SAPIENZA

UNIVERSITA DI ROMA

Safe and controllable information consumption for
data market applications: A solution based on
Trusted Execution Environments and the Ethereum

blockchain

Faculty of Information Engineering, Computer Science and Statistics

Master's Degree in Computer Science

Valerio Goretti
ID number 1811110

Advisor Co-Advisor
Prof. Claudio Di Ciccio Prof. Sabrina Kirrane

Academic Year 2021/2022

Safe and controllable information consumption for data market applications: A
solution based on Trusted Execution Environments and the Ethereum blockchain

Sapienza University of Rome

© 2022 Valerio Goretti. All rights reserved

This thesis has been typeset by IXTEX and the Sapthesis class.

Author’s email: valerio.goretti98@gmail.com

mailto:valerio.goretti98@gmail.com

Contents

1 Introduction
1.1 Contributiono
1.2 Structure of the thesis

2 Background
2.1 Distributed Ledger Technology - Blockchain
2.2 Trusted Execution Environment
2.3 Usage Control
2.4 Solid Web

3 Motivating Use Case Scenario

4 Design
4.1 Pod e
4.2 Blockchain. e
4.3 Trusted Application
4.3.1 Structure of the Trusted Application
4.3.2 Encryption in the Trusted Application
4.3.3 Checks performed by the untrusted part

5 Implementation
5.1 Trusted Part
5.1.1 Enclaveedlfile,
5.1.2 Enclavecppfile
5.2 Untrusted Part

6 Evaluation
7 Conclusion and Future Work

Bibliography

10
12

14

16
16
17
18
18
19
21

23
24
24
26
28

35

37

40

Chapter 1

Introduction

Data trading has emerged as one of the most significant markets in recent years.
Decisions and the economy in our world are driven by data. Data owners are exposed
to a variety of privacy risks in this situation [14]. Due to this, it was necessary that
decentralised projects such as Solid [3] and Digi.me [5] seek to increase data owners’
control over their information, while at the same time giving smaller companies and
individuals access to information that is typically controlled by centralised platform
providers. Two separate solutions are being developed by Solid and digi.me. The
Solid community is working to develop the tools necessary for the creation and
integration of decentralized applications based on linked data concepts. Digi.me
is developing the tools and technology that enable people to download their data
from centralized systems and store it in an encrypted personal data store. Special
tools created by Digi.me will utilise this encrypted data to operate straight from
the user’s personal encrypted data store. The use of these platforms enhances and
expands the data market but also provides more security for the data owners. These
solutions guarantee access to data by monitoring conditions imposed by users in
order to preserve their data. These conditions are monitored continuously to ensure
high reliability.

The following lines will give examples of studies conducted utilizing blockchain
technology to provide users more control over their personal data online [41]. In
their paper, Ayoade et al. [7] propose a framework for blockchain applications to
access evidence collected in a trusted execution environment (TEE). This enables
them to control and track data access. A secure usage control system for digital
rights management with the internet of things was introduced by Zhaofeng et al. [43].
The system is implemented using a blockchain for data and IoT management.
DistU, a distributed usage control paradigm for industrial blockchain frameworks, is
conceptualized by Khan et al. [18]. It includes processes for continuous monitoring

that enable it to control a resource as it is being used and modify attributes

1.1. CONTRIBUTION 4

accordingly, performing various actions like denying or revoking permissions. In a
data market scenario, Xiao et al. [40] introduce PrivacyGuard, a system that gives
data owners control over who can access and use their personal data.

In comparison with the state of the art, we can consider blockchain a suitable
data structure for a data control context it allows to control access to data and
all the changes inherent in data management. Thanks to these features, in many
works where it interacts with Solid, blockchain serves as the central character.
Ramachandran et al. [32] and Cai et al. [12] propose security mechanisms from the
perspectives of authentication and signatures using blockchain technology in a Solid
environment. Becker et al. [11] show how a blockchain-based payment system can
be used to trade the data stored in Solid pods as a marketplace. In contrast to the
solution proposed in this thesis, in the study just shown, access to the data through
usage control is not considered, therefore, data owner is unable to choose how its
data is to be used.

