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Abstract

The study at hand explores the complex relationship between machine
learning models and their potential biases, specifically in the context of
agriculture and food security. With the increasing adoption of predic-
tive models in the agricultural sector, the study highlights the need to
understand and mitigate biases that may inadvertently affect model
outcomes. Leveraging the AIF360 library, the study unraveled the
fairness of models after introducing biases in two different use cases:
regional differences and crop types. For both use cases, bias detection
tools were effective in identifying discrepancies across sub-regions as
well as different crop types. While some mitigation techniques were
promising, others at times exacerbated the biases. The results empha-
size the complexity of balancing model accuracy with fairness. As the
link between food security and Machine Learning grows stronger, this
study underscores the need for proactive bias detection and mitigation,
and lays the groundwork for future research in this area.



1 Introduction

According to the United Nations (UN), the world’s population is expected to
exceed 9 billion by 2050 [26]. Hereby, one of the most critical sustainability
challenges is to find ways to achieve food security in a world with a population
this high and while reducing further environmental degradation |78]. The
same organization defines food security as:

“...all people, at all times, have physical, social, and economic
access to sufficient, safe, and nutritious food that meets their food
preferences and dietary needs for an active and healthy life” [66].

Navigating the path to achieving food security in a world that is grappling
with the ramifications of climate change is particularly difficult. Climate
change holds pronounced risks to food security and its effects are evident in
scientific studies on food security [47]: It affects crop production [82, 47|,
inter alia through evolving weather conditions and the increasing frequency
and severity of extreme weather incidents [60]. Expected increases in the
frequency and intensity of extreme weather events, especially floods and
droughts, will further affect food production [42, 73| and thereby also af-
fect food prices. Alongside climate-related concerns, food security is tightly
interwoven with other dimensions, such as the limited availability of natural
resources, the unpredictability of agricultural markets, and overall technolog-
ical and socio-cultural changes all play a role in the food security equation
[34]. This marks a big societal and economic problem carrying profound im-
plications, affecting health, well-being, and economic stability. Disruptions
in food supply can lead to price spikes, social unrest, and even geopoliti-
cal conflicts [36]. Countries with food insecurities face malnutrition, stunted
economic growth, and increased vulnerability to other societal challenges.
Recent data from the Food and Agriculture Organization of the UN (FAO)
underscores the magnitude of this challenge by stating that almost a bil-
lion people lack adequate calories and more than two billion lack adequate
nutrients [1].

Simultaneously, there is an unprecedented surge in technological advance-
ment, with the development of Artificial Intelligence (AI) emerging as trans-
formative force across multiple industries. By now, Al is not only applied
in the finance, manufacturing, and healthcare fields, but also in the food
security and agriculture sector [15]. By the same token, the world’s rising
food demands are commencing to be met with technological developments
and Al [34]. Therefore, recent developments in agriculture and food security
have brought a boost in Machine Learning (ML) applications. These devel-



opments range from soil and water management to crop management, with
a particular prominence in crop yield prediction [79].

While the significance of Al continues to expand, it is equally important to
identify and address its inherent concerns. One of the most pressing concerns
across the entire Al landscape is bias. This bias can be systemic [31] or stem
from historical data which potentially encodes historical, human-induced bias
[71]. The difficulty lies in identifying this bias, with fairness metrics emerging
as the primary tool, complemented by visualization and model interpretabil-
ity tools [57, 61, 64, 20, 6]. Especially in domains as critical as food security,
it is of utmost importance to ensure that such biases are maximally reduced
or even eliminated and do not compromise their validity and integrity [5].

1.1 Research Questions

As ML applications in food security spread, the intersection of these domains
becomes central. While both, ML in food security on the one hand and bias
detection in AI/ML on the other hand are witnessing a significant increase in
research, there is a clear research gap at their intersection. Moreover, in the
context of an area as vital as food security, the challenges of bias detection
become paramount |7, 21|. This thesis is intended to contribute to this
important topic by answering the following overarching research question:

How can bias be detected in AI based yield predictions for food se-
curity? This question is answered through the following three sub-questions.

RQ1.1 What does the chosen bias detection method reveal about its impact
on Al-based yield predictions for food security?

RQ1.2 How effective are the selected bias mitigation techniques in reducing
bias in Al-based food security yield prediction models?

RQ1.3 How do potential biases in Al-based yield prediction models affect
food security forecasts?
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1.2 Structure of the Thesis

Beginning with Chapter 1, the thesis emphasizes the relevance of dealing with
bias in ML models for food security. Chapter 2 delves into distinct streams of
literature and carefully weaves them together to lay a robust groundwork for
the thesis. This thorough examination of the state of the art not only provides
context, but also identifies a gap that this thesis aims to fill. Next, Chapter
3 presents the chosen research approach, explaining why action research is
the chosen methodology and describing the iterations undertaken during the
study. It serves as a bridge from the theoretical foundation to the practical
application outlined in the following chapters. Chapter 4 starts the technical
journey. It first presents a detailed description of the data retrieval process,
emphasizing the merging of different datasets and the associated cleaning
needed to ensure their usefulness. From this foundation, the chapter dives
into a comprehensive data exploration that yields insights and addresses two
distinct use cases. Leveraging these discoveries, the chapter proceeds to
build baseline ML models for both use cases, providing a reference point for
subsequent analyses. The focus then moves to understanding the importance
of different features in the trained model. In particular, this understanding
serves as a basis for deliberately introducing bias into the models. With
biased models at hand, Chapter 5 dives into the application of IBM’s Al
Fairness 360 (AIF360) toolkit. The chapter systematically approaches bias
detection using a set of fairness metrics, before moving on to implement
algorithms intended to mitigate the introduced bias. Chapter 6 acts as a
reflective space, examining the journey undertaken in the preceding chapters.
It allows a deep dive into the discussion of the chosen bias detection and
mitigation practices, their implications, and how they affect food security.
Within this discussion, the research questions are answered. In addition,
the chapter recognizes the inherent limitations of the study and suggests
avenues for future research to maintain the continuity of the work. Finally,
Chapter 7 concludes the entire thesis project by reviewing the milestones
achieved, summarizing the key findings, and reaffirming the contribution of
this research to the wider academic and practical landscape of ML based
food security models.
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2 State of the Art

This chapter is concerned with a comprehensive review of the state of the
art in food security as well as in ML applications in crop yield prediction.
Furthermore, this chapter reviews recent advances in bias detection and bias
mitigation. Thereby, it provides a basis for understanding the link between
food security and predictive fairness tools.

2.1 Food Security

Food security models are multi-layered and complex [25]. The Global Food
Security Index! (GFSI) is a dynamic benchmarking model measuring drivers
of food security across 113 countries [36]. It is based on three key pillars.
The first one, affordability, looks at consumers’ purchasing power, their vul-
nerability to price fluctuations, and the existence of policies that provide
support in times of food crisis. This is measured by metrics such as gross
domestic product, poverty rates, and the existence of safety net programs.
The second pillar, availability, examines the reliability of national food sup-
plies, taking into account domestic production volumes, possible threats to
supply chains, and the nation’s commitment to agricultural research. The
third pillar, Quality and Safety, assesses the nutritional adequacy and safety
standards of available foods, also considering dietary diversity. By assessing
and weighting each indicator of these three pillars, the GFSI provides an
annual, comprehensive view of food security for each country.

In 2022, the GFSI depicts a deteriorating global food environment for the
third year in a row. Since 2019, the GFSI has been declining due to economic
and socio-political shocks like the Covid-19 pandemic and the war in Ukraine.
Among others, these shocks lead to an immense cost increase for food and a
vulnerable global food environment. The top ten performers in the GFSI in
2022 are comprised of eight high-income countries in Northern and Central
Europe, led by Finland, Ireland, and Norway as well as by high-income Japan
and Canada. On the other end of the spectrum, six of the bottom ten scoring
nations in 2022 come from Sub-Saharan Africa, including the democratic
republic of Congo, Nigeria, and Sudan. The aforementioned imbalance is also
clearly evident in the GFSI statistics and this gap has been steadily widening
in recent years. The disparity between the best performing country, Norway
(83.7/100) and the worst performer Syria (36.3/100) amounts to 47.4 [36]. In
practice, this translates into very divergent living conditions and challenges.

ONote: All links mentioned in this thesis have been last accessed on 29.09.23.
thttp://foodsecurityindex.eiu.com/
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For Norwegians, the high score reflects the secure access to a wide range of
quality foods and a stable food market. In contrast, Syria’s low score points
to severe food shortages, where large proportions of the population could
face hunger, malnutrition, and related health concerns. These inequalities
can have profound long-term implications, impacting on everything from
children’s cognitive development to societal stability. Overall, the report
finds that the problem of hunger is most acute in Africa, more specifically in
Sub-Saharan Africa. In addition, the increase of the world’s population to
more than 9 billion people by 2050, as projected by the UN, will primarily
occur in developing countries [26]. Such levels of growth will demand an
increase in food supply and agricultural production of up to 75% by 2050
[26]. At the same time, the needs of developing countries as a whole will
double, including Sub-Saharan Africa by 250% [69]. In order to combat this,
various programs and efforts are in place.

As a key agency of the UN, the World Food Programme (WFP) is at the
leading forefront of the fight against global malnutrition and food insecurity.
One of its most prominent efforts is its nutrition program?, which focuses on
vulnerable populations such as women, children, and infants. As part of this
initiative, WFP inter alia provides specialized nutritious foods, while stress-
ing dietary diversification and fortification of staple foods [83]. In addition,
WFP’s Purchase for Progress® initiative is an important tool in empowering
smallholder farmers. By linking them to markets, ensuring fair prices and
training them in post-harvest handling, the initiative aims at minimizing
food losses and increasing overall agricultural productivity [51].

In parallel, the FAO is promoting sustainable agricultural practices that com-
bine economic profitability on the one hand and environmental responsibility
on the other hand. This is reflected in efforts towards conservation agricul-
ture, agroecology, and integrated pest management [53]. For instance, the
Global Information and Early Warning System? of the FAO is designed to
timely avert food crises by closely monitoring food supply and demand and
accordingly issue warnings of potential food shortages [55]. Another key ini-
tiative of the FAO is the Codex Alimentarius Commission®, which is a joint
venture with the World Health Organization. This joint initiative is cen-
tral to establishing international food standards, promoting food safety and
quality, and fostering fair trade practices [17].

2https:/ /www.wfp.org/nutrition/

3https:/ /www.wfp.org/purchase-for-progress/
‘https://www.fao.org/giews /en/
Shttps://www.fao.org/fao-who-codexalimentarius/en/
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More broadly, the UN has set clear guidelines through Sustainable Develop-
ment Goal 2 6, which targets eradicating hunger, strengthening food secu-
rity, and promoting sustainable agriculture by 2030 [80|. Similarly, the Zero
Hunger Challenge”, another UN initiative, aims for global access to food, zero
cases of malnutrition among children under two, sustainable food systems,
increased productivity of smallholder farmers, and a substantial decrease
in food waste [11]. The Committee on World Food Security complements
these endeavors by providing an integrative platform for stakeholders and
promoting policy alignment [50]. However, and despite various efforts and
UN programs and policies, food security in the global sense has not been
achieved yet. Worldwide, there is an extreme and complex imbalance in food
security seeing as certain regions experience a high surplus of food, while at
the same time, it involves increasing malnutrition for others [69].

Despite the deteriorating global food environment and its vulnerability to-
wards shocks, one positive development can be seen in the GFSI 2022: Access
to agricultural technology, education and resources has risen by 10.1% [36].
Modern technologies can increase global food production by increasing soil
fertility, advancing genetics, harnessing solar energy, and using Al to improve
crops [69]. Among these modern technologies, Al is currently emerging as a
dominant force driving innovations across multiple industries, including food
security and agriculture [15].

2.2 ML in Crop Yield Predictions

In recent years, there has been a growing body of literature on various ap-
plications of ML in agriculture and food security. On the one hand, fields
such as soil management and water management are extensively investigated.
Among others, Motia and Reddy [59, 41| emphasize the use of ML techniques
for predicting and assessing soil properties, leading to improved soil health
management. Huang et al. [35] on the one hand demonstrate the various
benefits achieved when utilizing ML to predict numerous water indicators in
both natural and engineered water systems, including water quality predic-
tion and contamination mapping. On the other hand, also with respect to
crop management, there are various theoretical ML approaches. As argued
by Waldamichael et al. [81], Amitab et al. [76], and others, these include
early disease detection in crops, as well as weed detection as examined by
Islam et al. [37] and Osorio et al. [62] among others.

Shttps://www.un.org/sustainabledevelopment /hunger /
"https://sdgs.un.org/partnerships/zero-hunger-challenge-zhc
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Table 1 below lists ML approaches for crop yield prediction in the literature
of the last seven years. The table is structured chronologically and contains
information on the year of publication, the examined crop, the features used
to predict the crop, the ML algorithms applied as well as the model re-
sults. It is compiled using the keywords machine learning in crop prediction,
machine learning in yield prediction, machine learning in crop yield predic-
tion, artificial intelligence in crop prediction, artificial intelligence in yield
prediction, and artificial intelligence in crop yield prediction. Using these
keywords, a variety of approaches emerges from the literature. Upon closer
inspection, these publications can be systematically categorized according to
their algorithmic direction.

Crop yield prediction using ML Crop yield prediction is essential for
achieving food security and improving agricultural productivity. With the
emergence of ML, a multitude of studies use this technology to improve the
accuracy and robustness of predictions. Shahhosseini et al. [75] propose
an ML ensemble framework for maize yield forecasting, focusing on the in-
tegration of weather data. Their optimized model shows a solid RSME of
9,5%.

