rate for the LIAR dataset.

Due to implementation limitations, we only report the results for the Sta-
bility for Slight Variations evaluation for the LIAR and Fake News dataset.
These results indicate a degree of robustness in the explanations, meaning
slight changes in the input data do not lead to big changes in the model’s
predictions.

71



Evaluation Category Metric LIAR Fake News IMDB

Model Parameter absolute -0.0063 0.0135 0.1216
Randomization Check original -0.0126 -0.1186 0.0017

Incremental Deletion

AOPC 0.16469 0.40587 0.28863
AOPC rand 0.24356 0.16970 0.09627
log-odds -1.86845 -8.10128 -4.60414
log-odds rand -2.91056 -3.25118 -1.48369

Incremental Addition

AOPC 0.49440 0.43110 0.23720
AOPC rand 0.50440 0.49943 0.45535
log-odds -6.56619 -8.70773 -4.18947
log-odds rand -6.71837 -10.0963 -6.70994

Deletion Check

acc-red 0.514 0.512 0.579
acc-red rand 0.537 0.532 0.682
flip 0.493 0.506 0.581
flip rand 0.528 0.526 0.694

Preservation Check

acc-red 0.548 0.599 0.835
acc-red rand 0.552 0.575 0.675
flip 0.585 0.595 0.876
flip rand 0.541 0.569 0.683

Stability for max local
4.808 0.7237 -

Slight Variation Lipschitz

Table 17: Overview of the results of the evaluations
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6 Conclusion

In this chapter, we give a short summary of the work we conducted, restate,
and answer our main research question: “How can we e↵ectively evaluate
the suitability of SHAP for interpreting text data, particularly in the context
of fake news detection using BERT, with a focus on assessing correctness,
output completeness, and continuity?” as well as our sub-questions, discuss
the limitations of our thesis and explore possible directions for future work.

6.1 Summary and Findings

In order to achieve our research objectives, we began by introducing the field
of XAI. First, we define the intended audience, list some of the purposes
XAI aims to achieve, clarify the terminology associated with explainability
and present the specific definition of explainability used within this thesis.
Subsequently, we present a taxonomy designed to categorize XAI methods
and apply it to 23 notable explainability methods. Following this, we provide
a theoretical overview of our fake news detection model, based on BERT
and introduce the datasets we utilized. Furthermore, we provide a short
background on SHAP our chosen explainability method and apply it to our
fake news detection model.

We provided an overview of evaluation methods for assessing correct-
ness, output completeness and continuity relevant to text data, referencing
the original papers and authors. We also indicated, the type of evaluation,
whether there is a GitHub repository available, whether SHAP or LIME had
been evaluated using these methods, along with the datasets and text data
tasks used. Additionally, we describe each evaluation category and evalua-
tion test and list what the evaluations exactly entail. This provides a simple
way to get an overview of the available evaluation methods and answers the
question of how to e↵ectively evaluate the suitability of XAI methods on text
data.

In order to answer sub-question one (SQ1): “To what extent does SHAP
demonstrate correctness, align with the original model’s behavior in terms of
faithfulness, when applied to BERT’s fake news detection?” we performed the
Model Parameter Check, which serves as a sanity check for the findings. The
visualizations and the Spearman Correlation Coe�cients collectively indicate
a strong reliance on the model for the provided explanations. Furthermore,
the results from the Incremental Deletion and Incremental Addition Tests,
another evaluation we conducted to assess the correctness criterion, align
with our expectations. In comparison to the random changes, the modifica-
tions made based on the SHAP values show a greater impact on the metrics,
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confirming the reliability of SHAP’s outputs. However, it’s essential to note
that there were some exceptions observed for the LIAR dataset, and instances
of random behavior were noted within the Fake News dataset.

Sub-question two (SQ2) which asks: “How does SHAP perform in terms
of output completeness, providing su�cient information to explain the output
of the model when explaining fake news detection by BERT?” was addressed
by conducting the Deletion and Preservation Check. Overall, the results
of the Deletion and Preservation Check are consistent with the expected
behavior, suggesting that the explanations provided by SHAP are indeed
output complete. The deletions and preservations conducted based on SHAP
values show a more pronounced e↵ect as compared to the randomly created
alterations.