The studies just presented by Xiao et al. and Becker et al. propose a data market
idea that makes use of a TEE. The TEE provides a vulnerability-free environment
with full control over the hardware used. This environment facilitates the storage
of data and utilisation of resources in a policy-compliant manner. Leveraging this
technology is essential in order to control the devices on which sensitive data will be
managed and so ensure that all data access criteria are respected at all times. Data
owners are able to maintain control over their data even after data consumers have
gotten copies of their data thanks to the implementation of usage control through
blockchain applications and TEE, which further supports the Solid concept of data

ownership.

1.1 Contribution

My thesis work focuses on trusted applications running in a TEE for resource
utilization in a blockchain-based data marketplace. The goal of the thesis is to
employ the security features of TEEs to establish a safe and fair resource utilization
standard for information retrieved from the market. The TEE layer manages access
to the market while guaranteeing security over other users’ data. In the data market,
users can either access the data of other users, assuming the role of consumer user,
or upload their own data, assuming the role of owner user. The TEE layer is related
to the data consumer side. In the data market, for each resource initialized, the
owner users can define rules regarding the resource’s access and use. These rules
must be fulfilled by consumer users who want to use the information resource. To
this end, the TEE is utilized.

1.2. STRUCTURE OF THE THESIS 5

1.2 Structure of the thesis

The thesis is divided into 7 chapters that explain the research and development
efforts made to create a framework for decentralized data market administration
through the use of a TEE. The Chapter 1 gives a general introduction to the
thesis. In the Chapter 2, a general overview of the necessary topics for system
design was given. The Chapter 3 presents the use case of the data market in detail.
Chapter 4 presents the system’s architecture and design. Implementation information
is provided in Chapter 5. Chapter 6 includes an explanation of the evaluations
performed and the results. The conclusions reached as a result of the evaluation and

the possibilities for expansion of the project are described in Chapter 7.

Chapter 2

Background

2.1 Distributed Ledger Technology - Blockchain

The term DLT stands for Distributed Ledger Technologies. The DLT is
a network composed of known and verified nodes and serves as a shared database
between them. Many times the term DLT and blockchain are interchanged, but
this is not entirely accurate. Blockchain is a data structure that is used for the
permanent storage of transactions, while DLT indicates a data structure that resides
on multiple devices and is therefore geographically distributed. Furthermore, it does
not determine the existence of a cryptocurrency or require mining (the cryptocurrency
mining process used in blockchains) and this is another distinguishing feature [10].
Thus, we can say that blockchain is a subset of DLT [17] and the first to study
them was Nakamoto [26]. Blockchain is a distributed, decentralized, and immutable
ledger used to maintain transaction history. All network participants can access the
data, which is regularly appended [6]. A blockchain, at its heart, is a chain of linked
blocks that are linked together by hash codes and each block contains a reference
to the one before it. Due to the link between the blocks, altering the content of
one block would cause the invalidation of the following ones. This makes it difficult
for anybody to alter the content [15]. The fundamental parts of blockchain are,
transactions, blocks, and consensus mechanisms. Transactions are the information
stored within the network nodes. Blocks are collections of validated transactions.
Consensus mechanisms are algorithms used for the verification of transactions and
their insertion into the blockchain [19]. There are two categories of blockchains:
permissioned and permissionless. In permissionless blockchains, the user is able
to read and write on the network without the need for authorisation. In blockchain
permissioned, an entity assigns network users the roles and operations they can
perform. In particular, it decides whether a user is enabled to write or read on the
blockchain [39].