Deep Learning in crop yield prediction Deep learning, a subset of ML,
demonstrates a notable effectiveness in crop yield prediction. Schwalbert et
al. |73] use Long-Short Term Memory networks for predicting soybean yields
using satellite images and weather data. Their models outperform other
algorithms, such as a Linear Regression, in accuracy for most prediction
data, highlighting the applicability of deep learning in this area. Luo et
al. |54] also successfully use Long-Short Term Memory networks to obtain
spatial distributions of wheat harvesting areas to predict yield. Pantazi et al.
[65] combine supervised self-organizing maps and artificial neural networks
to predict wheat. By including soil data and satellite images, their model
shows high accuracy, especially for the low yield class. Wang et al. [82]
further illustrate the effectiveness of deep learning algorithms in agriculture
by applying such a model to predict wheat yield in China during winter,
obtaining a strong R? of 0.77.
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Random Forest in crop yield prediction Random Forest proves to be
a robust method for crop yield prediction. Josephine et al. [42] apply the
Random Forest algorithm for predicting millet yield and achieve a very high
accuracy of 99.74%. In much the same vein, Kumar et al. [27] emphasize
the algorithm’s ability to predict yields using historical data, including vari-
ables such as temperature, humidity, and rainfall. Their method exploits
the power of Random Forest to build a robust model from historical data,
thus effectively predicting yields in the agricultural sector by identifying the
optimal crops for certain weather conditions in the field. Charoen-Ung et
al. |16] further extend the use of the Random Forest algorithm to predict
sugarcane yield quality, surpassing human experts in their assessments.
Summarizing, recent crop prediction research frequently explores neural net-
works and employs the Random Forest algorithm. These studies often in-
corporate a mix of data, including climate, soil, fertilizer, vegetation, and
precipitation data. Interestingly, a significant portion of the studies rely on
satellite imagery for data collection.

In essence, there is a growing interest in ML applications for crop prediction.
All of the papers reviewed, regardless of the algorithm used, produced sat-
isfactory results, emphasizing the applicability and power of these methods.
However, it is worth noting that the current state of the art tends toward
theoretical exploration rather than practical implementation.
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Reference | Year Crop Features Algorithms Results
[54] 2022 Wheat Satellite data, | Random For- | R2: 6.7%
soil data, cli- | est, Light Gra- | RMSE: 6.3%
mate data, | dient Boosting
vegetation Machine
data
[82] 2020 Wheat Climate data, | Deep  Neural | R2: 0.77,
vegetation in- | Network RMSE: 721
dices kg/ha
[75] 2020 Corn Soil data, crop | Random For- | RMSE: 9.56%
data, historical | est, Extreme
yield data, cli- | Gradient
mate data Boosting,
Light Gradient
Boosting Ma-
chine
[42] 2020 Millet Climate data, | Random Forest | Accuracy:
rain data 99.7%
[73] 2020 | Soybean | Satellite data, | Regression, MAE: 0.24
weather data Random For-
est, Long
Short-Term
Memory
[16] 2019 | Sugarcane | Crop data, rain | Random Forest | Accuracy:
data, fertilizer 71.88%
data
[12] 2019 Wheat Crop data, | Random For- | R2: 0.75
yield data, | est, Support
satellite data, | Vector Ma-
climate data chine, Neural
Network
[65] 2016 Wheat Satellite data Artificial Neu- | Accuracy
ral Network 81.65%
[27] 2016 Rice Weather data, | Support Vector | RSME: 0.39
precipitation Machine
data.

Table 1: Summary of ML Approaches for Crop Yield Prediction
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2.3 Bias Detection and Mitigation

While ML demonstrates its potential in crop prediction through several suc-
cessful applications, these algorithms are not free from certain pitfalls such as
bias. In general, algorithmic biases can occur due to several factors, making
the topic of bias in itself very intersecting and therefore complex [10]. For
instance, a hiring algorithm can on the one hand use biased training data
and thereby predominantly favour the resumes of male applicants (algorith-
mic bias) as they were historically preferred over female applicants (selection
bias) [30]. On the other hand, the interpretation of the algorithm’s results
can at the same time be biased, e.g., when assuming that certain roles are
better suited for a particular gender, this assumption further compounds the
bias in the hiring process (interpretation bias) [61]. Depending on the means
by which the bias is generated, literature provides different definitions of bias.
Ntousi et al. [61] define bias as: “... the inclination or prejudice of a decision
made by an Al system which is for or against one person or group, especially
in a way considered to be unfair”. Mehrabi et al. subdivide bias further into
three categories [57]:

Data bias addresses bias that is inherent in the data, meaning that the al-
gorithm absorbs pre-existing inequalities including historical and social
bias.

Algorithm bias refers to bias that is introduced exclusively by the algo-
rithm, for instance through optimization functions or regularization.

User interaction bias is induced by the interaction with the user, as the
interface lets the user impose his behaviour for a self-selected interac-
tion that can inter alia include behavioural or presentation bias [57].

In much the same vein, Ntoutsi et al. [61] classify bias detection and miti-
gation into three categories.

Pre-processing approaches focus on addressing bias in the input data.
The underlying idea is that the fairer and more balanced the training
data is, the less biased the resulting AI model will be [61]. In order to
achieve this, several methods manipulate the original data distribution
by modifying the class labels of selected instances that are close to the
decision boundary [43], by assigning varying weights to instances based
on their group membership boundary or by sampling from each group
[45]. These methods aim at balancing the protected and unprotected
groups in the training set [61]. By making the data more balanced, the
subsequent ML model is less likely to generate biased results.

18



In-processing approaches intervene during the training process of the ML
model to minimize bias. In contrast to pre-processing, in-processing
approaches focus on altering the training algorithm itself. Furthermore,
it aims at restating the classification problem by including a model’s
discrimination behaviour into the objective functions. This can be done
through regularization, constraints, or training on latent target labels.
For instance, a reguliser can be incorporated to minimize indirect bias
[61]. Kamiran et al. [45] change the splitting criterion of decision
tree algorithms to account for the effect of splitting on the protected
attributes, whereas Dwork et al. [22| redefine the classification problem
by treating similar individuals similarly, i.e. reducing an arbitrary loss
function subject to the individual fairness constraint. As opposed to
this, Krasanakis et al. [48] consider the presence of latent fair classes.
For such classes, they suggest changing the in-training weights of the
instances iteratively. Although not many, there are also in-processing
approaches which do not relate to classification. In an unsupervised
model, Samadi et al. [72| impose equal reconstruction errors for both,
protected and unprotected groups [61].

Post-processing approaches are implemented after an ML model is trained,
tweaking the model’s predictions to reduce bias. Essentially, these ap-
proaches are comprised of two strategies. On the one hand white-box
approaches to post-processing involve altering the model’s internals or
probabilities, such as correcting probabilities in Naive Bayes models |13]
or changing the class label at the leaves of decision trees [45]. On the
other hand, black-box approaches to post-processing involve altering
the model’s predictions by promoting the proportionality of decisions
between protected and unprotected groups [46] or by overlaying a clas-
sifier on top of a base classifier [3]. The advantage of this approach is
that it allows for correcting bias without retraining the model.

Beyond these approaches to bias in ML literature, researchers use the terms
bias and unfairness interchangeably [57, 61, 64, 20]. In much the same vein,
fairness in this context is referred to as “...the absence of any prejudice or
favouritism toward an individual or group based on their inherent or acquired
characteristics” [57]. For this reason, bias detection methods are commonly
equated to quantitative fairness metrics, evaluating how a ML model’s predic-
tion or decision aligns with fairness criteria [4]. Table 2 provides an overview
of the fairness metrics which have emerged as common state of the art met-
rics in recent years, along with reference papers which examine these metrics
and a brief explanation of the metrics’ objective.
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Reference Metric Explanation

[64, 6, 39] Average Odds Difference Measures fairness by com-
paring false positive and
true positive rates across
groups.

[64, 6, 38] Demographic Parity Ensures predictions are
independent of protected
attributes, targeting equal
acceptance rates across
groups.

[64, 6, 23, 10] Disparate Impact Evaluates whether seem-
ingly neutral policies affect
one group more than an-
other in model predictions.
[64, 6, 23, 32, 67, 30, 70] Equalized Odds Aims for equal true posi-
tive and false positive rates
for protected and non-
protected groups.

[64, 6, 23, 67, 39, 70]) Equal Opportunity Difference | Assesses disparities in true
positive rates between pro-
tected and non-protected
groups.

[64, 6, 23, 10] Statistical Parity Difference | Compares the probability
of positive results for
protected  versus  non-
protected groups.

Table 2: Fairness Metrics

Navigating the field of fairness metrics, it is important to note that each
metric, while broadly concerned with bias and fairness, focuses on different
aspects of the wider challenge. Demographic Parity and Statistical Parity
Difference have a common basis in achieving equality of outcomes across
groups. Both aim to provide equal likelihood of positive outcomes regard-
less of protected characteristic [6]. Demographic Parity addresses this goal
directly, while Statistical Parity Difference quantifies disparity by calculat-
ing the gap in positive prediction rates [70]. Disparate Impact, based on
U.S. employment law principles, examines whether a model’s decisions could
have a disproportionately negative impact on a protected class, thus taking a
broader view of fairness [24]. On the error based fairness side, Average Odds
Difference is a comprehensive metric. It assesses differences in both false pos-
itives and true positives, providing a richer perspective than Fqualized Odds
Difference, which concentrates solely on differences in true positive rates be-
tween groups. [39]. Finally, Equalized Odds is notable for its commitment to
preventing models from discriminating in their errors. This metric stresses
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that both types of errors, false positives and false negatives, are consistent
across groups, thus guarding against models whose errors might unfairly bias
one group over another [33].

While all of these metrics share the objective of fairness, their individual
nuances contribute to a multi-layered picture of how a model behaves across
multiple dimensions of fairness.

2.4 Fairness Toolkits

Given the importance of bias detection and mitigation, several open source
tools have been developed and gained popularity in recent years. While the-
oretical explorations of bias provide foundational understanding, practical
tools translate these concepts into actionable implementations. The follow-
ing section examines tools which demonstrate this transition from theory to
practice, emphasizing contributions to fairness.

Tensorflow Responsible AI® provides tools to promote fair and transpar-
ent ML practices within Google’s Tensorflow framework [2]. It aims at
addressing model fairness, interpretability, and robustness. Tensor-
flow’s Fairness Indicators facilitate a systemic way to evaluate models
by means of fairness metrics, such as Demographic Parity, Disparate
Impact, and Fqual Opportunity Difference. This allows researchers and
developers to examine disparities in model results. Besides, Tensorflow
Responsible Al contains tools that explore the interpretability of ML
models. The What-If Tool offers interactive exploration and visualiza-
tion of model decisions, thereby enabling a deeper understanding. For
instance, if a model trained to recognize items in pictures constantly
misidentifies a particular category, the What-If Tool can be used to un-
cover these discrepancies and diagnose potential sources of bias [2]. In
addition, Tensorflow Responsible Al contains a privacy library focusing
on training models with differential privacy. Thereby, the tool ensures
that a model does not overfit to datapoints and expose private informa-
tion. For instance, if an ML model is trained on medical records, this
tool can prevent patients’ data to be reverse engineered from a model’s
output [2]. Tensorflow Responsible Al also stresses clear documenta-
tion and community collaboration on its platform [2]. Nevertheless,
its broad adoption in both research and industry seems to be behind
more established methods in this field. While Tensorflow Responsi-
ble Al offers tools to tackle fairness concerns, the wider community’s
exploration of these tools, in-depth studies, and large-scale practical
applications might still be in its infancy. As Al fairness continues to
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gain momentum, it’s reasonable to expect more research and practical
applications to emerge.

Fairlearn® is created by Microsoft and offers a Python package that enables
developers to assess and improve fairness in their Al systems [8]. This
can be done through Fairlearn's set of tools that assess potential ML
biases as well as provide methods to mitigate them. At the core of Fair-
learn's functionality lie two elements, an interactive visualization dash-
board as well as a set of bias mitigation algorithms [8]. The toolkit's
visualization dashboard on the one hand allows users to detect poten-
tial classes that may be negatively impacted by a model. On the other
hand, it presents a mechanism to compare multiple models on fairness
and performance metrics. Thereby, it includes a total of five fairness
metrics suitable for both, classification and regression tasks. These fair-
ness metrics inter alia include Demographic Parity and Equalized Odds,
providing a detailed insight into the fairness of different groups defined
by sensitive attributes such as gender or disability status. The dash-
board’s customization settings allow users to choose the sensitive at-
tribute and performance metric of interest. Based on this selection, vi-
sualizations are produced that illustrate the impact of the model on dif-
ferent groups [8]. With respect to mitigation algorithms, Fairlearn pro-
vides post-processing and reduction algorithms. The post-processing
algorithms modify the predictions of an already trained model to bet-
ter match a certain fairness metric while the model's performance is
maintained or even improved, but not reduced. The reduction algo-
rithms modify data weights and iteratively retrain the models until the
model matches the specified fairness metric more accurately yet still
achieves a good performance [8|. For instance, Caputo [14] investigates
the application of Fairlearn in addressing minority bias in healthcare
data sets, specifically in diabetes diagnosis and changes in therapy for
diabetic patients. Using Fairlearn, the study validates the methodol-
ogy, creates a comprehensive list of metrics that detect this bias, and
successfully explores mitigation strategies for this bias in diagnostic
contexts [14].
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AT Fairness 360'° is a Python toolkit, developed by IBM and designed to
address algorithmic bias in ML models [6]. The toolkit provides a set
of fairness metrics, including Disparate Impact, Statistical Parity Dif-
ference, and FEqual Opportunity Difference. These metrics allow for an
in-depth exploration of how a model treats diverse demographic groups
[57]. Tt is designed to identify any immanent bias within models that
can be pinpointed to and assessed. With regard to bias mitigation,
ATF360 includes algorithms that act at different stages of the ML pro-
cess. Pre-processing techniques, such as Reweighing methods, alter
data prior to the model training stage. In-processing methods modify
the model training process, whereas post-processing methods adjust a
model’s predictions to comply with fairness criteria. The toolkit also
provides a holistic framework for tackling fairness in order to ensure
that biases are addressed across the entire lifecycle of a model. Fur-
thermore, it serves as a collaborative platform that enables researchers
to disseminate their algorithms [6]. Through its integration with pop-
ular ML libraries and provision of educational resources, AIF360 also
acts as a resource and a guide to Al fairness [57|. Zhang and Zhou (87|
examine the application of the AIF360 toolkit in the context of ML-
based loan approval system. More specifically, they focus on potential
biases against persons of diverse ethnicities. The assessment reveals
that these minority groups experience higher loan denial rates. Using
AIF360, the researchers detect these biases and implement techniques
to mitigate them, resulting in a fairer decision-making model [87].