The final sub-question three (SQ3) with the following text: “How well
does SHAP demonstrate continuity, indicating the generalizability of its find-
ings, for BERT’s fake news detection?” was answered through the execution
of the Stability for Slight Variation test. It is important to note that, due to
certain implementation limitations, we are exclusively presenting the results
for the Stability for Slight Variations evaluation for the LIAR and Fake News
datasets. The results collectively imply that the explanations generated by
SHAP maintain a certain level of stability and consistency, even when sub-
jected to minor variations in the input data. Essentially, this indicates that
slight changes in the input data do not result in significant alterations in the
model’s predictions, highlighting the generalizability of SHAP’s findings for
BERT’s fake news detection.

In summary, the analysis conducted on fake news datasets shows that
SHAP satisfies the three selected Co-12 properties proposed by Nauta et
al. [100]: correctness, output completeness, and continuity for the conducted
evaluations. However, certain limitations were identified, especially when
dealing with black box models that exhibit relatively low accuracy, as ob-
served with the LIAR dataset.

6.2 Limitations

As with any research project, this thesis has several limitations that warrant
careful consideration.
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Scope Limitations. Firstly, the scope of a master thesis inherently im-
poses limitations on the depth and breadth of the study. Notably, we focused
on examining only one black box model, BERT, which has a strict limit on the
length of input text. This choice might not fully capture the interpretability
challenges posed by more complex models like BigBird [153], which accom-
modate longer input sequences. Additionally, the black box model used for
the LIAR dataset exhibited a relatively low accuracy rate of 0.56, potentially
a↵ecting the explainability of the results (Table 8). We were also limited in
the number of evaluation methods we could implement, leading us to focus
on only three Cs of the Co-12. Ideally, a comprehensive evaluation would en-
compass all 12 criteria or, at the very least, include all criteria related to the
content part of the Co-12, including consistency, contrastivity, and covariant
complexity [100].

Dataset Limitations. Another limitation lies in the selection of datasets.
Broadly speaking, the classification of fake news and, consequently, the de-
velopment of datasets for fake news classification proves to be di�cult and,
to a degree, subjective. The choice of well-known and high-quality datasets
is, therefore, important. While the LIAR dataset is widely recognized and
satisfies nine out of ten criteria listed by D’Ulizia et al. [44], the Kaggle
Fake News dataset is less established. In addition, the use of a dataset which
not only includes the titles, such as the LIAR and Fake News dataset, but
also the whole text of the (fake) news articles, alongside any pictures, would
be a more realistic representation. In connection to this change in dataset,
a black box model that accepts longer and mixed data type input, such as
BigBird [153], as previously mentioned, would be necessary. Additionally,
the choice of not only including two fake news datasets, but also the IMDB
dataset which is a sentiment detection dataset, might lead to some confusion
to the reader and the inadvertent comparison between two unrelated classi-
fication tasks. While this choice was motivated by the intention to facilitate
the comparison of the results of this work with previous works in the realm
of XAI evaluation, we acknowledge that is can create some confusion.

XAI Limitations. Regarding the choice of XAI method, we only evalu-
ated one method, SHAP. Although it is a popular method and frequently
cited in the literature (i.e. it was mentioned in eleven out of 15 surveys we
investigated, see Table 1), it has some shortcomings, particularly for Deep
Neural Networks like BERT. This limitation is evident in Naylor et al.’s [101]
decision not to evaluate SHAP on transformer-based explainability methods.

75



Computational Limitations. Computational constraints further limited
our ability to explore the full potential of some evaluation methods. For
instance, we could only explain 1000 instances per dataset due to computa-
tional limitations, and a larger sample size might have yielded more robust
results. This limitation also stopped us from performing the Model Param-
eter Randomization Check multiple times as recommended. The limited
resources also prevented us from performing evaluations that required re-
training the model, such as the methods proposed by Han et al. [61] and
Cheng et al. [31]. Moreover, we could not perform certain evaluations, like
Luo et al.’s [89] preservation check over 50 rounds to plot average trends, or
create an approximator as Liang et al. [83] did, for comparison purposes.