2.2. TRUSTED EXECUTION ENVIRONMENT 7

Blockchains provide a set of features that make them useful in many contexts,
including immutability, transparency, traceability and automation. Once the data is
placed on the blockchain, it is immutable. This is made possible by the crypto-
graphic method that binds the blocks within the blockchain. Considering public, or
permissionless, blockchains, users can read all transactions within the network. This
provides a great transparency feature. The data within the blockchain, in addition
to being immutable, are forever available for viewing once written within a block [42].
In order to restrict access to all resources while maintaining the transparency of the
blockchain, Marangone et al. [24] propose a solution according to encrypting data
on the basis of user permissions. In this way, only those who have access to the data
are actually able to decrypt it. Blockchains also have a high degree of automation.
This automation is given by the possibility of executing pieces of code within the
blockchain. These pieces of code are called “smart contracts” and are defined for
the first time by Szabo [37]. Smart contracts are executed when certain conditions
are met. Smart contracts are executed to automate certain processes where both
participants in the contract already agree what the result of the processing is [44].
Given the immutability characteristic of the blockchain, it guarantees the traceabil-
ity of stored data. In recent years, blockchain has been widely used and studied
in the context of supply chains, and studies show that its use in this area improves
performance thanks to the traceability of the manufactured product [13, 8, 16, 21, 22].
Tracking can be essential to monitor certain parameters detected during the creation
process. Being a transparent data structure, data acquired through the use of sensors
are exposed to be monitored and keep track of parameters and production progress.
The use of sensors in a blockchain context enables the automation of the acquisition

and storage of information ensuring continuity.

2.2 Trusted Execution Environment

The Trusted Execution Environment (TEE) is a tamper-proof processing
environment that runs on a separation kernel. The TEE is a combination of both
software and hardware features that isolates the execution of code from the operation
environment [25]. The separation kernel is the fundamental element to ensure a
separate execution between two environments. It was first introduced in [33] and
allows multiple systems requiring different levels of security to coexist on one platform.
Thanks to this kernel, the system is divided into several partitions, guaranteeing
strong isolation [34]. The TEE guarantees the authenticity of the code it executes,
the integrity of the runtime states and the confidentiality of the code, data and

runtime states stored on the persistent memory. The content generated by the TEE

2.2. TRUSTED EXECUTION ENVIRONMENT 8

Attack Surface Without Enclaves Attack Surface With Enclaves

App App lj App lj

=== ====

Hardware

] 1
Hardware

Figure 2.1. Attack-surface areas with and without Intel Software Guard Extensions
enclaves

Source: https://www.intel.com/content/www/us/en/developer/articles/training/
intel-software-guard-extensions-tutorial-part-1-foundation.html

is not static. The data are updated in a secure manner. Thanks to this feature, the
TEE resists both software and hardware attacks, making even backdoor security
flaws impossible to exploit [34]. There are many providers of TEE that differ in
the system on which they are executed. In this work, the TEE provided by Intel
was used, this technology is called Intel Software Guard Extensions [1](Intel
SGX). In Intel SGX terminology, private information (e.g. passwords, encryption
keys, etc.) destined for access by only one person are called application secrets. Intel
SGX is a set of CPU-level instructions that allow applications to create enclaves. An
enclave is a protected area of the application that guarantees the confidentiality and
integrity of the data and code within it. These guarantees are also effective against
malware with administrative privileges. The code is built as a Windows Dynamic
Link Library (DLL) file. The use of one or more enclaves within an application
makes it possible to reduce the potential attack surfaces of an application. The
benefits that an enclave brings to an application can be seen in Fig. 2.1.

Going into more detail, an enclave cannot be read or written to from outside
the enclave, only the enclave itself can change its secrets, independent of the CPU
(Central Processing Unit) privileges used. Indeed, it is not possible to access the
enclave by manipulating registers or the stack. Every call made to the enclave
needs a new instruction which performs checks aimed at protecting the data that
are only accessible through the enclave code. The data within the enclave, in
addition to being difficult to access, is encrypted. An access to the DRAM (Dynamic
Random Access Memory) modules would only obtain the encrypted data. The

https://www.intel.com/content/www/us/en/developer/articles/training/intel-software-guard-extensions-tutorial-part-1-foundation.html
https://www.intel.com/content/www/us/en/developer/articles/training/intel-software-guard-extensions-tutorial-part-1-foundation.html