It can be deduced that fairness metrics serve as the primary measure of
model bias by providing clear, numerical insight into how a model’s predic-
tions or decisions compare to fairness criteria. In the context of bias detec-
tion, fairness metrics can also be complemented by model interpretability
tools [63]. Tools such as Local Interpretable Model-agnostic Explanations!?
(LIME) and SHapley Additive exPlanations'? (SHAP) dive deeper into the
model’s decision-making process. By revealing the importance of different
features in a given prediction, these tools make the model’s predictions more
explainable. Although they play a secondary role to fairness metrics, they
provide valuable information about the importance of features and potential
sources of bias [28].

8https://www.tensorflow.org/responsible _ai
Yhttps://fairlearn.org/
Ohttps://github.com/Trusted-Al/AIF360
Hhttps://interpret.ml/docs/lime.html
2https://shap.readthedocs.io/en/latest /
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LIME targets individual predictions by perturbing the input data of a given
instance, monitoring the resulting changes in the model’s predictions,
and then fitting a simpler, more interpretable model to match the
model’s logic for that specific instance [49]. Such localized explana-
tions are especially useful for revealing latent biases [85]. To exemplify,
if an ML model in recruiting tends to unfairly weight age as a key factor
for tech roles, a LIME analysis can expose this bias, even if the over-
all behavior of the model appears balanced. Although LIME’s power
lies in its granular, localized insights, it’s noteworthy that these expla-
nations are specific to particular instances. Therefore, they may not
reflect the overall behavior of the model [49]. Yet, in the effort to make
ML models more interpretable, LIME provides a valuable tool allowing
stakeholders to dive deep into model decisions and understand their
rationale.

SHAP is emerging as a key technique designed to shed light on the decision-
making process of ML models. Inspired by the Shapley value in game
theory, SHAP quantifies the influence of each feature in a dataset,
thereby signifying its contribution in the given prediction [77]. The
core of SHAP lies in its dual ability to reveal insights into the overall
behavior of the model, i.e. global interpretability, while simultane-
ously revealing individual predictions, i.e. local interpretability [58].
SHAP is designed around three core principles: consistency (i.e. fea-
tures maintain their contribution regardless of model changes), linearity
(i.e. SHAP values correspond to feature weights in linear models), and
local accuracy (i.e. SHAP values for a prediction sum to the difference
between that prediction and the model’s average output) [77]. Thus,
by using SHAP, researchers can identify which features predominantly
influence ML predictions.

Both tools are model agnostic, making them applicable across different ML
models. In addition, biases in the training data itself may emerge through
these explanations. If either LIME or SHAP suggests that certain features
are overly emphasized, this could reflect an existing bias in the dataset on
which the model was trained.
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Overall, the tools studied above allow for standardized evaluations and have
facilitated the widespread detection of bias in existing Al systems. Fairness
metrics are the bedrock of bias detection in ML. They enable the rigorous
and quantitative analysis required to assess bias. At the same time, inter-
pretation tools can augment these tools, ensuring a comprehensive view of
the models’ biases. However, it is important to note that even by using
these tools, researchers face challenges in bias detection. One such challenge
is the definition of fairness. What is considered fair is context-specific and
therefore difficult to define universally. Binns [7] argues that fairness in ML
should be informed by political and moral philosophy. Another challenge
faced by researchers are trade-offs in terms of performance. Corbett-Davies
et al. [21] state that achieving fairness can come at the expense of model
accuracy, in which the the right balance is often application-specific. Fur-
thermore, Pagano et al. [63] address the evaluation dilemmas, which arise as
the use of a single metric might not capture the holistic bias within a system.
However, multiple metrics might conflict and give different perspectives on
the present bias, leading to evaluation challenges.
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3 Methodology

The following chapter discusses the research method, highlighting the applied
Action Research approach. In addition, the different iterations undertaken
for bias detection and bias mitigation in the context of this thesis project are
outlined.

3.1 Action Research

In order to address the aforementioned research gap, an Action Research ap-
proach is applied [19]. This research approach consists of cycles of Planning,
Acting, Observing, and Reflecting as depicted in Figure 1 below. Action Re-
search is often used in fields such as education, healthcare, and community
development, where the goal is to improve a specific situation or address a
particular problem [29]. Yet, with its reflective principles, Action Research
also provides a well-suited framework for algorithm development. Its iterative
cycles coherently align with the typical process of algorithmic development
as it frequently deviates from a linear path and requires multiple iterations
to optimize the algorithm’s accuracy. The process can be repeated several
times until the required performance metrics are met. The following para-
graph describes how the Action Research cycle is set up in the context of
this thesis, more precisely in the context of detecting and mitigating bias in
food security.

Planning is the first stage in Action Research, aiming at identifying the
problem to be addressed. Therefore, in the context of this thesis, Planning
entails a thorough review of literature and the state of the art, examining food
security fundamentals, delving into ML applications for crop yield prediction
and bias detection methodologies. Once the problem is identified, the plan
is put into Action. As part of this step, a possible solution, i.e. a suitable
algorithm is implemented and the corresponding output data is collected.
This leads to the Analysis phase, where the collected data is thoroughly
examined, the model performance is evaluated, patterns are identified, and
findings are derived. Then, in the Conclusion stage, the research is reflected.
Based on the outcomes of the previous steps, the solution is evaluated in
detail. If the results of the conclusion are not yet satisfactory, i.e. in case
the algorithms do not perform well or no bias can be detected, the cycle
is repeated until an adequate solution is found. Figure 1 outlines the steps
taken in this thesis at each stage of the action research cycle more precisely.
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Figure 1: Action Research Cycle

3.2 Iterations

The thesis project comprises four distinct iterations, each of which builds
on the learnings and insights of the previous iteration. Throughout these
iterations, continuous reflection and adaptation are emphasized, ensuring
that the research is both responsive and dynamic.

Iteration 1 - Initial Model Training In the first iteration, a distinct Ran-
dom Forest Regressor model is trained on the dataset for each speci-
fied use case. This initial iteration is vital as it establishes unbiased
baseline models and demonstrates their underlying performance capa-
bilities. Subsequent modifications in the model can then be compared
to these baseline models, allowing to measure and quantify the impact
of modifications and introduced biases in later iterations.
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Iteration 2 - Bias Introduction With the baseline models in place, the
second iteration introduces specific biases into the dataset. This is done
by significantly lowering the input values of features which prove to
have a strong influence on the model’s predictions. After intentionally
distorting these feature values, the models are retrained to comprehend
and capture the impact of the biases on their predictive abilities.

Iteration 3 - Bias Detection The third iteration involves applying bias
detection methods. This is critical for measuring the extent of bias
and understanding its impact on model results. It is paramount to not
rely solely on a single metric, but instead, try and use multiple metrics
as part of this iteration to ensure a comprehensive understanding of
the biases. This phase helps quantify the differences and identify areas
of concern.

Iteration 4 - Bias Mitigation Having identified and quantified the biases,
the final iteration centres around applying bias mitigation techniques.
Prior to this step, it is essential that a bias in the models has been
identified. This allows for a comparative analysis of metrics before
and after applying bias mitigation methods. The goal is to correct the
identified biases and thereby improve the fairness of the ML models.
This is facilitated by applying suitable bias mitigation algorithms of
the AIF360 toolkit and analysing their results. Hence, this phase is es-
sential to determine the effectiveness of different mitigation strategies
in dealing with the identified biases.
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4 Technical Implementation

This chapter covers the practical aspects of data retrieval, data pre-processing,
and data exploration. It includes detailed steps that illustrate the transfor-
mation of raw weather and agriculture data into actionable insights within
the food security domain. Subsequently, the foundation for the technical
implementation is laid by training the baseline ML models to predict yield.
This is followed by the application of SHAP, which is used to improve the
understanding of the ML models’ decisions and gain deeper insights into the
corresponding food security predictions. The source code for the steps per-
formed in this thesis project is available in the GitHub repository described
in Appendix A.

4.1 Data Retrieval and Pre-processing

For the purpose of this research, the dataset in use is not downloaded as-is
but curated from various sources, including the FAO', the UNstats'*, and
the World Bank'®. In light of this research, the primary tool used for data
analysis is Python. More specifically, the Pandas library!® used for data
manipulation. The different datasets are therefore imported by means of a
Pandas DataFrame as it eases an efficient and accurate data analysis [56].
The objective is to investigate the relationships of different features and their
impact on crop production. Thus, a total of five datasets are merged not
only containing weather information, such as temperature and rain, but also
information on the region, the usage of pesticides and the crop yield.

Each of the imported datasets includes multiple columns upon initial in-
spection. In order to create a lean data structure, duplicate columns are
systematically removed. Moreover, redundant columns such as area codes,
are removed as they are considered irrelevant for the objectives of this thesis.
This step allows to reduce data noise and focus on strategically important
columns [84]. Renaming columns, such as converting 'value’ into the more
meaningful Pesticides in tonnes further increases clarity. In addition,
data gaps, outliers, and inconsistencies are thoroughly addressed in a way
that does not compromise the accuracy of the thesis project and ensures data
integrity. The commonality across all datasets is the presence of the columns
Year and Country. Individually, these columns do not contain unique entries.
However, combining their values allows the datasets to be accurately merged

13https://data.apps.fao.org/catalog/dataset
https://unstats.un.org/sdgs/dataportal
5https://databank.worldbank.org/

https: //pandas.pydata.org/is
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on this composite key [84]. The aggregated dataset now includes the fol-
lowing variables: Crop, Year, Country, Pesticides in tonnes, Yield in
hg/ha, Avg rain in mm, Avg temperature, Region, and Sub-region. All
in all, the performed data pre-processing steps lead to a robust and multi-
dimensional dataset streamlined for gaining insights into the complex area
of food security.

4.2 Dataset Description

Overall, the dataset consists of a total of 28,242 observations containing the
following environmentally and agriculturally pertinent variables.

Region, Sub-region, and Country are categorical variables denoting in which
location the respective data was collected. This regional data adds geographic
and demographic nuances to the agricultural data, thereby enriching the con-
text and understanding of food security across different regions. Moreover,
Region and Sub-region range from broader regions like North America to
sub-regions like Sub-Saharan Africa. They serve as geographical classification
which is of importance in the further research process of this thesis project.

Crop specifies the particular crop species for which the data is compiled,
allowing analyses across agricultural commodities, including the ten most
produced crops worldwide as of 2023 [26]. These crops are quantified in the
integer variable Yield in hg/ha. Indicating the crop’s yield in hectograms
per hectare, this variable serves as a metric for measuring agricultural produc-
tivity. Year, captured as numeric integer variable, denotes the year in which
the data was collected, i.e. from 1993 to 2013 in this dataset, providing a full
temporal scope over a time period of 20 years. The floating-point variable
Average rainfall in mmrepresents the average annual precipitation in mil-
limeters. Similarly, the floating-point variable Average temperature repre-
sents the average annual temperature in degrees Celcius. Thereby, these two
variables offer insights into the prevailing climate conditions. Pesticides
in tonnes, another floating-point variable, measures the overall quantity of
pesticides used for a particular location in a particular year.
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Variable name #Unique | Min Mean Max
Year 20 1993 2003 2013
Yield in hg/ha 10,218 80.00 | 78,559.65 | 501,412.00
Avg rain in mm 873 51.00 | 1,146.99 3,240.00
Pesticides in tonnes 1,534 0.25 | 38,373.61 | 367,778.00
Avg temperature 1,729 1.30 20.54 30.65

Table 3: Descriptive Statistics of Numeric Variables

Table 3 presents a high-level statistical snapshot of the variables, including
their unique occurrences, minimum, mean, and maximum values. Thereby,
the table highlights the wide range and central tendencies of these key agri-
cultural factors. This summary underscores the variability of the dataset
variables. For example, the wide range between the minimum and maximum
values for variables such as Yield in hg/ha and Pesticides in tonnes
suggests a diverse agricultural landscape. This diversity could be due to a
variety of factors, such as differences in agricultural practices, climatic pat-
terns, or economic status among the countries in the dataset.

In much the same vein, Table 4 lists the dataset’s string variables, showing
both the number of unique instances and the different values that each vari-
able is associated with. This presentation shows the diversity of the data and
facilitates an understanding of the distribution and uniqueness of the values
within the dataset.
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Variable name

#Unique

Unique values

Country

101

Albania,
Algeria,
Angola,
Argentina,
Armenia,
Australia,
Austria,
Azerbaijan,
and 93 others

Crop

10

Cassava,

Maize,
Plantains,
Potatoes,

Rice paddy,
Sorghum,
Soybeans,
Sweet, potatoes,
Wheat,

Yams

Region

Africa,
Americas,
Asia,
Europe,
Oceania

Sub-region

13

Australia and New Zealand and Melanesia,
Central and Eastern Asia,
Eastern Europe,

Latin America and the Caribbean,
Northern Africa,

Northern America,

Northern Europe,

South-eastern Asia,

Southern Asia,

Southern Europe,

Sub-Saharan Africa,

Western Asia,

Western Europe

Table 4: Descriptive Statistics of String Variables
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4.3 Data Exploration

World Map Highlighting Sub-regions
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Figure 2: World Map Highlighting Sub-regions

This section takes a closer look at the individual variables. For a clearer
understanding of the variables, visualizations are created using the Python
Seaborn library”.

The dataset contains 101 different countries from five regions (Europe, Africa,
Americas, Asia, Oceania) clustered into 13 different sub-regions. The sub-
regions and the countries they contain are highlighted in Figure 2, each sub-
region identified by a different color. Having set the geographic context, the
exploration continues to understand the distribution of yield across different
sub-regions.