Suitability Limitations. Furthermore, certain evaluation methods were
omitted due to unavailable resources or incompatibility with our approach.
For instance, the Explanation Randomization Check [94, 127] and the White
Box Check [32, 70, 159] were not implemented as they required explanations
built into the model and a white box model, respectively. Similarly, the
Controlled Synthetic Data Check [5, 52, 68, 81, 103, 109] was omitted, as it
exceeded the scope of this thesis to create a synthetic text dataset. The Pre-
dictive Performance method [30, 32, 114, 155] from the output completeness
group was dropped because we do not have a white box model or predictive
explanations. In the continuity evaluation methods, we did not include the
evaluation of Fidelity to Slight Variations [78, 108], as our focus was not on
evaluating a decision rule or a white box model. Additionally, the Connect-
edness [147, 80, 105] measure was left out of the analysis due to the absence
of a counterfactual explanation model.

Implementation Limitations. In the Preservation Check, we only cal-
culated the decision flip and not the Jensen-Shannon divergence, which was
performed by Serrano and Smith [121]. Moreover, we did not compute the
comprehensiveness and su�ciency scores, as noted by Kumar and Taluk-
dar [76] based on DeYoung [36] (based on Yu [150]), as it would have exceeded
the scope of this thesis. Furthermore, investigating di↵erent replacement op-
tions for tokens other than the [PAD] token could have been valuable to
assess the impact of the choice of replacement token on evaluation results or
whether simply deleting the tokens would yield better outcomes.

In the Deletion Check [28, 76, 83, 89], the values and increment steps for
k could have been chosen di↵erently. While we selected di↵erent values for
k based on the higher token count in the IMDB dataset, making the results
comparable, it is not ideal to compare results for two di↵erent k values.
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In conclusion, this thesis has identified several limitations that should be
carefully considered when interpreting the results. In order to build upon
this work and address these constraints, the next section discusses possible
directions of future research.

6.3 Future Work

Moving forward, future research in XAI should build upon the identified
limitations and explore various avenues to enhance the understanding and
application of XAI methods. By addressing these aspects, we can pave the
way for more interpretable and trustworthy AI systems. In order to advance
the field of XAI evaluation, it is essential to assess multiple datasets from
various application areas with di↵erent objectives. Moreover, evaluating mul-
tiple models and explainability methods will provide a more comprehensive
understanding of their strengths and weaknesses. A promising direction is
the creation of an evaluation framework that systematically assesses XAI
methods based on the Co-12 criteria. Such a standardized framework would
enable researchers to compare and select the most suitable XAI method for
their specific tasks, thereby achieving optimal explainability. Quantus, an
evaluation framework for neural network explanations introduced by Hed-
ström et al. [62], takes a significant step towards fulfilling this goal. It
allows for evaluation across various data types and provides a range of eval-
uation metrics, including faithfulness, robustness, localization, complexity,
and randomization, or axiomatic metrics. NLP evaluations are in develop-
ment for future versions of Quantus, but are as of the writing of this thesis
not yet available. Such benchmarking and evaluation tools should be widely
adopted to establish a standardized practice for introducing and comparing
XAI methods.

While functional evaluations using proxy tasks are crucial initial steps,
future research should go beyond and consider human-grounded and
application-grounded evaluation approaches, as proposed by Doshi-Velez and
Kim [41]. Involving real humans in simplified or real tasks can provide valu-
able insights into the practicality and usefulness of XAI methods in real-
world scenarios. For instance, understanding how XAI methods impact the
decision-making process of human when detecting fake news can be a com-
pelling avenue to explore. In summary, future work in XAI should encompass
diverse datasets, multiple models, and various evaluation frameworks to fos-
ter the development of reliable and applicable XAI techniques. By addressing
the identified limitations and embracing a multi-faceted evaluation approach,
we can move towards more interpretable and trustworthy AI systems.
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[47] Kevin Fauvel, Véronique Masson, and Elisa Fromont. A performance-
explainability framework to benchmark machine learning methods:
application to multivariate time series classifiers. arXiv preprint
arXiv:2005.14501, 2020.

[48] Rubén R Fernández, Isaac Mart́ın De Diego, Vı́ctor Aceña, Alberto
Fernández-Isabel, and Javier M Moguerza. Random forest explainabil-
ity using counterfactual sets. Information Fusion, 63:196–207, 2020.

82



[49] Lorenzo Jaime Yu Flores and Yiding Hao. An adversarial benchmark
for fake news detection models. In The AAAI-22 Workshop on Adver-
sarial Machine Learning and Beyond, 2022.

[50] Jerome H Friedman. Greedy function approximation: a gradient boost-
ing machine. Annals of statistics, pages 1189–1232, 2001.