2.2. TRUSTED EXECUTION ENVIRONMENT 9

cryptographic key changes randomly each time the system is rebooted following a
shutdown or hibernation. One problem with protected memory is its size. Typically,
protected memory ranges between 64MB and 128MB. When the data within the
protected memory is heavier, the memory space is moved to the untrusted area
of the application putting data to risks. The unsafe zone is one of the two main
components of an SGX-based application. An application using Intel SGX consists of
a trusted and an untrusted component. We have seen that the trusted component is
the enclaves. The untrusted component is the remaining part of the application. The
trusted part of the application has no possibility of interacting with any other external
component except the untrusted part. Therefore, enclaves cannot communicate
directly with third-party components. Nevertheless, the fewer interactions between
the trusted and untrusted part, greater will be the security guaranteed by the
application. When more than one enclave is used in an application, or more than
one application makes use of enclaves, it is necessary to authenticate the enclaves
before proceeding with data exchange. In the Intel SGX architecture, attestations
serve this purpose. There are two types of attestations: local attestation and
remote attestation. Local attestation is useful when an application uses more
than one enclave which must cooperate to perform a task, or two enclaves from
two different applications must exchange data. Each must confirm to the other
that it is trusted in order to create a secure session for exchanging data. To ensure
its security, a session key is exchanged that is used to encrypt the data within the
session. Obviously, since it is not possible for one enclave to access the memory area
of the other, the data must be deferenced outside the enclave and marshalled in the
other enclave. Remote attestation involves the generation of a value that is sent
to the two parties to establish trust. This value is generated by a combination of
hardware and Intel SGX software. More specifically, the value is generated through
the combination of information from the Intel SGX-enabled CPU and from some
software provided by Intel SGX (the enclave to be authenticated, Quoting Enclave,
QE, and the Provisioning Enclave, PvE)). This data is sent through an authenticated
channel to a remote server, which determines whether the enclave in question was
created by an authentic Intel SGX and thus whether it is trusted. Once both parties
are authenticated, a secure channel is created through which information can be
exchanged. As mentioned above, the data within the enclave are encrypted. The
encryption of this data is done through the process of data sealing. This process
allows data to be written to untrusted memories without exposing their contents.
Data sealing can be done in 2 ways, using the enclave identity and using the seal
identity. Sealing to the Enclave Identity allows the creation of a unique key for the

enclave. Once changes are made to the enclave signature, the key is changed, making

2.3. USAGE CONTROL 10

the data inaccessible to the new version of the enclave. When the second type of
sealing is used, sealing to sealing identity, multiple enclaves can seal and unseal data.
This allows enclaves to unseal data sealed by earlier versions of the same enclave as
well as share the seal between multiple applications. With some care, it is possible to
use this method of sealing data by sharing it with other applications but at the same
time preventing unsealing of data from earlier versions of the enclave. The addition
of an enclave version number to the enclave’s signature would make it impossible to

unseal the data from future versions of the enclave.

2.3 Usage Control

Access control is concerned with preventing illegal access to computational
resources and digital information. The goal of access control is to maintain control
over computational resources and digital information in order to avoid unauthorised
disclosure (confidentiality) and inappropriate malicious modifications (integrity),
while allowing authorised entities access (availability) [20]. Usage control performs
controls during data access management compared to the other data access models.
Usage control was introduced in the early 2000s and was considered an evolution
of access control [27]. The idea behind usage control is to monitor how data is
used. A data provider’s owner must establish a usage control policy that specifies
the conditions that a data consumer who receives a copy of the provider’s data
must meet [31]. The most established usage control model was developed by Park
and is called UCON [28]. This section will continue the discussion based on the
UCON model in order to best illustrate the characteristics of usage control. UCON
model is a generalisation of access control that includes obligations, conditions,
mutability and continuity controls. UCON encompasses the integration of access
control, trust management, and digital rights management. In comparison to typical
access control policies and models, UCON offers finer-grained control over the use
of digital objects by combining these three domains. UCON model consists of
three main components and three additional components. The core components are
subjects, objects and rights. The additional components are authorization rules,
conditions, and obligations. The authentication phase in UCON must include the
authentication rules but may include all additional components. Subjects are
entities that claim ownership of an object. These entities also have attributes that
are required during authentication. Subjects are models of users in the system. A
subject can be a group or an individual and has the right to objects. When we
speak of a group, we mean a collection of users who have the same rights (if they

have equal roles) to the same objects. In UCON, subjects can take on the roles of