1"https:/ /seaborn.pydata.org/
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Figure 3: Average Yield by Sub-region

Figure 3 illustrates the average yield by sub-region for all 13 sub-regions,
measured in hectograms per hectare. Moreover, the figure demonstrates
that the yield varies significantly across these areas, underlining regional
differences in agricultural productivity. While Northern Europe exhibits the
largest and Sub-Saharan Africa the smallest yield, South-eastern Asia lies
exactly in the middle. Having explored the overall yield averages across
the sub-regions, it is now essential to deconstruct these averages further in
order to understand the contribution of individual crops to these averages.
In order to see which crops dominate in specific sub-regions, the stacked bar
chart below is compiled.
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Average Yield of Top 3 Crops by Sub-region
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Figure 4: Average Yield of Top 3 Crops by Sub-regions

Figure 4 shows the average yield of the top three crops across all 13 sub-
regions. Each of the three elements of a bar corresponds to a specific crop and
is color coded for easy identification. This way, the plot provides insights into
the distribution of yield among the top three crops in each sub-region and the
different agricultural landscape of the sub-regions. Several sub-regions, such
as Central and Eastern Asia, Southern Europe, and Sub-Saharan Africa show
a balanced proportion of different crops. This is indicative of a diversified
agricultural approach in which single crops do not dominate. This contrasts
with e.g. Eastern Europe, Northern Africa, and Western Asia, where one or
two crops appear to dominate. Such patterns highlight the crucial role of the
respective top crop(s) in the agricultural output in these sub-regions.

Overall, it can be deduced that certain Sub-regions emphasize a diversified
approach while others focus on specific crops, reflecting different agricultural
strategies and potentially mirroring differences in regional market demands
or conditions. Looking at the specific crops, it can be seen that potatoes,
sweet potatoes, and yams are among the most important crops in many of
the Sub-regions. This is also seen in the bar chart below.

35



Average Yield by Crop
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Figure 5: Average Yield by Crop

Figure 5 illustrates the average yield of each crop type. The crops are ar-
ranged in a descending order of average yield from left to right. While pota-
toes rank as the highest-yielding crop, soybeans rank as the lowest-yielding.
Plantains as well as rice, paddy hold the intermediate positions, but plan-
tains significantly exceed rice, paddy in yield. This is also reflected in the
heatmap below in Figure 6.
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This heatmap provides a condensed representation of the top three crops
per sub-region. Based on their frequency as top three yielder, the crops are
ordered from left to right in descending order. By means of the layout, the
dominant crops are illustrated as well as the specific regions in which these
crops prosper. In addition, the color gradients display the variations in crop
yield across the different geographic areas. The heatmap on the one hand
reveals that potatoes are consistently ranked in the top three crops of every
sub-region in the dataset. On the other hand, soybeans only appear in the
top three crops for Northern America. Sorghum does not rank among the
top three crops in any of the sub-regions and is therefore not represented in

Figure 6.
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Figure 7: Average Values of Numeric Features over the Years

The four plots in Figure 7 present a composite view of agricultural metrics
from 1993-2013. More specifically, they display the courses of the numeric
variables, namely the average Yield in hg/ha, the average Pesticides in
tonnes, the Average rain in mm, and the Average temperature.

The average Yield in hg/ha is almost consistently rising, only experiencing
small dips in 2006 and 2012. Overall, during the span of 20 years, the yield
of the ten crops in focus grows from 67.480 hg/ha in 1993 to 90.357 hg/ha
in 2013, marking an increase by approx. 34%. The average Pesticides in
tonnes use over the years displays a similar trend. It also increases consis-
tently with only slight fluctuations, especially in 2002. While the average
Pesticides in tonnes is at 27.289 tonnes in 1993, it is almost doubling in
the course of 20 years, reaching 52.790 tonnes in 2013, thereby marking an
increase of 90%. The Average rain in mm appears to be relatively consis-
tent over the years with only a few fluctuations evident in the data. While
some fluctuations, such as the spike in 2012, may appear to be substantial at
first glance, a deeper inspection reveals that even this apparent change only
accounts for an increase of around 5 mm. This variance corresponds to a fluc-
tuation of 0.04%. Nevertheless, it is important to note that in agriculture,
even a rather modest fluctuation in rain can result in a substantial impact on
yield. A similar progression is seen in the plot for the Average temperature
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over the years. Over the course of two decades, the curve presents some fluc-
tuations, but shows an overall upward tendency in temperature. From 1993
to 2013, the Average temperature across all sub-regions rises by 0.8 Cel-
sius (from 20.17 to 20.97). In the broader context of global warming and the
climate crisis, even such seemingly subtle temperature increases are critical
since rising temperatures have major effects on food security [25].

The four graphs in Figure 7 provide a high-level view of agricultural metrics
over the two decades in focus. Remarkably, the pesticide curve displays a
similar progression as the yield curve. This resemblance suggests a possible
relationship between these two variables. In order to quantify this connec-
tion, a brief correlation analysis with the numeric variables in the dataset
is conducted. Correlation is a widespread statistical measure describing the
degree to which two variables change together. When a variable tends to
increase whenever the respective other variable increases, there is a positive
correlation between these two. In much the same vein, if a variable tends to
decrease when another decreases, there is a negative correlation [52]. A mea-
sure that quantifies the linear relationship between two numeric variables is
the Pearson correlation coefficient [18|. Ranging between -1 and 1, coefficients
close to -1 indicate a strong negative linear relationship, and coefficients close
to 1 indicate a strong positive linear relationship, while coefficients close to
0 imply little to no linear association. The Pearson correlation coefficient
is widespread in the scientific sphere. However, it is important to mention
that the Pearsons coefficient assumes a constant relationship of the variables
across the whole data range and is rather sensitive to outliers [52|. This
correlation analysis is briefly applied here, seeking to understand potential
interactions between environmental factors and agricultural practices.

As seen in Table 5, the strongest relationship of variables is detected between
Pesticides in tonnes and Yield in hg/ha with a value of r=0.965. The
effect is positive linear and notably strong, suggesting that as the use of
pesticides increased over the years, the yield also substantially increased.
This potentially reflects the role of pesticides in crop protection. Both
Average rain in mm and Average temperature also correlate positively
with yield, although, with values of r=0.324 and r=0.640, significantly less
then Pesticides in tonnes. This behaviour might reflect the inherent role
which these two factors play in the growing conditions for certain crops. Yet,
despite the positive correlations, it is important to note that correlation does
not imply causation [52|. There could be other, uninvestigated factors that
play a significant role or the relationships could possibly be coincidental.
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No. | Variables Correlation Coefficient r | Effect

1 Pesticides in 0.965 Strong positive rela-
tonnes and Yield tionship
in hg/ha

2 Average rain in mm 0.324 Moderate positive rela-
and Yield in hg/ha tionship

3 Average 0.640 Moderate positive rela-
temperature and tionship
Yield in hg/ha

Table 5: Pearson Correlation Coefficient of Numeric Variables

4.4 Setup of Baseline ML Models

Prior to diving into the complexities of bias detection and mitigation, the
establishment of a baseline is vital. Training a baseline algorithm on the
data establishes a reference for subsequent analyses and comparisons [9].

The ML algorithm A Random Forest regressor algorithm is used for
this analysis. It is an ensemble learning method that constructs a large
number of decision trees at training time and produces the mean prediction
of the individual trees for regression problems [56]. In the literature, Random
Forest algorithms are referred to as powerful and versatile method for crop
yield prediction due to its accuracy and precision on the one hand and ease
of use and utility on the other hand. Therefore, it is found highly capable of
predicting crop yields and outperforms other models such as multiple linear
regression benchmarks [40, 68|. The algorithm is set up as follows.

Libraries and Packages Several Python libraries and packages are em-
ployed to facilitate data processing, modeling, and evaluation. The Pandas
library provides data structures and operations for efficient manipulation of
numeric tables and time series. Here, it is extensively used for the purpose
of data manipulation and analysis. Furthermore, the Scikit-learn library!®
is used as it offers a wide range of tools, making it a popular ML library in
Python [56]. Here, it is employed for various tasks. For data pre-processing,
its train_test_split ! package is used to split the dataset into training and
test subsets. For modeling, the sklearn library’s RandomForestRegressor 2

8https:/ /scikit-learn.org/stable/

9https: //scikit-learn.org/stable/modules/generated /sklearn.model _selection.train _test
__split.html

2Ohttps://scikit-learn.org/stable/modules/generated /sklearn.ensemble. RandomForest
Regressor.html
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is employed as the baseline ML algorithm for this analysis. For evaluation,
metrics like root_mean_squared_error 2! and r2_score ?? are used to eval-
uate the performance of the model. These metrics provide a comprehensive
assessment of the models and are explained in detail in Chapter 5. In addi-
tion, the Numpy library?® is used for the numerical operations it provides to
Python. This includes support for large multi-dimensional arrays and ma-
trices, as well as a collection of mathematical functions to operate on these
arrays |56]. Here, it is used to compute the square root of the MSE.

Model Training To initialize the Random Forest regressor, the default
parameters are used, which encompass the number of trees in the forest
(n_estimators=100), the function used to measure the quality of a split
(criterion="mse’ for regression), and the strategy to choose the split at each
node (splitter="best’). Based on empirical evidence, these parameters help
in generating well-performing general purpose models with low chances of
overfitting [56].

Use Cases For the purpose of this research, two different baseline models
are developed in order to address two use cases concerning bias in crop yield
predictions. Thereby, the potential bias in predictions can be viewed at from
two different perspectives, as seen in Figure 8 below. Understanding how crop
yield predictions vary across different sub-regions is the basis of the first use
case in this thesis, which is referred to as sub-region use case. By isolating
the information on sub-regions and assessing its impact on the predictions,
it can be investigated if certain sub-regions are consistently receiving higher
or lower predictions, which may be indicative of a regional bias in the model.
The objective of the second use case, the crop type use case, is to examine
whether the model demonstrates preferential treatment to certain crops. This
could highly influence agricultural strategies and indicate a bias in the model.
By evaluating these two use cases individually, a comprehensive picture of
potential biases in the predictive algorithms can be obtained.

2 https:/ /scikit-learn.org/stable/modules/generated /sklearn.metrics.mean _squared
error.html
2Zhttps:/ /scikit-learn.org/stable/modules/generated /sklearn.metrics.r2 _score.html

Zhttps:/ /numpy.org/
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1. Potatoes

S1 Northern Europe (highest yield) 2. Wheat
3. Maize
1. Cassava

S2 South-eastern Asia (medium yield) 2. Potatoes

3. Sweet Potatoes

1. Potatoes
S3 Sub-Saharan Africa (lowest yield) 2. Cassava
3. Sweet Potatoes

1. Latin America and Caribbean
S4 potatoes (highest yield) 2. Southern Asia
3. Northern Europe

1. Latin America and Caribbean
S5 plantains (medium yield) 2. Sub-Saharan Africa
3. South-eastern Asia

1. Latin America and Caribbean
S6 soybeans (lowest yield) 2. South-eastern Asia
3. Northern Europe

Figure 8: Overview of Use Cases and Scenarios

As the dataset is assembled, it catalogues crop yield delineated by the geo-
graphic variable Sub-region. While the dataset initially also included the
variables Country and Region, these columns are streamlined. The ratio-
nale for this is that the Sub-region variable already captures the geographic
distinction, thus allowing the analysis to be both informative and efficient
without compromising the variety of geographic context.

Moreover, in order to conduct a more focused analysis and examine the
differential impact of bias on different yield patterns, the data is strategically
narrowed down to three distinctive Sub-regions: Northern Europe, South-
eastern Asia, and Sub-Saharan Africa. Northern Europe contains the areas
with the highest yields, positioning the Sub-regions as a benchmark for peak
agricultural activity. In contrast, Sub-Saharan Africa features the lowest
yields, thereby providing a perspective from the other end of the spectrum.
South-eastern Asia represents the middle ground with its medium yields,
bridging the two extremes.
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Additionally, for a more granular exploration of these Sub-regions, their top
three crops are determined by means of the yield as selection criterion. This
approach is effective in isolating the key crops which are dominating the
agricultural production in these areas.

The next phase of data preparation involves feature engineering. Preserving
key variables such as Yield in hg/ha and Year in their original format is
vital to maintaining the integrity of the dataset. Variables of categorical
nature are one-hot encoded, meaning that a binary column is created for
each category. Thereby, these variables are transformed into a format that is
suitable for ML. Following feature engineering, the prepared dataset is split
to ease model training and testing. A common split ratio is applied, with
80% of the data used for training and the remaining 20% reserved for testing
purposes. This split not only facilitates model training, but also allows for
reliable performance metrics during the evaluation.

In order to thoroughly explore the dataset, a dual-model approach is used.
First, a Random Forest regressor is constructed and used for the SHAP
summary plot in the next section of this thesis project, aiming at unraveling
the nuances of each features influence on the prediction. In parallel to the
regression analysis, a Random Forest classification model is also built in
order to ensure compatibility with a wide range of tools available in the
ATF360 toolkit. Since many of these tools are optimized for binary outcomes,
constructing a classifier allows for an effective exploration of the AIF360
fairness metrics.

The initial phase of the analysis focuses on the baseline Random Forest re-
gressor models which are used for the SHAP analysis, while the additional
models are explored in Chapter 5. This allows for a layered exploration of
the data and its inherent dynamics. These future scenarios will inject biases
into the dataset, which will then be analysed by means of the AIF360 library
to detect and potentially mitigate these injected biases.
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4.5 Application of SHAP

Following the training of the models, SHAP is employed to interpret the
baseline models predictions. Along with the growth of ML applications, the
field of explainable Artificial Intelligence (xAl) has gained momentum in
recent years. As ML models grow in complexity, the need to understand and
interpret decisions and predictions made by these models grows as well [77].
The SHAP summary plots in Figure 9 and Figure 10 provide insights into
the relevance of different features in the baseline model. Each point on the
plot corresponds to a prediction for an observation. The y-axis represents the
features, which are ordered from top to bottom based on their importance.
The x-axis represents the SHAP values, reflecting the impact of that feature
value on the prediction. A positive SHAP value implies that the feature
pushes the model’s prediction higher, whereas a negative SHAP value implies
that the feature pushes the prediction lower [58]. The color indicates the
feature value, red representing high values and blue representing low values.