[51] Jerome H Friedman and Bogdan E Popescu. Predictive learning via
rule ensembles. The annals of applied statistics, pages 916–954, 2008.

[52] Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley
values: incorporating causal knowledge into model-agnostic explain-
ability. Advances in Neural Information Processing Systems, 33:1229–
1239, 2020.

[53] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael
Specter, and Lalana Kagal. Explaining explanations: An overview of
interpretability of machine learning. In 2018 IEEE 5th International
Conference on data science and advanced analytics (DSAA), pages 80–
89. IEEE, 2018.

[54] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peek-
ing inside the black box: Visualizing statistical learning with plots
of individual conditional expectation. Journal of Computational and
Graphical Statistics, 24(1):44–65, 2015.

[55] Yash Goyal, Amir Feder, Uri Shalit, and Been Kim. Explain-
ing classifiers with causal concept e↵ect (cace). arXiv preprint
arXiv:1907.07165, 2019.

[56] Donald P Green and Holger L Kern. Modeling heterogeneous treat-
ment e↵ects in large-scale experiments using bayesian additive regres-
sion trees. In The annual summer meeting of the society of political
methodology, pages 100–110, 2010.

[57] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi,
Franco Turini, and Fosca Giannotti. Local rule-based explanations of
black box decision systems. arXiv preprint arXiv:1805.10820, 2018.

[58] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini,
Fosca Giannotti, and Dino Pedreschi. A survey of methods for explain-
ing black box models. ACM computing surveys (CSUR), 51(5):1–42,
2018.

83



[59] David Gunning and David Aha. Darpa’s explainable artificial intelli-
gence (xai) program. AI magazine, 40(2):44–58, 2019.

[60] Umm-E Habiba, Justus Bogner, and Stefan Wagner. Can require-
ments engineering support explainable artificial intelligence? towards
a user-centric approach for explainability requirements. In 2022 IEEE
30th International Requirements Engineering Conference Workshops
(REW), pages 162–165. IEEE, 2022.

[61] Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov. Explaining
black box predictions and unveiling data artifacts through influence
functions. arXiv preprint arXiv:2005.06676, 2020.

[62] Anna Hedström, Leander Weber, Daniel Krakowczyk, Dilyara Bareeva,
Franz Motzkus, Wojciech Samek, Sebastian Lapuschkin, and Marina
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A Appendix Implementation

A.1 Additional Data

A.1.1 Incremental Deletion
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k selected random
log-odds AOPC log-odds AOPC

0.0 -0.00392612 0.00002936 -0.00392612 0.00002936
0.05 -0.38184656 0.03474851 -0.38113147 0.04160373
0.10 -0.71909668 0.06784426 -1.22568188 0.12816179
0.15 -1.37464343 0.12209127 -1.91875781 0.18084680
0.20 -1.86844653 0.16469155 -2.91055615 0.24356367
0.25 -2.76645361 0.23355931 -3.33437085 0.27545204
0.30 -4.00546216 0.32518498 -3.60013647 0.29890098
0.35 -5.01510889 0.39570039 -5.17522217 0.40593384
0.40 -5.92034424 0.46159685 -4.83987842 0.38507960
0.45 -6.32884766 0.48154449 -6.07063037 0.46200573
0.50 -6.43659766 0.49377825 -5.67181445 0.43262911
0.55 -6.59184863 0.50036948 -6.49045166 0.49143379
0.60 -6.62948486 0.50246265 -6.30734375 0.47956479
0.65 -6.66912598 0.50356588 -6.58052100 0.49730723
0.70 -6.66120850 0.50340183 -6.63290527 0.49898166
0.75 -6.66051123 0.50351593 -6.61929590 0.50056069
0.80 -6.68966943 0.50547725 -6.72957617 0.50481270
0.85 -6.69789111 0.50622098 -6.72217334 0.50514642
0.90 -6.70391797 0.50540638 -6.74807129 0.50780969
0.95 -6.69646338 0.50537874 -6.73931543 0.50785232
1.00 -6.72904834 0.50541636 -6.72904834 0.50541636

Table 18: Data from Incremental Deletion for LIAR dataset
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k selected random
log-odds AOPC log-odds AOPC