2.3. USAGE CONTROL 11

consumer subjects, provider subjects and identifiee subjects. Consumer subjects are
those who receive access to a resource through rights. Subject providers are those
who provide the rights to access their own data. Identified subjects are subjects that
are identified in digital objects and include all sensitive information. Objects are
the entities managed and maintained by subjects. Objects have attributes that can
be used during authentication and can be categorised into classes so that access can
be granted to an entire class and not to all individual files. Objects may be privacy
sensitive or privacy non-sensitive. A privacy-sensitive object includes information
relating to the identification of a subject and therefore potentially dangerous to
expose the subject’s privacy. In UCON there are also derived objects, which are
copies of objects once the rights over them have been obtained. A subject may
have privileges over objects. These privileges are called rights, which allow subjects
access to objects. Rights are also divided into consumer rights, provider rights and
identifiee rights. When we talk about rights, in UCON there are access rights and
delegation rights. Rights are divided into many categories according to what they
enable the receiving user to do (view, modification etc.). Authorisation Rules are
a set of requirements to be fulfilled in order to make it possible for a subject to access
an object. There are two types of authorisation rules, rights-related authorisation
rules and obligation-related authorisation rules. The first type is used to see whether
a subject can exercise rights over an object. The second type is used to check whether
a person has consented to an obligation that must be fulfilled after obtaining or
using rights to a digital object. Conditions are a set of decision criteria that the
system must check together with the authorisation rules during the authorisation
process. There are two types of conditions: dynamic conditions and static conditions.
Dynamic conditions include information that must be verified each time it is used
due to updates, e.g. a condition on the number of accesses. Static conditions include
information that does not have to be checked each time it is used because it is not
frequently updated, e.g. a condition on the location or time of access. Dynamic
conditions are stateful and static conditions are stateless. Rules of authorisation and
conditions are different. Authorisation rules are a set of decision criteria used to
verify whether a subject can use the rights to an object, while a condition is used to
verify whether restrictions on access to and use of an object are met. Obligations
are mandatory requirements that a party must perform after obtaining or exercising
rights over an object. Before receiving rights, a user accepts the obligations he or she
will have to fulfil. Obligations will be controlled by authorisation rules [29]. Park
e Sandhu once laid the basis of usage control. They improved the model first by
defining a family of ABC models as a core model for usage control in paper [36] and
then further refining it by creating the UCONypc model [30].

2.4. SOLID WEB 12

Certficate | == User’s Client Load — ‘APPplication
""" L Software

I
Access Resources \\
Access Resources &
Deliver Content

N

|IAccess Resources Other
Pod

Identifies
Deliver Content

Identity -
Profile T

"

“Deliver Content

Document

Figure 2.2. Solid Architecture

Source: [35]

2.4 Solid Web

Solid is a decentralized platform for social Web applications [23]. Solid project [3]
facilitating the decentralisation of web data. Tim Berners-Lee, the creator of the
World Wide Web (WWW), is leading the project proposing to change the WWW
as we know it to a decentralised version in order to increase control over the data
exchanged over the web. In the Solid Web, people can store their data securely
online through the use of Pods (Personal Online Datastore).

Figure 2.2 represents the architecture of Solid from this, we can see that each
user can have one or more pods, and Solid-based applications can access these pods
through well-defined mechanisms, such as decentralised authentication and access
control mechanisms that guarantee user privacy. Within the Solid platform, users
check their identity using an RDF profile document. This verification will allow the
user to interact with their pods to access the data. The user will need to obtain
a Solid application from an application provider in order to utilize it, and it will
communicate with them in order to access the pods. The data in Solid are managed
by a REST architecture via APIs. When a user uploads data, it is either stored through
the use of an HTTP POST call within a container or the URL is stored through an
HTTP PUT call. Furthermore, a deletion is handled through an HTTP DELETE call
while an update is performed through an HTTP PUT or HTTP PATCH. Performing an
HTTP GET on a container returns an enumeration of the elements present in the
container. Data in Solid is identified through a Uniform Resource Identifier (URI). In
addition, Solid distinguishes data into two types: structured data (represented with
Resource Description Framework, RDF) and unstructured data (for example video,

images etc.). Solid applications employ RESTful HTTP operations to read and write