Prior to delving into the interpretation of the SHAP plots, it is important
to note that certain features in the plot incorporate values within their vari-
able names, such as Crop_Potatoes or Sub-region_Northern Europe. This
naming convention results from one-hot encoding that was carried out earlier
to prepare the data for model training. One-hot encoding converts categor-
ical variables into binary vectors, allowing ML models to handle categorical
data without falsely interpreting those as ordinal [74].

In the sub-region use case, the SHAP summary plot in Figure 9 reveals that
the following variables seem to have a high influence on the prediction.
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Figure 9: SHAP Summary Plot for Sub-region Use Case

Crop_Potatoes has a significant influence on the model’s predictions. There
is a trend towards higher yield predictions when the dataset includes potatoes
as crop (highlighted in red). Similarly, the absence of potatoes as crop often
leans towards lower yield predictions (highlighted in blue).

Pesticides in tomnnes also displays an important influence. The red points
leaning to the right indicate that increased pesticide use is associated with
higher yield predictions, while the blue points, especially those leaning to-
wards the left, imply a lower yield in case of reduced pesticide use.

Avg rain in mm indicates that higher rainfall tends to lead to higher yield
(red points) while lower rainfall tends to lead to lower yield (blue points),
highlighting the importance of water in crop growth.

The remaining features such as Avg_temperature, Year, the various crops
and sub-regions suggest a mixed influence on the models predictions. These
different effects on yield predictions indicate that several factors may interact
with their effects.
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Figure 10: SHAP Summary Plot for Crop Type Use Case

In the crop type use case, the SHAP summary plot in Figure 10 reveals that
the same variables seem to have a high influence on the prediction as in the
sub-region use case, even though at another magnitude.

Crop_Potatoes has a significant influence on the model’s predictions here as
well. The presence of potatoes as crop type predicts higher yields, just as
the absence of potatoes as crop type tends to predict lower yields.
Pesticides in tomnnes displays a similar influence in the crop type use case
as in the sub-region use case. Higher pesticide usage is positively associated
with higher yields, while lower pesticide usage can lead to lower yields.

Avg rain in mm reflects the trend observed in the sub-region use case as
well. Here, increased rainfall is also linked to higher yield predictions and
vice versa.
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The remaining features including Crop_Plantains, Crop_Soybeans, Year,
Avg temperature and various sub-regions display a mixed influence on the
models predictions, underscoring the interplay of several factors determining
yield outcomes.

All in all, the SHAP plot reveals that in both use cases Crop_Potatoes,
Pesticides in tonnes, and Avg rain in mm are the most influential fea-
tures in predicting crop yield. Potatoes generally lead to higher yield predic-
tions, and pesticide usage and rainfall positively influence yield.
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5 Application of ML Models

This chapter focuses on firstly training algorithms on data that is intention-
ally biased [86]. Secondly, the nuances of the introduced biases are explored
in depth across all six scenarios. Thirdly, by means of the AIF360 toolkit, this
chapter then detects the manifested biases, and examines possible AIF360
mitigation techniques, shedding light on the intricacies of bias in ML models.

5.1 Set up of Biased ML Models

As the basis for this thesis project and the application of the AIF 360 toolkit,
a notebook is used which is published by an AIF360 contributor, Oren Zeev-
Ben-Mordehai, on his Github account®* [6]. In Zeev-Ben-Mordehai’s project,
gender bias is artificially induced into a cardiology dataset. This is done
by deliberately removing 40% of women’s cardiac events, which leads to an
(artificial) gender imbalance in the model. Subsequently, a model is trained
on the biased data in which women are predicted to have a lower likelihood of
being diagnosed with cardiovascular diseases. By means of different AIF360

tools, the researchers aim at detecting the artificially introduced bias.

In accordance with that, this thesis project follows a similar endeavor of
manually introducing bias into the model. After establishing a non-biased
baseline model and identifying the influence of features by means of a SHAP
analysis in Chapter 4, the following section is concerned with establishing
biased ML models. Based on the results of the SHAP analysis, bias is delib-
erately introduced into the model by modifying its most influential features.
More specifically, the values of Pesticides in tonnes and Avg rain in
mm are both reduced by 90%. This manual intervention facilitates the exam-
ination of ramifications of bias within the model, which paves the way for a
profound analysis.

In the following analysis, in which bias is introduced across all scenarios, the
ML model assessment relies on the following metrics to evaluate the models’
performances:

2https://github.com/zbenmo/detecting-and-mitigating-bias-in-machine-learning-
models-using-shap-and-aif360/blob/main/Copy of milestone 3 instructions.ipynb
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RSME (Root Mean Squared Error) This metric measures the standard
deviation of the residuals and provides insight into the accuracy of the
model. A lower value indicates greater accuracy.

R-squared (R?) This statistical measure represents the proportion of vari-
ance in the dependent variable which can be explained by the indepen-
dent variables in the model. The closer the R? value is to 1, the better
the model fits the data.

Accuracy This metric indicates the ratio of correctly predicted observa-
tions to the total number of observations.

Precision This metric represents the number of correct positive results
divided by the number of all positive results.

Recall (sensitivity) This metric expresses the number of correct positive
results divided by the number of positive results which should have
been produced.

F1 Score This measure balances precision and recall. A higher F1 score is
desirable.

Sub-region use case

Scenario 1 Northern Europe Northern Europe has the highest yield
across all sub-regions in the dataset. Scenario 1 Northern Europe (S1 North-
ern Europe) deals with introducing bias into this particular sub-region by
manipulating the values of pesticide use and rain. The following results de-
picted in Figure 11 are obtained after introducing the bias and retraining
both ML models. When bias is introduced to Northern Europe, both the
Random Forest regressor and the Random Forest classifier still show high
levels of performance. In the model, the RSMFE stands at 17,621.79, indi-
cating a deviation between the model’s predictions and the actual values.
Looking at this value in relative terms, the prediction error of the model in
the presence of bias amounts to 13,30%. Even with the manipulated features,
the model achieves an R? of 0.970, implying that it is able to explain 97% of
the variance in crop yield. The Random Forest classifier achieves an Accuracy
of 96,61%, while both, the "Low-Med. Yield" and "Med.-High Yield" classes
exhibit a high Precision, Recall and F1 Score. This underscores the model’s
ability in differentiating among yield categories, even under the introduced
biases. The rather subtle shifts in the metrics compared to the baseline model
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Figure 11: Model Measures S1 Northern Europe

suggest that in terms of predictive quality, the models display a considerable
degree of resilience to the introduced bias.

Scenario 2 South-eastern Asia Shifting the bias to Scenario 2 South-
eastern Asia (S2 South-eastern Asia), a median yield region, the resilience
of both the Random Forest regressor and the Random Forest classifier can
still be observed. Looking at the metrics of the Random Forest regressor,
the absolute RSMFE is at 17,677.15, suggesting a slight increase in the spread
of residuals compared to Northern Europe. Similarly, the relative RSME
slightly rises to 13.34%. The R? value for this scenario is at 0.969, thereby
displaying a comparable ability to account for the variance as the model in
the previous scenario. Regarding the Random Forest classifier, an Accuracy
of 96.19% is achieved, which is again slightly lower compared to Northern
Europe. Precision, Recall and F1 Score metrics for both classes remain
fairly stable compared to the previous scenario, ranging between 0.95 and
0.97. When comparing S2 South-eastern Asia in Figure 12 below to S1
Northern Europe in Figure 11, there is a marginal decrease in each metric.
Nevertheless, the models for both sub-regions exhibit a notable stability with
only minor variations in performance.
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Figure 12: Model Measures S2 South-eastern Asia

Scenario 3 Sub-Saharan Africa Introducing bias in Scenario 3 Sub-
Saharan Africa (S3 Sub-Saharan Africa), the sub-region with the lowest yield
across all sub-regions in the dataset, the model showcases robustness through
the following metrics described in Figure 13 below. The Random Forest re-
gressor demonstrates an absolute RSME of 18,214.44, showing a modest
increase compared to scenarios S1 Northern Europe and S2 South-eastern
Asia, implying slightly more error in the prediction. Naturally, this is also
observed in the relative RSME, which marginally increases to 13.74%. In
spite of this, the model still maintains a high level of predictability with
an R? value of 0.968, illustrating that it still captures approximately 96.8%
of the variance in the dependent variable. The Random Forest classifier
displays similar robust values. With an Accuracy of 96,61%, it is just as
accurate as the previous scenarios. With values between 0.96 and 0.97, both
yield classes demonstrate strong Precision, Recall, and F1 Scores. This ro-
bust classification across both yield classes, despite introducing bias towards
Sub-Saharan Africa, underscores the model’s robustness and its capability to
efficiently distinguish between different levels of yield. Summarized, across
all three scenarios, bias in Northern Europe, South-eastern Asia, and Sub-
Saharan Africa, the models exhibit a marginal decrease in performance with
each successive scenario. Nevertheless, their overall resilience remains strong,
highlighting their ability to navigate sub-regional biases while sustaining ro-
bust forecasting results.
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Figure 13: Model Measures S3 Sub-Saharan Africa

Crop type use case

Scenario 4 potatoes The next analysis shifts the focus from regional biases
to crop-specific biases. This next use case examines how the introduction of
biases based on the crop type affects the models’ performances. Starting
with Scenario 4 potatoes (S4 potatoes), which provides the highest yields
compared to the other crops in the dataset, the metrics depicted in Figure 14
below are observed. Interestingly, the Random Forest regressor demonstrates
a slight improvement compared to the baseline model. The absolute RSMFE
value decreases from 18,585.88 (baseline) to 17.858,39, which is also reflected
in the relative RSME which decreases from 10.81% (baseline) to 10.39%.
Similarly, although minimal, the R? value increases from 0.986 to 0.987,
implying that despite the introduced bias, the model is able to explain the
variance in the dependent variable marginally better than the baseline model.
In contrast to this, the Random Forest classifier displays a slight decrease in
Accuracy, reducing from 96.65% (baseline) to 96.28%. For the "Low-Med.
Yield" class, the Precision remains constant at 0.97, while the Recall value
drops slightly from 0.97 to 0.95, resulting in an F'1 Score of 0.96. The other
class, "Med.-High Yield", shows Precision and Recall values of 0.95 and 0.98
respectively, resulting in an F'1 Score of 0.96. This indicates a minor shift in
the classifier’s ability to correctly predict this particular class. Overall, the
performances of the models remain reasonably stable, even after introducing
bias. This underscores the resilience of the models in dealing with such biases.
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Figure 14: Model Measures S4 Potatoes

Scenario 5 plantains In the case of Scenario 5 plantains (S5 plantains),
introducing bias in the crop which exhibits a medium yield in the dataset, the
models present the following results. As seen in Figure 15 below, the Random
Forest regressor’s absolute RSMFE value is 18,591.447, which is slightly higher
than the 17,858.39 observed for potatoes. Thereby, also the relative RSME
increases from 10.39% for potatoes to 10.81% for plantains, indicating that
the predictions for the latter are slightly further from the actual values than
they are for potatoes. With 0.986, the R? value for plantains is slightly lower
than for potatoes, yet very high as the model can effectively explain 98.6%
of the variance in the data. The values for the classifier metrics exhibit a
similar pattern. The accuracy drops from 96.28% for potatoes to 95.66%
for plantains. For the "Low-Med. Yield" class, plantains demonstrate a
Precision of 0.94, which is lower than the 0.97 for potatoes, although the
Recall for plantains increase to 0.97 here, compared to the 0.95 observed for
potatoes. For the other class, "Med.-High Yield", the Precision for plantains
mirrors that of potatoes at 0.97. However, with 0.94, the Recall for plantains
is lower compared to the high Recall of 0.98 for potatoes. The F1 Score
remains consistent for each class in both scenarios. It can be deduced that,
while the introduction of bias for plantains reveals a slight dip compared
to potatoes in certain Random Forest classifier metrics, the Random Forest
regressor metrics remain consistent. Such variations highlight the model’s
ability to respond to different crops with different yields.
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Figure 15: Model Measures S5 Plantains

Scenario 6 soybeans Turning to Scenario 6 soybeans (S6 soybeans), which
constitute the lowest yield in the dataset, the model continues to be stable
as seen in Figure 16 below. The absolute RSME value of the Random Forest
regressor is at 18,314.93, which is between the values observed for potatoes
and plantains. In much the same vein, the relative RSME value is 10.65%,
again indicating a slight improvement for plantains and a slight decrease
for potatoes. Interestingly, the R? value remains stable at 0.987, reflecting
the same performance of the model as when biased towards potatoes. In
the analysis of the classifier metrics, the Accuracy of soybeans at 95.66% is
slightly below that of potatoes at 96.28%, but equivalent to that of plantains.
In the "Low-Med. Yield" class, soybean’s Accuracy of 0.94 is slightly lower
than potato’s 0.97. Similarly, in the "Med.-High Yield" class, soybean is on
the same level as plantain, but slightly behind potato’s Recall of 0.98. The
F1 Score of 0.96 remains consistent across all three scenarios, demonstrating
the stable performance of the models despite the different crop biases.

Comparing all three scenarios, bias in potatoes, plantains, and soybeans,
reveals that as the bias is introduced from the highest yielding crop to the
lowest yielding crop, the model’s regression metrics remain largely consistent,
while the classifier shows nuanced variations. Soybeans, despite having the
lowest yield, show metrics comparable to plantains, pointing to the model’s
adaptability and strength in sustaining prediction quality across different
crops with distinct yields.
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Figure 16: Model Measures S6 Soybeans

5.2 Application of ATF360

As part of the previous section, bias is successfully introduced into the ML
models. The next step is to assess the extent to which this introduced bias
can be detected. This is done by means of the AIF360 library. Out of
the three fairness toolkits investigated in Chapter 2, AIF360 is chosen as
the primary tool due to the following reasons. Compared to Tensorflow
Responsible Al, AIF360 appears to be more suitable in the context of this
thesis project as it not only offers bias detection, but also bias mitigation
approaches. Tensorflow Responsible Al primarily offers tools and libraries
for fairness metrics rather than explicit bias mitigation tools [2|. Likewise,
ATF360 is chosen over Fairlearn because, while Fairlearn offers both bias
detection and mitigation capabilities, it primarily focuses on post-processing
and reduction algorithms for bias mitigation and is therefore not equipped
with the pre-processing strategies required for this thesis project.