0.0 -0.00011695 0 -0.00011695 0
0.05 -2.59317603 0.12298645 -0.08601118 0.00403207
0.1 -2.90963062 0.13883336 -1.37482593 0.06735068
0.15 -3.28298096 0.15628299 -0.5896723 0.03872784
0.2 -8.10128271 0.40587032 -3.25117822 0.16969807
0.25 -8.25443652 0.40983014 -2.60413599 0.1404355
0.30 -8.87174023 0.44495834 -9.73171387 0.48557283
0.35 -9.09339258 0.45485212 -9.77090234 0.48472909
0.4 -9.40825098 0.47215044 -4.28186182 0.20971341
0.45 -9.8574873 0.49216706 -5.22720996 0.27417812
0.5 -9.95612988 0.4963744 -8.3664834 0.43014187
0.55 -10.02598242 0.49939972 -9.90566895 0.49379274
0.60 -10.06341113 0.49942831 -10.12072363 0.49943232
0.65 -10.07434961 0.4994307 -10.06013574 0.49942808
0.70 -10.08742969 0.49943114 -10.08327344 0.49843298
0.75 -10.10134863 0.49943171 -10.10318652 0.49942996
0.8 -10.1079668 0.49943195 -10.13158008 0.4994327
0.85 -10.1145957 0.49943221 -10.17019727 0.49943397
0.9 -10.11984961 0.49943244 -10.11674609 0.4994323
0.95 -10.12298633 0.49943256 -10.11262109 0.49943216
1.0 -10.13699121 0.49943312 -10.13699121 0.49943312

Table 19: Data from Incremental Deletion for Fake News dataset
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k selected random
log-odds AOPC log-odds AOPC

0.0 0.00000016 0 0.00000016 0
0.05 -1.21153247 0.07751493 -0.24892204 0.0184306
0.1 -2.27622827 0.1319528 -0.4815405 0.04372915
0.15 -3.52476465 0.21843115 -0.88011719 0.06575675
0.2 -4.60413574 0.28863297 -1.48369006 0.09627091
0.25 -5.96924512 0.41308942 -1.17333765 0.07767533
0.30 -6.52472998 0.45286035 -1.70680994 0.11296995
0.35 -6.78939453 0.46613326 -3.39323364 0.21926708
0.4 -6.91854004 0.46950745 -3.97044092 0.25257533
0.45 -6.9839668 0.47391463 -4.91249316 0.30751829
0.5 -7.01066162 0.47445619 -4.90115137 0.33726841
0.55 -7.01675439 0.47458008 -5.68863721 0.39342666
0.60 -7.0384707 0.47518192 -6.07084863 0.41282088
0.65 -7.04859961 0.47538576 -5.88862109 0.4076257
0.70 -7.04692725 0.47525054 -6.17170605 0.42394694
0.75 -7.04653857 0.47538795 -6.34142676 0.43617425
0.8 -7.04658838 0.47544286 -6.68873193 0.45963706
0.85 -7.04331592 0.47520218 -6.69846582 0.45752609
0.9 -7.04551123 0.47529746 -6.91135596 0.47201402
0.95 -7.04116016 0.4751471 -6.99322998 0.4735903
1.0 -7.03997119 0.47511425 -7.03997119 0.47511425

Table 20: Data from Incremental Deletion for IMDB dataset
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k selected random
log-odds AOPC log-odds AOPC

0.0 -6.72904834 0.50541636 -6.72904834 0.50541636
0.05 -6.74285693 0.5054566 -6.73333447 0.5062301
0.10 -6.74552344 0.50461021 -6.71044092 0.50441691
0.15 -6.68350146 0.50152783 -6.74761035 0.50537812
0.20 -6.56618555 0.49439865 -6.71836523 0.50440368
0.25 -6.5620835 0.49416114 -6.69850879 0.50338774
0.30 -6.44684326 0.48935354 -6.70920801 0.50418305
0.35 -6.06865381 0.46456978 -6.68115527 0.50210989
0.40 -5.56011377 0.43220391 -6.41517627 0.48547151
0.45 -4.59760449 0.36779271 -6.16967188 0.47103553
0.50 -3.93877246 0.32752876 -5.2676709 0.41176346
0.55 -2.80002124 0.24388274 -5.00971631 0.39600393
0.60 -2.23705933 0.2030432 -4.93826514 0.38649039
0.65 -1.89127295 0.17428288 -5.12337012 0.40325192
0.70 -1.56424731 0.15007216 -4.80088086 0.38092769
0.75 -1.28331055 0.12923559 -3.93632275 0.3197923
0.80 -1.19082507 0.12147481 -2.17817188 0.19936835
0.85 -1.02842737 0.10849409 -1.43866321 0.1319553
0.90 -0.97408319 0.10394937 -0.84304797 0.08448845
0.95 -0.86212524 0.09414612 -0.55519904 0.05847695
1.00 -0.00392612 0.00002936 -0.00392612 0.00002936