2.4. SOLID WEB 13

data stored in users’ pods. Solid servers might provide optional SPARQL support.
Applications can define complicated data retrieval procedures, including those that
call for server-to-server communication via link-following SPARQL, on servers that
support it. This facilitates the creation of Solid applications by allowing developers
to delegate complex, multi-pod data retrieval tasks to the server. Since the Solid pod
servers are application-agnostic, new applications can be created without modifying
the servers [35].

14

Chapter 3
Motivating Use Case Scenario

The use case of the study is a decentralized data market that aims to facilitate
access to data. This marketplace involves the subscription of users who want to use
it. Once subscribed, users will be able to upload their data and choose how this
data is to be used by consumer users and what rules they have to comply with in
order to use it. Subscribed users can also request the data of another user. When
requesting a data item in the marketplace, the system checks whether the user who
made the request fulfills the requirements set by the data owner in order to allow in
order to allow access and use of the resource. The following lines describe the use
case example depicted in Fig. 3.1. Technical details will be explained in Chapter 4.

The main actors of the example are Alice and Bob, who do not know each other.
Alice is a research biologist in the area of zoology, she is currently conducting a
study on animal taxonomy. Bob is a photographer with a passion for animals. Bob
decides to collect some of his shots in an album and publish it so that other people
can also enjoy the photos. Bob chooses to subscribe to the data marketplace and
pays the registration fee. From this moment, Bob can start uploading his data into
the marketplace (point 1 in the figure). Once the data has been uploaded, Bob can
choose to set rules for the use of his data by setting: purpose of data use, expiration
date, maximum number of possible accesses and geographical location where the data
is available. Bob decides that he only wants his images to be used for the purpose
of scientific research, setting a maximum number of 100 accesses and an expiry date
of 20 days after the retrieval of the data. Furthermore, Bob decides to make the
data available anywhere in the world by not setting geographical limitations. Alice
needs to find material to continue her study and decides to subscribe to the data
market in order to look for some useful material. Once the subscription has been
paid, Alice starts searching for material in the data market and finds Bob’s photo
album. Alice decides to request a copy from the market (point 2 in the figure). The

data market will retrieve the actual position of the data within Bob’s memory (point

15

Request
Bob's phot
290 pnoto DataMarket ‘ .
A A
Alice - Biologist @ Bob - Photographer
Retrieve position Data upload @
Request a copy of information
Alice's (4) Bob's photo using Bob's
DataMarket @ position retrieved DataMarket
application - @ Retrieve copy of Bob’s photos application
X v
;@]
Q’@
= S\
Socialgram ZooResearch

Figure 3.1. Use case example flow

3 in the figure) and enable Alice to make the request. Once she has requested the
data to Bob (point 4 in the figure), a copy of the photos is sent to a trusted part
of the application in Alice’s device (point 5 in the figure). This trusted part will
monitor the use of the retrieved data according to the rules that Bob has set. Once
retrieved, Alice chooses to open these photographs through a famous application in
the research area used for analysing zoological images called “ZooResearch”. Since
the purpose of this application (research) corresponds with the data usage rule set
by Bob, and no geographical limitations have been chosen, Alice is able to use the
photos (point 7 in the figure). At the end of the working day, Alice is particularly
surprised by a picture uploaded by Bob and decides to share it on her social channels
with her friends. To do this, she decides to use the “Socialgram” application, a
popular social network. Alice opens Socialgram and tries to access the copy of the
data she has in its memory but without success (point 8 in the figure). Indeed,
the purpose of the Socialgram application (social), is not among the data expected
purposes and thus she will not be able to publish the photo. The purpose of the
trusted part in Alice’s device is to prevent undesired use by the owners of the data
retrieved from the market. In addition, this part ensures to data owners like Bob
that once the data expires, in this case after 20 days, or if the number of permitted
accesses is exceeded, in this case 100 accesses, the data is completely removed from

the consumers’ device.