In particular, the following AIF360 fairness metrics are leveraged in the con-
text of this thesis project: Disparate Impact, Equal Opportunity Difference,
Average Odds Difference, and Statistical Parity Difference. According to the
literature studied in Chapter 2, these metrics collectively provide insight into
how the models behave across different groups, highlighting potential dispar-
ities in false positives, true positives, and overall favorable outcomes, thus
allowing for a holistic assessment of the models’ fairness [6].
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In terms of interpreting these metrics, Disparate Impact values near 1 point
to fairness, while deviations point to bias. For Fqual Opportunity Difference,
a value of 0 indicates equal true positive rates across groups, with deviations
suggesting imbalances. For Average Odds Difference, values near zero signal
fairness, while non-zero values reveal bias in favor of either the unprotected
or protected group. Statistical Parity Difference values should approximate
0, while values away from 0 suggest disparities in favorable outcomes [63].
Beyond its capabilities in bias detection, the AIF360 toolkit includes a set of
nine bias mitigation algorithms targeted at correcting biases in ML models.
These algorithms are used based on the location where they can intervene
within the ML pipeline. Pre-processing algorithms can modify the training
data [6]. As the biases in the context of this thesis were introduced by
strongly modifying data, two of the pre-processing algorithms from AIF360
are used for bias mitigation purposes:

Reweighing rebalances the weights of the training examples to mitigate
bias in the decision boundaries, fostering a fairer classifier [44].

Disparate Impact Remover adjusts the features of the data set to reduce
the correlation between sensitive attributes and the decision process,
thereby ensuring that decisions remain unbiased by these features [6].

Starting with the sub-region use case, this section delves into detecting and
mitigating biases which exist within the sub-regions. Afterwards, the same
tools are applied to the crop type use case.

Sub-region use case

S1 Northern Europe Looking at the fairness metrics for in Figure 17
below, where bias is introduced for Northern Europe, the following values
are produced.

Bias Detection The Disparate Impact metric is captured at 0.9636. Since
this metric is close to the ideal value of 1, it suggests that there is a modest,
but not profound difference between the favorable outcomes for the protected
and non-protected groups. The Equal Opportunity Difference shows a pos-
itive value of 0.0287. This suggests that the protected group has a slightly
higher true positive rate than the non-protected group. Furthermore, the
Average Odds Difference holds a minimal value of 0.0016. Such a low value
indicates that the results between the two groups are almost equal. In con-
trast to this, the Statistical Parity Difference comes to -0.0192. This negative
value implies a small disadvantage for the protected group in terms of positive
classifications.
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Figure 17: Bias Metrics S1 Northern Europe

Bias Mitigation Applying the Reweighing mitigation algorithm, the
model maintains its Accuracy of 96.61%. The Disparate Impact shows slight
increase to 0.9746, suggesting that the model gradually moves towards more
equitable results after Reweighing. Both, Equal Opportunity Difference and
Average Odds Difference also show modest increases, indicating further re-
finement of the classification results. However, the application of the Dis-
parate Impact Remover results in substantial changes. The accuracy drops
to 67.58% and the Disparate Impact scores 0.5551, marking a significant de-
viation from the fair treatment mark. The new Fqual Opportunity Difference
and the Average Odds Difference underscore the profound negative impact
of this mitigation strategy.
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Figure 18: Bias Metrics S2 South-eastern Asia

S2 South-eastern Asia Determining the fairness metrics for S2 Southeast
Asia reveals the values seen in Figure 18.

Bias Detection Turning to the fairness metrics, the Disparate Impact is
particularly striking at 1.6400. This is substantially higher than the ideal
benchmark of the value 1, and contrasts sharply with the outcome of S1
Northern Europe. It implies that the protected group in South-eastern Asia
receives significantly more favorable outcomes than the unprotected group.
The Equal Opportunity Difference is recorded at 0.0230. This is a small
positive value and seems to indicate that the protected group has a slightly
higher true positive rate. The value is close to that observed in S1 Northern
Europe, potentially suggesting a common trend in the way bias affects true
positive rates in different regions. The Average Odds Difference is at -0.0149,
pointing to a minimal negative bias when both, false and true positive rate
disparities, are combined. The Statistical Parity Difference shows a value of
0.2917. This value, which is notably positive, marks a bias towards positive
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classifications for the protected group, a trend that is more accentuated than
the one observed for S1 Northern Europe.

Bias Mitigation In mitigation, the use of the Reweighing algorithm re-
sults in a minor increase in Accuracy to 96.61%. The Disparate Impact,
already higher than ideal, increases slightly more to 1.6720. The new Equal
Opportunity Difference and Average Odds Difference also undergo adjust-
ments that bring the model results closer to fairness. However, applying
the Disparate Impact Remover has a significant impact, just as seen in S1
Northern Europe. While the drop in Accuracy is less pronounced, settling at
85.59%, the Disparate Impact jumps to 1.7704, indicating a further increase
in the biased results. The remaining metrics, the new Equal Opportunity Dif-
ference and the Average Odds Difference, show significant shifts, reflecting
the transformative potential of this particular mitigation strategy.

S3 Sub-Saharan Africa Continuing the exploration of bias within a sub-
regional context, S3 Sub-Saharan Africa leads to the results depicted in Fig-
ure 19 below.

Bias Detection Taking into account the fairness metrics, the Disparate
Impact stands out at 0.7003. This is below the optimal metric of 1, signaling
that the protected group in Sub-Saharan Africa receives less favorable out-
comes relative to the unprotected group. This contrasts with the elevated
Disparate Impact observed for S2 South-eastern Asia and the near-neutral
value for S1 Northern Europe, indicating region-specific disparities. The
Equal Opportunity Difference scores -0.0434. This negative value means that
the protected group faces a marginally reduced true positive rate. This pat-
tern, although in the same negative direction, is more pronounced than the
slight positive bias observed for S1 Northern Europe and S2 South-eastern
Asia. The Awverage Odds Difference is barely negative at -0.0040. This in-
dicates a minimal negative bias, a result that lies between the results of the
other two sub-regions. The Statistical Parity Difference at -0.1827 marks
a tendency against positive classifications for the protected group in Sub-
Saharan Africa, reinforcing the prevailing trend of reduced positive outcomes
for this group.
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S3 Sub-Saharan Africa
> Accuracy 96.61%)
E Disparate Impact 0.7003
g § Equal Opportunity Difference -0.0434]
: Average Odds Difference -0.0040]
S Statistical Parity Difference -0.1827,
Reweighing
Accuracy (after Reweighing) 96.40%)
Disparate Impact (after Reweighing) 0.6934
E Equal Opportunity Difference (after Reweighing) -0.0535
; E Average Odds Difference (after Reweighing) -0.0091
E A |Disparate Impact Remover
E Accuracy (after DIR) 71.97%)
Disparate Impact (after DIR) 0.5295
Equal Opportunity Difference (after DIR) -0.1437,
Average Odds Difference (after DIR) -0.3048]

Figure 19: Bias Metrics S3 Sub-Saharan Africa

Bias Mitigation Venturing into the bias mitigation strategies, applying
the Reweighing algorithm leads to a minimal dip in accuracy, which is now
96.40%. The Disparate Impact, already lower than the ideal benchmark,
drops further to 0.6934. The reweighed Fqual Opportunity Difference and
Average Odds Difference both move in directions that amplify the detected
bias, which indicates that Reweighing may not be the optimal solution for
bias in this particular context. When applying the Disparate Impact Re-
mover, there is a noticeable drop in accuracy to 77.97%. The Disparate
Impact decreases substantially to 0.5295, exacerbating the disparity in favor-
able outcomes. Likewise, the Fqual Opportunity Difference and the Average
Odds Difference indicate exacerbated bias, underscoring the significant trans-
formative and, in this case, detrimental impact of this mitigation technique
for Sub-Saharan Africa.
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All in all, for bias detection and mitigation in the sub-region use case, in
which bias was introduced at the sub-regional level, there are distinct differ-
ences in fairness metrics across S1 Northern Europe, S2 South-eastern Asia
and S3 Sub-Saharan Africa. While all three sub-regions maintain high accu-
racy, the effectiveness of mitigation strategies varies, with Northern Europe
demonstrating rather minor biases, Southeast Asia showing favorable results,
and Sub-Saharan Africa experiencing consistent challenges in overcoming its
introduced biases.

Crop type use case

S4 potatoes This crop type use case illustrates the impact of introduced
bias towards the crop type potatoes in Figure 20 below.

Bias Detection The Disparate Impact for potatoes is at 1.0734, indicating
a minor bias toward potatoes compared to other crops. This signifies that
potatoes have slightly more favorable outcomes than the baseline, but not by
any significant amount. The positive Fqual Opportunity Difference of 0.0294
implies that potatoes have a minor better true positive rate compared to the
other crops. Similarly, the Average Odds Difference of 0.0124 supports this
notion by underlining a favorable rate of correct predictions for potatoes.

Bias Mitigation After applying the Reweighing algorithm, the Disparate
Impact rises slightly to 1.0848, indicating that the mitigation approach sur-
prisingly makes the model slightly more biased in favor of potatoes. The
Equal Opportunity Difference also increases to 0.0348, indicating an increase
in the true positive rate difference between potatoes and other crops. Apply-
ing the Disparate Impact Remover, there’s a noticeable drop in the Disparate
Impact, which decreases to 0.7548, signifying a less favorable outcome for
potatoes. The FEqual Opportunity Difference rises to 0.2000 and the Average
Odds Difference becomes negative to -0.1996. This demonstrates that pota-
toes experienced a significant decrease in true positives and an increase in
false positives after the application of the Disparate Impact Remover.
While the bias towards potatoes produces subtle differences in prediction
outcomes, the mitigation efforts, particularly with the Disparate Impact Re-
mover, produce more pronounced effects, moving the balance away from the
initially introduced bias.
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Crop type use case
S4 potatoes
> Accuracy 96.28%0|
E Disparate Impact 1.0734
B § Equal Opportunity Difference 0.0294|
E Average Odds Difference 0.0124|
Statistical Parity Difference 0.03 74|
Reweighing
Accuracy (after Reweighing) 96.28%)
Disparate Impact (after Reweighing) 1.0848
E Equal Opportunity Difference (after Reweighing) 0.0348
[Q E Average Odds Difference (after Reweighing) 0.0178
E R |Disparate Impact Remover
E Accuracy (after DIR) 63.21%
Disparate Impact (after DIR) 0.7548
Equal Opportunity Difference (after DIR) 0.2000
Average Odds Difference (after DIR) -0.1996

Figure 20: Bias Metrics S4 Potatoes

S5 plantains Obtaining the fairness metrics for S5 plantains, where bias
is introduced for a medium yield crop, reveals the values shown in Figure 21
below.

Bias Detection The Disparate Impact, measured at 0.6016, points to a
lower favorability for plantains compared to other crops. This value implies
that the results for plantains are about 60% as favorable as those for other
crops, indicating the presence of bias against the crop plantains. The negative
Equal Opportunity Difference of -0.0374 indicates that plantains are slightly
disadvantaged when it comes to true positive rates compared to other crops.
This finding is further reflected in the Awverage Odds Difference of -0.0178,
which is indicative of a slightly unfavorable rate of both true and false positive
predictions for plantains. Also, the Statistical Parity Difference of -0.2274
adds further evidence to this bias, signaling that plantains are less prone to
favorable outcomes.
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Crop type use case
S5 plantains
> Accuracy 95.66%
E " Disparate Impact 0.6016}
g E Equal Opportunity Difference -0.0374
: Average Odds Difference -0.0178
S Statistical Parity Difference -0.2274
Reweighing
Accuracy (after Reweighing) 95.95%)
Disparate Impact (after Reweighing) 0.6059|
% Equal Opportunity Difference (after Reweighing) -0.0374
5 E Average Odds Difference (after Reweighing) -0.0129
E A |Disparate Impact Remover
S Accuracy (after DIR) 74.57%)
Disparate Impact (after DIR) 0.5676
Equal Opportunity Difference (after DIR) -0.0532
Average Odds Difference (after DIR) -0.2045

Figure 21: Bias Metrics S5 Plantains

Bias Mitigation After the application of the Reweighing algorithm, the
Accuracy of the model slightly improves to 95.95%. The new Disparate Im-
pact also increases, albeit minimally, to 0.6059, indicating a slight bias reduc-
tion for plantains. Yet, the Equal Opportunity Difference remains unchanged,
revealing that the true positive rate difference between plantains and other
crops persists. The Average Odds Difference improves marginally to -0.0129,
reflecting a minor correction in the balance between true and false positive
rates. After applying the Disparate Impact Remowver, the Disparate Impact
value further decreases to 0.5676, exacerbating the existing bias against plan-
tains. The Fqual Opportunity Difference further deteriorates to -0.0532, and
the Average Odds Difference turns more negative to -0.2045. These post Dis-
parate Impact Remover metrics hint at the fact that the mitigation strategy
may have accentuated the bias against plantains inadvertently.

Overall, in S5 plantains, a bias against plantains is noticeable. The im-
plemented strategies, particularly the Disparate Impact Remover, appear to
further exacerbate the imbalance, highlighting the complexity of addressing
biases for specific crop types.
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S6 soybeans Continuing the bias exploration in the crop type context, S6
soybeans examines the implementation of bias towards the lowest yielding
crop in the dataset, generating the results presented in Figure 22.

Bias Detection The Disparate Impact metric amounts to 1.3793, signify-
ing a bias in favor of soybeans over other crops. This implies that the results
for soybeans are approximately 38% more favorable compared to other crops,
revealing the presence of a positive bias in favor of soybeans. The positive
Equal Opportunity Difference of 0.0147 is indicative of a minor advantage
for soybeans in determining true positives over other crops. This is further
demonstrated by the Average Odds Difference of 0.0228, which also gives a
slightly favorable rate for both true and false positive predictions for soy-
beans. Additionally, the Statistical Parity Difference of 0.1725 supports a
positive indication of this positive bias, suggesting that soybeans are more
prone to favorable outcomes.