Table 21: Data from Incremental Addition for LIAR dataset

A.1.2 Incremental Addition
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k selected random
log-odds AOPC log-odds AOPC

0.0 -10.13699121 0.49943312 -10.13699121 0.49943312
0.05 -9.58837207 0.48846993 -10.12370996 0.4994326
0.1 -9.54696484 0.4846503 -10.12979004 0.49943278
0.15 -9.55930957 0.48473863 -10.10643066 0.49942484
0.2 -8.70772656 0.43109882 -10.09626563 0.4994315
0.25 -8.63099707 0.42805946 -10.15069727 0.49943467
0.30 -8.56350098 0.42374021 -10.07733691 0.49943096
0.35 -8.4379873 0.41533822 -10.10302148 0.49943155
0.4 -8.34674609 0.40908066 -9.98133594 0.49699947
0.45 -7.95800439 0.39567853 -9.88981641 0.49205203
0.5 -7.70826953 0.38646807 -3.36901074 0.18330394
0.55 -7.47499121 0.37425467 -4.70510889 0.22505065
0.60 -7.21185352 0.36296912 -7.54922314 0.39379894
0.65 -7.0335166 0.35347065 -9.70007324 0.48873277
0.70 -0.79801715 0.05736699 -5.35102148 0.27625097
0.75 -0.62280042 0.04561079 -6.66542969 0.34418335
0.8 -0.43254053 0.03284928 -0.85533405 0.05712198
0.85 -0.37304483 0.02991163 -7.07728662 0.35766413
0.9 -0.19233707 0.01885029 -0.25411478 0.01597884
0.95 -0.12606393 0.01356455 -0.05434944 0.00392775
1.0 -0.00011695 0 -0.00011695 0

Table 22: Data from Incremental Addition for Fake News dataset
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k selected random
log-odds AOPC log-odds AOPC

0.0 -7.03997119 0.47511425 -7.03997119 0.47511425
0.05 -6.54343506 0.44069602 -7.01018896 0.47368897
0.10 -5.59774414 0.34273006 -6.81277441 0.46109075
0.15 -4.84169482 0.27441068 -6.84432422 0.45981271
0.20 -4.18946973 0.23720367 -6.70994385 0.45535181
0.25 -3.46526099 0.18884906 -6.46656641 0.43251884
0.30 -2.81693677 0.17280242 -6.09783203 0.4241792
0.35 -1.81115881 0.1214187 -5.84776318 0.38036545
0.40 -1.17119031 0.08938811 -5.82611963 0.40684606
0.45 -0.73162653 0.06233537 -5.19995264 0.34760192
0.50 -0.49827414 0.04671369 -4.86967627 0.34741578
0.55 -0.25450563 0.0229084 -4.47940039 0.30632564
0.60 -0.16030234 0.01612601 -3.92589673 0.26001632
0.65 -0.13265717 0.01276443 -2.65981104 0.17483781
0.70 -0.1031486 0.009991 -2.48974609 0.16252126
0.75 -0.0714341 0.00692863 -2.01095435 0.13597678
0.80 -0.05920336 0.0048718 -1.18649817 0.08469561
0.85 -0.03124971 0.00395329 -1.792474 0.11972604
0.90 -0.01829287 0.00288804 -0.74350012 0.05755134
0.95 -0.00078859 -0.00010067 -0.18057053 0.01334382
1.00 0.00000016 0 0.00000016 0

Table 23: Data from Incremental Addition for IMDB dataset
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k selected random
acc flip acc flip

0 0.561 1.0 0.561 1.0
1 0.566 0.869 0.568 0.919
2 0.565 0.81 0.564 0.859
3 0.558 0.753 0.566 0.821
4 0.551 0.706 0.574 0.763
5 0.547 0.652 0.566 0.735
6 0.535 0.59 0.575 0.684
7 0.533 0.548 0.545 0.614
8 0.53 0.531 0.525 0.57
9 0.516 0.513 0.525 0.54
10 0.514 0.493 0.537 0.528
11 0.51 0.485 0.517 0.508
12 0.518 0.491 0.514 0.507
13 0.521 0.484 0.52 0.489
14 0.513 0.478 0.509 0.476