16

Chapter 4
Design

In order to address the needs described in the motivating use case scenario, this
section shows the architecture of the data market. The architecture is divided into
3 main parts: the blockchain, the pod and the trusted application and it is shown
in Fig. 4.1. Components will be described in the following sections. Since the study
aims to manage decentralised market information in a controlled and safe manner,
after setting the scene and presenting the bigger picture, this chapter will focus on
the architecture of the TEE.

4.1 Pod

Pods are archives of personal data used by users. In the architecture shown, they
use the pod to load data into the marketplace and choose which obligation rules must
be observed in order to access it. In short, the pod is a kind of file system dedicated
to the use of usage control. A user can choose to restrict consumer use of their
uploaded resource by setting a maximum number of accesses and a validity period
for the data. This last condition is valid from the moment the consumer requests
and receives the information. The data owner can choose a maximum duration
in number of days, which is converted into an expiration date at the time of the
consumer’s request. In addition, the owner of the data can choose the geographical
location and usage domain in which to make it available. Once the data has been
received, the consumer users will store it within their trusted application (which
will be discussed in more detail in Section 4.3). The user will then be able to use
this data through applications that will request it. To be able to use the data, the
application requesting access must meet the conditions of geographical location and
domain. For a better understanding of the concept of domain of use, please refer to

the example in Chapter 3.

4.2. BLOCKCHAIN 17

B Pods Data Consumer Device
(-]

/
HTTP {-ﬁ TEE

@ Data Store Pods communication Trusted Application

Manager
Untrusted Trusted
\ Part Part

Smart contract invocations

2/

& in
SN

Figure 4.1. Data Market Architecture

4.2 Blockchain

In the data market, blockchain is used to index and track all uploaded resources
and some metadata related to data. Blockchain is used to implement data market
logic. When a user uploads data through their pod, the data will be stored in the
pod but it will be identified and indexed in the blockchain, storing the location of
the data within the pod, access rules and additional metadata useful for accessing
to the data. In addition to resource data, subscription data is also stored on the
blockchain. When users subscribe to the platform, they are allowed to offer their
own data for sale by storing it on the pod and to request the data of other people
through the trusted application. Thus, the blockchain is used by both the pod and
the trusted application to retrieve information about resources in the market and
how to manage them. In addiction it is used to complete and authorise users to
perform requests between the trusted application and pods. When a user wants
to retrieve data from another user before requesting it from the pod, they need to
know exactly where it is located. The trusted application will be used to retrieve
the exact location of the resource within the pod by performing a request to the
blockchain, which will check the subscription of the consumer user and if successful
will provide the information needed to retrieve the data. In addition, pods can
request information from the blockchain to manage their data. Pods and trusted
application communicate with the blockchain and vice versa via blockchain oracles

for invoking smart contracts.

4.3. TRUSTED APPLICATION 18

/ Trusted Execution Environment \
/ Trusted Application \

Untrusted Part Trusted Part
‘ File Tracker } (Enclave
W ‘ Protected File System}
‘ Application J

R —)

Figure 4.2. Trusted application architecture

4.3 Trusted Application

The trusted application is at the core of the thesis work. A trusted application
is an application that is executed on a TEE. The TEE consists of hardware and
software and is used to guarantee protection of the data stored within it in order to
provide an isolated execution of the trusted application and consequently provide
high data confidentiality. In the context of the data market, trusted application is
used by data consumers to make requests for resources in which they are interested.
Through the trusted application, marketplace users can retrieve data from other
users’ pods in a controlled manner. The entire retrieval process is controlled by
the blockchain that provides and controls the data exchange. The proposed market
infrastructure assumes that a copy of the data requested by other users is stored
within the trusted application in order to monitor its use and check that the rules

set by the data owner are always fulfilled.

4.3.1 Structure of the Trusted Application

Once the purpose of the TEE and the trusted application has been clarified, we
move on to analyse the design of the trusted application. Figure 4.2 focuses on the
architecture of the TEE, going into more detail about its specifications.