64



Crop type use case
S6 soybeans
® Accuracy 95.66%|
E Disparate Impact 1.3793
g § Equal Opportunity Difference 0.0147
E Average Odds Difference 0.0228
S Statistical Parity Difference 0.1725
Reweighing
Accuracy (after Reweighing) 95.95%
Disparate Impact (after Reweighing) 1.3337
E Equal Opportunity Difference (after Reweighing) 0.0060
5 E Average Odds Difference (after Reweighing) 0.0010;
E R |Disparate Impact Remover
E Accuracy (after DIR) 83.24%
Disparate Impact (after DIR) 1.0673
Equal Opportunity Difference (after DIR) 0.0247
Average Odds Difference (after DIR) -0.0981

Figure 22: Bias Metrics S6 Soybeans

Bias Mitigation In regard to mitigation, when employing the Reweighing
algorithm, the model’s Accuracy increases slightly to 95.95%. However, the
Disparate Impact decreases to 1.3337, representing a slight reduction in fa-
vorability of soybeans. The FEqual Opportunity Difference drops to 0.0060,
which is a reduction in the true positive rate advantage which soybeans ini-
tially held. The Average Odds Difference also shrinks dramatically to 0.0010,
meaning that the favorable predictions for soybeans, both true and false posi-
tives, become nearly equal. The application of the Disparate Impact Remover
remarkably reduces the disparity to 1.0673, pointing to a much more bal-
anced result between soybeans and other crops. Interestingly, the new Equal
Opportunity Difference climbs to 0.0247, inferring that soybeans obtained a
small advantage in true positive rates after mitigation. Conversely, the Av-
erage Odds Difference produces a negative value of -0.0981, thus illustrating
an unfavorable prediction balance for soybeans, particularly in terms of false
positives.
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Overall, S6 soybeans demonstrates a clear positive bias favoring soybeans in
the detection phase. Although mitigation strategies, especially the Disparate
Impact Remover, progress in leveling the field, they also create complexity
in terms of prediction scores, underlining the challenges of managing bias in
crop types.

In the crop type use case, the model identifies distinct biases for potatoes,
plantains, and soybeans. Potatoes are slightly overpredicted, plantains are
consistently underpredicted, while soybeans show an overprediction that can
almost be offset through mitigation. Despite varying biases, the model ac-
curacy remains similarly high across all crops, although the effectiveness of
mitigation varies for each crop.

All in all, it can be deduced that in the sub-region use case, Northern Eu-
rope, South-eastern Asia, and Sub-Saharan Africa each demonstrate unique
biases when manipulated, with the models indicating different levels of re-
silience across the regions. In the crop type use case, introducing bias for
potatoes, plantains, and soybeans leads to different predictive outcomes, with
mitigation strategies leading to different outcomes. In both use cases, while
the model accuracy remains constant, the variation in results emphasizes the
complexity of managing bias in different contexts. A comprehensive overview
of all calculated metrics, which allow for comparison of the different values,
is shown below in Figure 23 for the sub-region use case and in Figure 24 for
the crop type use case.
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S1 Northern S2 South-eastern S3 Sub-Saharan
Europe Asia Africa
Baseline Random Forest Regressor Algorithm
RSME absolute 17621.79 17677.155 18214.443
R2 0.9697 0.9695 0.9676
RSME relative 13.30% 13.34% 13.74%
Baseline Random Forest Classifier Algorithm
Precision 0.98 0.97 0.97
Low - Medium Yield Class Recall 0.95 0.95 0.96
F1 Score 0.97 0.96 0.97
Precision 0.96 0.95 0.96
Medium - High Yield Class Recall 0.98 0.97 0.97
F1 Score 0.97 0.96 0.97
Bias Detection Metrics
Accuracy 96.61% 96.19% 96.61%
Disparate Impact 0.9636 1.6400 0.7003
Statistical Parity Difference -0.0192 0.2917 -0.1827
Equal Opportunity Difference 0.0287 0.0230 -0.0434
Average Odds Difference 0.0016 -0.0149 -0.0040
Bias Mitigation Strategy 1: Reweighing
Accuracy after Reweighing 96.61% 96.61% 96.40%
Disparate Impact after Reweighing 0.9746 1.6720 0.6934
Equal Opportunity Difference after Reweighing 0.0345 0.0364 -0.0535
Average Odds Difference after Reweighing 0.0076 -0.0059 -0.0091
Bias Mitigation Strategy 2: Disparate Impact Remover
Accuracy after DIR 67.58% 85.59% 77.97%
Disparate Impact after DIR 0.5551 1.7704 0.5295
Equal Opportunity Difference after DIR 0.0460 0.1810 -0.1437
Average Odds Difference after DIR -0.3983 0.0566 -0.3048

Figure 23: Overview Results for Sub-region Use Case
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Crop type use case

‘S4 potatoes S5 plantains S6 soybeans

Baseline Random Forest Regressor Algorithm
RSME absolute 17858.39 18591.466 18314.928
R2 0.9873 0.9862 0.9866
RSME relative 10.39% 10.81% 10.65%
Baseline Random Forest Classifier Algorithm

Precision 0.97 0.94 0.94
Low - Medium Yield Class Recall 0.95 0.97 0.97

F1 Score 0.96 0.96 0.96

Precision 0.95 0.97 0.97
Medium - High Yield Class Recall 0.98 0.94 0.94

F1 Score 0.96 0.96 0.96
Bias Detection Metrics
Accuracy 96.28% 95.66% 95.66%
Disparate Impact 1.0734 0.6016 1.3793
Statistical Parity Difference 0.0374 -0.2274 0.1725
Equal Opportunity Difference 0.0294 -0.0374 0.0147
Average Odds Difference 0.0124 -0.0178 0.0228
Bias Mitigation Strategy 1: Reweighing
Accuracy after Reweighing 96.28% 95.95% 95.95%
Disparate Impact after Reweighing 1.0848 0.6059 1.3337
Equal Opportunity Difference after Reweighing 0.0348 -0.0374 0.0060
Average Odds Difference after Reweighing 0.0178 -0.0129 0.0010
Bias Mitigation Strategy 2: Disparate Impact Remover
Accuracy after DIR 63.21% 74.57% 83.24%
Disparate Impact after DIR 0.7548 0.5676 1.0673
Equal Opportunity Difference after DIR 0.2000 -0.0532 0.0247
Average Odds Difference after DIR -0.1996 -0.2045 -0.0981

Figure 24: Overview Results for Crop Type Use Case
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6 Discussion and Limitations

This chapter on the one hand aims at summarizing the results and thereby
answering the research questions and on the other hand at stating potential
limitations of the study. This thesis is concerned with the overarching Re-
search Question: How can bias be detected in Al based yield predictions for
food security? In the following, this question is answered by answering its
three sub-questions.

6.1 The Applied Bias Detection Method

RQ1.1 What does the chosen bias detection method reveal about its impact
on Al-based yield predictions for food security?

The evaluation starts with an analysis of the sub-region use case, focusing on
model performance and bias detection metrics. The discussion then moves
to the crop type use case, where the model performance and bias detection
metrics are examined accordingly.

Sub-region use case

Model performance In regard to the sub-region use case, the perfor-
mance of the Random Forest regressor shows a noticeable tendency: it per-
forms optimally for S1 Northern Europe (highest yield), somewhat less so for
S2 Southeast Asia (median yield) and deviates the most for S3 Sub-Saharan
Africa (lowest yield). However, these differences remain minimal, underscor-
ing the robustness of the model. At the same time, the Random Forest
classifier remains consistent across all scenarios, demonstrating its resilience
to regional biases.

Bias detection In the assessment of bias detection across the three sub-
regions, the models show different degrees of sensitivity to the introduced
biases. The accuracy metric points to the models maintaining consistent
predictive capabilities across S1 Northern Europe, S2 South-ecastern Asia,
and S3 Sub-Saharan Africa, regardless of the specific regional biases. For
Disparate Impact, Northern Europe’s value is close equal outcomes between
privileged and unprivileged groups. This could potentially be attributed to
the fact that Northern Europe is privileged by virtue of its high yield. In
contrast, South-eastern Asia’s metric is notably indicating an advantage for
this unprivileged group, suggesting that South-eastern Asia is experiencing
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more favorable outcomes than its privileged counterpart, despite being a
medium yield sub-region. Conversely, Sub-Saharan Africa presents a bias
against it. This sub-region, which offers the lowest yield compared to all
other sub-regions, seems to bear the brunt of the introduced bias, thereby
suggesting less favorable outcomes compared to the privileged group. Almost
the same results are achieved for Statistical Parity Difference. Northern
Europe’s value is again close to zero, thereby balanced between the privileged
and unprivileged groups. In contrast, South-eastern Asia’s high positive value
demonstrates a bias in favor of the unprivileged group, while Sub-Saharan
Africa’s negative value suggest a bias towards the unprivileged group. The
Equal Opportunity Difference and the Average Odds Difference across the
scenarios display negligible disparities. Their minimal magnitudes suggest
limited practical implications, yet they serve as complementary information
in the broader context of bias detection.

In summary, while Northern Europe’s bias remains largely undetected, possi-
bly due to its privileged status, Sub-Saharan Africa clearly exhibits the intro-
duced bias, consistent with its unprivileged position. South-eastern Asia of-
fers a surprising deviation, tending toward unexpectedly favorable outcomes
for its unprivileged group. Overall, the AIF360 toolkit proves useful in de-
tecting bias in two of the three scenarios, underscoring its effectiveness and
relevance in such analytical efforts.

Crop type use case

Model performance With respect to the crop type use case, all Random
Forest regression metrics show the best performance for S4 potatoes, the crop
with the highest yield in the dataset. Interestingly, S6 soybeans, in which
bias is introduced against the crop with the lowest yield, ranks second in
terms of performance. In contrast, S5 plantains, in which bias is introduced
against the crop with medium yield, ranks lower than the other two, although
the performance differences between the scenarios are comparatively small.
When evaluating the Random Forest classifier, the performance across all
three scenarios - S4 potatoes, S5 plantains, and S6 soybeans - is found to be
fairly consistent.

Bias detection When evaluating bias detection in the crop types, the
models again show different degrees of sensitivity to the introduced biases.
Across all three scenarios, the accuracy is consistent, indicating that the
general predictive capability of the model is comparable across all three crop
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types. For S4 potato, which represents the crop with the highest yield in
all Sub-regions, the model shows relatively fair treatment, as reflected by
a Disparate Impact value near the ideal threshold of 1. This means that
the model does not significantly favor or discriminate against potatoes com-
pared to other crops. Conversely, S5 plantains, a medium yield crop, has a
Disparate Impact value well below 1, indicating that this crop type is less
likely to obtain a favorable outcome compared to potatoes. S6 soybeans,
the crop with the lowest yield across all sub-regions, has a Disparate Impact
value above 1, implying that despite having the lowest yield in the dataset,
soybeans are more likely to receive favorable outcomes than potatoes. This
rather counterintuitive result suggests that the model may overcompensate
for the inherent low yield of soybeans. Again, almost the same results as
for the Disparate Impact are mirrored in the Statistical Parity Difference.
The potatoes’ value suggests an almost equal rate of favorable outcomes for
the privileged and unprivileged groups. Contrasting this, plantains negative
value suggests a bias towards the unprivileged group, while soybeans’ pos-
itive Statistical Parity Difference suggests that this crop may be receiving
more favorable results than expected relative to their actual yield. The dis-
tinctions in these values reflect the challenges in achieving model fairness,
especially when there are inherent disparities like differing crop yields. The
values for both, Fqual Opportunity Difference and the Average Odds Differ-
ence are again rather modest across all three scenarios in the crop type use
case, suggesting that the differences in receiving favorable outcomes between
the privileged and unprivileged groups is minimal. Thereby, these metrics
fail to detect the introduced bias, falsely suggesting the models across all
three crops are fair.

In essence, while model accuracy is consistent across crop types, the bias
detection tools in the AIF360 toolkit highlight potential differences in pre-
dictions, particularly for the plantains and soybeans scenarios.
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6.2 The Applied Bias Mitigation Method

RQ1.2 How effective are the selected bias mitigation techniques in reducing
bias in Al-based food security yield prediction models?

The evaluation starts with the sub-region use case, investigating first the
Reweighing algorithm and then the Disparate Impact Remover. A similar
analysis is then done for the crop type use case with both algorithms.

Sub-region use case

Upon applying the Reweighing algorithm from the AIF360 toolkit to mitigate
bias, the following can be observed. The accuracy metrics for all scenarios
remain robust, suggesting that the Reweighing process does not compromise
the general predictive capability of the model. In addition, the Disparate
Impact for S1 Northern Europe marginally improves, showing that the miti-
gation process has been slightly effective in mitigating the bias for this region.
Similarly, for S2 South-eastern Asia and S3 Sub-Saharan Africa, the post-
mitigation results still reveal a significant bias. In fact, for S2 South-eastern
Asia, the bias appears to minimally increase, while for S3 Sub-Saharan Africa,
the bias decreases only slightly. This suggests that Reweighing may not al-
ways be effective as a bias mitigation strategy, especially when the initial bias
is strong. After Reweighing, the values for both Equal Opportunity and Av-
erage Odds Differences remain small across all scenarios, indicating that the
model’s fairness in terms of positive predictions (both true and false) between
the privileged and unprivileged groups remains consistent post-mitigation.
While Reweighing appears to preserve model accuracy here, its effectiveness
in mitigating bias varies across scenarios. For S1 Northern Europe, the miti-
gation process seems relatively successful, yet for S2 South-eastern Asia and
S3 Sub-Saharan Africa, the results are mixed. The challenge to effectively
address more pronounced biases remains, particularly in scenarios with high
Disparate Impacts.