Table 24: Data from Deletion Check for LIAR dataset

A.1.3 Deletion Check

A.1.4 Preservation Check

A.2 Additional Figures
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k selected random
acc flip acc flip

0 0.984 1.0 0.984 1.0
1 0.953 0.957 0.963 0.971
2 0.839 0.843 0.915 0.915
3 0.763 0.765 0.864 0.866
4 0.691 0.687 0.793 0.791
5 0.635 0.631 0.73 0.724
6 0.585 0.579 0.671 0.665
7 0.557 0.551 0.613 0.607
8 0.535 0.529 0.567 0.561
9 0.521 0.515 0.545 0.539
10 0.512 0.506 0.532 0.526
11 0.506 0.5 0.519 0.513
12 0.506 0.5 0.522 0.516
13 0.505 0.499 0.509 0.503
14 0.505 0.499 0.507 0.501

Table 25: Data from Deletion Check for Fake News dataset

k selected random
acc flip acc flip

0 0.884 1.0 0.884 1.0
10 0.819 0.885 0.882 0.97
20 0.777 0.831 0.877 0.955
30 0.724 0.764 0.861 0.919
40 0.704 0.726 0.841 0.899
50 0.662 0.684 0.792 0.85
60 0.636 0.656 0.785 0.835
70 0.623 0.637 0.748 0.782
80 0.607 0.615 0.715 0.747
90 0.594 0.6 0.699 0.715
100 0.579 0.581 0.682 0.694
110 0.566 0.572 0.658 0.674
120 0.57 0.57 0.633 0.645
130 0.555 0.557 0.618 0.63
140 0.547 0.555 0.588 0.606

Table 26: Data from Deletion Check for IMDB dataset
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k selected random
acc flip acc flip

0 0.515 0.47 0.515 0.47
1 0.515 0.47 0.515 0.47
2 0.52 0.475 0.515 0.472
3 0.522 0.481 0.517 0.472
4 0.519 0.486 0.517 0.472
5 0.517 0.488 0.522 0.481
6 0.534 0.509 0.52 0.489
7 0.53 0.521 0.542 0.493
8 0.533 0.54 0.533 0.506
9 0.546 0.551 0.543 0.538
10 0.548 0.585 0.552 0.541
11 0.56 0.621 0.544 0.585
12 0.563 0.642 0.546 0.593
13 0.557 0.66 0.56 0.627
14 0.564 0.689 0.553 0.648

Table 27: Data from Preservation Check for LIAR dataset

k selected random
acc flip acc flip

0 0.505 0.499 0.505 0.499
1 0.505 0.499 0.505 0.499
2 0.505 0.499 0.505 0.499
3 0.505 0.499 0.505 0.499
4 0.506 0.5 0.505 0.499
5 0.512 0.506 0.505 0.499
6 0.526 0.52 0.506 0.5
7 0.542 0.536 0.516 0.51
8 0.562 0.556 0.514 0.508
9 0.583 0.577 0.552 0.546
10 0.599 0.595 0.575 0.569
11 0.642 0.638 0.606 0.602
12 0.676 0.674 0.643 0.645
13 0.722 0.724 0.678 0.678
14 0.777 0.785 0.733 0.735

Table 28: Data from Preservation Check for Fake News dataset
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k selected random
acc flip acc flip

0 0.512 0.506 0.512 0.506
10 0.692 0.702 0.512 0.506
20 0.752 0.768 0.523 0.517
30 0.773 0.797 0.532 0.526
40 0.794 0.814 0.546 0.54
50 0.799 0.821 0.569 0.567
60 0.802 0.832 0.586 0.586
70 0.809 0.837 0.603 0.601
80 0.818 0.852 0.627 0.625
90 0.829 0.869 0.665 0.665
100 0.835 0.871 0.675 0.683
110 0.838 0.876 0.7 0.714
120 0.841 0.877 0.725 0.729
130 0.842 0.886 0.733 0.743
140 0.852 0.896 0.753 0.771

Table 29: Data from Preservation Check for IMDB dataset

Figure 20: Local Lipschitz Values for the LIAR and Fake News Dataset
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