Likewise, the application of the Disparate Impact Remover from the AIF360
toolkit as a means of bias mitigation results in several notable observations.
The model’s accuracy decreases significantly across all scenarios after imple-
menting the Disparate Impact Remover. This might imply that there has
been a trade-off in attempting to remove bias, which negatively affects the
overall predictive ability of the model. However, the post-mitigation values of
the Disparate Impact also demonstrate concerning developments: the values
for all three scenarios have shifted further away from the ideal value of 1. For
S1 Northern Europe and S3 Sub-Saharan Africa, the Disparate Impact scores
decrease further below 1. And while the metric for S2 South-eastern Asia
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already clearly exceeded the value 1 before, it rises even further after miti-
gation. Strikingly, the values continue to shift in the undesirable direction,
pointing to an increase in bias for all three scenarios after applying the Dis-
parate Impact Remover. This illustrates that the Disparate Impact Remover
may not be a universal panacea and may not necessarily achieve the desired
fairness effects in all scenarios. Similarly, a decrease across all three scenar-
ios is evident for the Equal Opportunity and Average Odds Differences after
applying the Disparate Impact Remover. Particularly, S1 Northern Europe
and S3 Sub-Saharan Africa record a larger bias.

In conclusion, the intent of using the Disparate Impact Remover was to pro-
mote fairness. Yet, the results indicate that it’s a difficult endeavor. Usually,
bias mitigation algorithms require a delicate balancing act between achieving
fairness and maintain model effectiveness. However, in this case, both have
deteriorated after applying the Disparate Impact Remover.

Crop type use case

Applying the Reweighing algorithm from the AIF360 toolkit to mitigate bias
based on crop type results in the following observations. The accuracy met-
rics across all three scenarios stay robust, signifying that the Reweighing
process does not significantly affect the models’ overall predictive ability.
After Reweighing, the Disparate Impact for S4 potatoes as well as S5 plan-
tains deteriorates slightly, suggesting that the bias for these crops has not
been effectively addressed. However, for S6 soybeans, there is a modest im-
provement. Overall, this observation suggests that while Reweighing can at
times help mitigate bias, its effectiveness is not uniform across all crop types.
After Reweighing, the values for both the Equal Opportunity Difference and
the Average Odds Difference remain modest for all scenarios. In particular,
these values are lowest for S6 soybeans, reflecting a small improvement in
fairness for this crop. As the changes are minimal across all crop types, how-
ever, it could be argued that these metrics have not experienced significant
shifts post-mitigation. In general, the Reweighing method offers mixed re-
sults for bias reduction depending on the crop type. Mitigation efforts are
less productive for S1 potatoes and S2 plantains, but there is a slight bias
reduction for S3 soybeans. The challenge of using Reweighing to effectively
address biases in different crop yields remains evident.
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Furthermore, the application of the Disparate Impact Remover from the
ATIF360 toolkit as a means of bias mitigation leads to a number of remarkable
observations. Just like in the sub-region use case, the accuracy of the model
predictions drops in all scenarios after applying the Disparate Impact Re-
mover. S4 potatoes experience the most severe loss in accuracy, followed by
S5 plantains and then S6 soybeans. This particular mitigation process might
have altered the feature distributions in a way that affects the overall predic-
tive performance of the model. The post-mitigation values of the Disparate
Impact for S4 potatoes also deteriorate considerably, demonstrating that the
bias for this crop increases. In comparison, S5 plantains shows some reduc-
tion in bias while S6 soybeans exhibits a significant improvement in bias
mitigation as shown by the improved Disparate Impact score. Again, the
varying results across crop types highlight the complexities in addressing bi-
ases using the Disparate Impact Remover. The Equal Opportunity Difference
still presents a notable disparity for S5 plantains and S6 soybeans, indicating
a growing disparity between the privileged and unprivileged groups in terms
of receiving favorable outcomes, while the change for S4 potatoes is minimal.
The Average Odds Difference decreases for all crops, with soybeans seeing
the most significant drop, highlighting fairness challenges.

Overall, in the crop type use case, the Disparate Impact Remover again
shows mixed results in its bias reduction efforts based on crop type. While
the results are less favorable for potatoes and modest for plantains, the bias
is almost completely mitigated for soybeans. Nevertheless, the complexity
of bias mitigation becomes clear, especially when trying to balance fairness
with predictive accuracy.

All in all, it is interesting to highlight that in the sub-region use case, S1
Northern Europe stands out. This sub-region, notable for its highest yield,
reacts most effectively to the Reweighing algorithm, showing a visible reduc-
tion in bias. Similarly, in the crop type use case, S6 soybeans stands out.
Despite being the crop with the lowest yield, the Disparate Impact Remover
proves to be very effective in reducing the inherent bias for this particular
crop. This contrast between the two use cases reinforces the nuanced inter-
play between data characteristics and the effectiveness of specific mitigation
tools.

74



6.3 The Impact of Bias on Food Security Models

RQ1.3 How do potential biases in Al-based yield prediction models affect
food security forecasts?

In the scope of this research, one region stands out: Sub-Saharan Africa.
Not only is this region marked by the lowest yield within the dataset, but as
stated in Chapter 2, it also faces extensive poverty and starvation.

Understanding the underlying dynamics in the context of ML is impera-
tive. Typically, in real world scenarios, datasets do not provide an equal
representation of all segments, groups, or regions. This inherent imbalance
can unintentionally affect the model’s predictions, often to the detriment
of smaller, underrepresented groups. For Sub-Saharan Africa, the limited
presence in the dataset could magnify the bias when introduced, potentially
making the model’s predictions less accurate or even misleading for this spe-
cific region. Moreover, the external realities of Sub-Saharan Africa, charac-
terized by widespread poverty and hunger, may inadvertently classify it as
an unprivileged group in ML terminologies. The predictions produced by
the model appear to reflect these real-world disparities, serving as a strong
reminder of the potential pitfalls of ML. In an area as critical as food secu-
rity, such biases can have immediate consequences, leading to misinformed
strategies or misdirected resources, and possibly even human deaths.

In contrast, regions that already enjoy a more privileged status, both in
terms of dataset representation as well as real-world benefits, tend to do
better. Northern Europe, the region with the highest yield in the dataset,
does not only demonstrate superior model performance, but also a higher
degree of resilience to bias. This dual advantage emphasizes the inherent
benefits of being a "majority" or "privileged" group within a dataset. The
model’s ability to provide more accurate predictions for Northern Europe,
even in the face of introduced biases, illustrates how societal privilege can be
inadvertently reflected in ML results.

In conclusion, while ML offers transformative potential for sectors such as
agriculture and food security, it is important to approach these models with
a nuanced understanding. Without rigorous checks and balances, models
can unwittingly perpetuate and even exacerbate existing societal inequalities.
This underscores the need for robust bias detection and mitigation strategies,
especially when addressing vital issues such as food security for vulnerable
populations.
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Metrics | S1[S2|S3[S4|8S5]S6
Bias Detection Metrics

Accuracy X | X | X | X | X | X
Disparate Impact - X | X |- X | X
Statistical Parity Difference - X | X |- X | X

Equal Opportunity Difference - - - - -
Average Odds Difference - - - - - -
Bias Mitigation Strategy 1: Reweighing

Accuracy after Reweighing X | X | X | X | X [ X
Disparate Impact after Reweighing X |- - - - X
Equal Opportunity Difference after Reweighing | - - - - - X
Average Odds Difference after Reweighing - - - - - X
Bias Mitigation Strategy 2: Disparate Impact Remover

Accuracy after DIR - - - - - -
Disparate Impact after DIR - - - - - X

Equal Opportunity Difference after DIR - - - - -
Average Odds Difference after DIR - - - - - -

Table 6: Summary of Results

The overarching research question of this thesis project, How can bias be
detected in AI based yield predictions for food security? is resolved
through the exploration and resolution of its constituent sub-questions. Each
sub-question not only contributes to this overarching research question, but
also expands the overall comprehension of the topic. For a concise overview
of the findings of this thesis project, all results are consolidated and presented
in Table 6.

The models consistently maintain high accuracy across all scenarios, despite
the introduction of bias. This robust performance persists after applying
the 1. bias mitigation strategy, Reweighing. However, the accuracy drops
significantly when applying the 2. bias mitigation strategy, the Disparate
Impact Remover.

In terms of bias detection, the fairness metrics fail to detect bias in privileged
groups, specifically S1 Northern Europe in the sub-regional use case and
S4 potatoes in the crop yield use case. In contrast, scenarios of the less
privileged groups such as S2 South-eastern Asia, S3 Sub-Saharan Africa, S5
plantains, and S6 soybeans demonstrate detectable bias, primarily through
the Disparate Impact and Statistical Parity Difference metrics. The Equal
Opportunity Difference and Average Odds Difference metrics do not detect
bias in any of the six scenarios.
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Concerning bias mitigation, the Reweighing strategy improves the Disparate
Impact metric for the S1 Northern Europe and S6 soybeans scenarios. How-
ever, the for the other scenarios, the fairness metrics essentially remain very
similar or even deteriorate after Reweighing. Only the S6 soybeans scenario
displays an improvement in the Equal Opportunity Difference and Average
Odds Difference metrics.

Finally, after applying the Disparate Impact Remover bias mitigation strat-
egy, only the Disparate Impact fairness metric for the S6 soybeans scenario
shows improvement, while other metrics for the other scenarios either remain
very similar or deteriorate.

6.4 Limitations

While the research offers important and useful insights, there are several
limitations to be considered when interpreting the results. In particular, the
study is subject to data limitations. While a broad range of variables were
analyzed, critical factors such as nutrient deficiencies, which are essential to
achieving optimal yields, were not included. This exclusion may potentially
compromise the accuracy and depth of the predictions. Likewise, the predic-
tion model took a simplified approach to crop yield prediction. Influential
elements such as soil conditions, floods and droughts, which play a key role
in determining yields, were not taken into account, which could affect the
robustness of the model’s predictions.

The thesis’ emphasis on specific sub-regions and crop types further questions
the generalizability of its findings. While the gained insights are relevant
to the sub-regions and crops studied, extrapolating these findings to other
sub-regions or different crops may not be straightforward.

Another clear limitation stems from tool dependency. The study relies
strongly on the AIF360 toolkit for bias detection and mitigation. While
AIF360 is robust, the need for binary classification could lead to potential
loss of information, and other tools might offer alternative perspectives or
mitigation techniques. Following this tool-centric approach also exposed bias
mitigation challenges, as specific mitigation strategies were only successful in
certain scenarios.

External factors, which often lie beyond the scope of data-driven models,
can have a significant impact on food security. While not directly related to
agricultural yields, factors such as political stability and economic standing,
play an indispensable role in ensuring food security. Excluding them may
provide an incomplete picture of the complex interplay of factors that affect
food security.
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Finally, the temporal scope of the study is a crucial point to emphasize. The
study represents a snapshot in time based on current data and prevailing
conditions. As the global landscape evolves, impacted by a myriad of factors
ranging from climate change to geopolitical shifts, the model’s predictions
and the biases identified could change, impacting the long-term applicability
of this thesis’ findings.
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7 Conclusion

The vulnerability of the world’s food systems is undeniable. This fragility
shows that even small perturbations can lead to significant consequences.
With this in mind, the role of predictive models, particularly those based on
ML, become increasingly vital in the agricultural sector. While potentially
transformative, these models come with their own set of challenges, most
notably the inadvertent introduction of biases.

This thesis project highlights the multifaceted impact of biases in machine
learning models. While tools like AIF360 have proven effective in uncovering
these biases, subsequent efforts to mitigate them do not always yields consis-
tent results. This is evidenced by the mixed results obtained when deploying
mitigation strategies like Reweighing and the Disparate Impact Remover.
For the sub-region use case, the bias detection tools, particularly the Dis-
parate Impact metric, highlighted existing discrepancies between sub-regions.
Northern Europe, with a privileged position in the dataset, experienced pos-
itive results from the Reweighing algorithm. However, the same cannot be
said for South-eastern Asia and Sub-Saharan Africa. The application of the
Disparate Impact Remover proved to be a double-edged sword, at times re-
ducing model accuracy and, in some scenarios, exacerbating inherent biases.
In the crop type use case, while the models demonstrated consistent perfor-
mance across different crop types, biases were still evident, particularly for
plantains and soybeans. The Reweighing approach showed mixed effective-
ness, with soybeans showing the largest benefit. In contrast, the Disparate
Impact Remover again posed a conundrum. While it improved bias for soy-
beans, it exacerbated the situation for potatoes.

These results underline an important point. While ML holds great promise
for improving food security, its widespread implementation presents a myr-
iad of challenges. Biases, both subtle and obvious, can distort predictions.
Left unchecked, these biases can have tangible consequences, from financial
impacts over misallocation of critical resources to death. For these reasons,
it is crucial that more research is conducted in this field. There are multi-
ple promising paths for improving the scope and accuracy of ML models in
agricultural predictions and food security in general.
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Firstly, in light of the indisputable impact of climate change on agricul-
ture, future research should place greater emphasis on the understanding
and incorporation of its effects. This could mean to not only considering
direct influence on crop yields, but rather the wider environmental and so-
cioeconomic impacts. In particular, environmental impacts could encompass
changes shifts in growing seasons and water availability, while socioeconomic
implications could include shifts in food prices and land use patterns.

Furthermore, the integration of richer datasets has the potential to signif-
icantly improve the predictive accuracy of these models. Critical data ele-
ments, such as in-depth soil data and information on floods and droughts,
could provide invaluable context and depth to predictions, enabling a more
grounded and practical understanding of future agricultural trends.

Lastly, while existing methodologies primarily stress individual steps,
whether it’s data acquisition, modeling, or prediction, there is a growing
recognition of the need for more holistic and exhaustive methods. Such end-
to-end bias detection methodologies could encompass the entire ML process,
thereby allowing for more comprehensive and nuanced insights, as highlighted
by Mehrabi et al. [57].

Summarized, this thesis project lays the groundwork for future exploration,
highlighting the need for a more profound comprehension of bias mitigation
tools and strategies, tailored to specific scenarios and challenges. In the larger
scheme of things, as the agricultural sector becomes increasingly intertwined
with ML, the search for a balance between fairness and accuracy becomes
paramount. This study serves as both, a demonstration of the progress that
has been made in this direction and a reminder of the journey that still lies
ahead.
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A Code Repository

This appendix provides information about the GitHub repository associated
with this thesis project.

The GitHub repository contains the code, the data, the visualizations and
other materials related to the research presented in this thesis project. It can
be accessed via the following link: https://github.com/Nicinicinici/
Masterthesis
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