The trusted application consists of two fundamental parts: the trusted part, also

called the enclave, and the untrusted part. The trusted part cannot communicate

4.3. TRUSTED APPLICATION 19

directly with the outside world. Every information that enters or leaves the trusted
part passes through the untrusted part. Since the trusted application is used to
retrieve and share data, we need the untrusted part of the application to make
the trusted part interact with the outside world. When data needs to be retrieved
from another user’s pod, the trusted application makes a call to the blockchain to
retrieve the exact location of the data in which the user is interested. The blockchain
verifies that the requesting user has paid for the marketplace membership and then,
if everything is in order, forwards the location of the resource to the untrusted part.
Once the trusted application has received the location of the data, it will make a
request to the received location (the exact position of the pod and the resource
within it). The pod will accept the request and forward the data to the untrusted
part of the trusted application, which will store the usage rules chosen by the data
owner (more details in Section 4.3.3) and forward the resource to the trusted part

to create a copy for use.

4.3.2 Encryption in the Trusted Application

Inside the trusted part, the data is encrypted according to processor-generated
keys. In the data market context, in this part the data retrieved by the consumer
will be stored. The trusted part’s data will be encrypted and only accessible with
the use of the enclave. Additionally, only Intel-created libraries or standard libraries
that Intel has wrapped in the trusted part may be used; external libraries are not
permitted. Otherwise, in the untrusted part, third-party libraries can be used and
the data is not encrypted. Data may be at risk since it must pass through the
untrusted part. In order to prevent data from being left in the untrusted part of
the application without encryption, the architecture includes an encryption scheme
described in Fig. 4.3 and Fig. 4.4. When the trusted application is started, the
untrusted part through dedicated Intel SGX functions starts the enclave, which is
deleted each time the application is closed and recreated later. During the creation
of the application’s trusted part, the public and private keys of the application are
generated in the trusted part. The private key of the application is only stored in
the trusted part, while the public key is stored in both parts of the application.
Having the public key stored in the untrusted part allows the trusted application to
make requests for new market resources without making requests each time to the
trusted part. The flow of requests for new data in the market is depicted by Fig. 4.3.
When users decide to request a resource on the market, in addition to the request,
they also send the application’s public key with which the data will be encrypted.
In this way, the data arrives encrypted with the application’s public key to the
trusted part, which with the private key will be able to decrypt the data and store

4.3. TRUSTED APPLICATION 20

Key Legend:

O Trusted Application Public Key
O Trusted Application Private Key

/ Trusted Application \

Untrusted Part Trusted Part

Encrypted
Data

\ Forwarding /
@ @

Data Request Sending %
+ Encrypted Data |53

®

Pod

Figure 4.3. Encryption flow when the trusted application retrieves data from a pod

it. An application may then need to access data in the trusted part. This situation
is depicted in Fig. 4.4. In order to preserve the data from the trusted part towards
the application, the application also sends its public key within the request. The
untrusted part of the application checks that the application can actually request the
resource (the checks made by the untrusted part will be explained in Section 4.3.3),
and forwards the request to the trusted part, which uses the external application’s
public key to encrypt the requested data and forward it back to the untrusted part,
which will send it to the application. The application will then be able to decrypt
the data using its private key.

4.3. TRUSTED APPLICATION 21

Key Legend:

O External Application Public Key

External Application Private Key

/ Trusted Application \

Data Request
+ Trusted Part

Untrusted Part

@ Sending
Encrypted Data /

I/

@ @

Data Request Forwarding Encrypted Data =
+

Tl

External Application

®
gle

Figure 4.4. Encryption flow when an external application requests data from the trusted
application

4.3.3 Checks performed by the untrusted part

The untrusted part of the application serves both to interact with the outside
world and thus interface the trusted part with applications, pods and the blockchain,
as well as to handle incoming requests. As can be seen in Fig. 4.2, there is a module
called FileTracker in the untrusted part. This module is used as a kind of log for
managing data access. In the FileTracker, the applications that have consent to
make requests to the data in the enclave and all related information are stored. Also
stored in the FileTracker is the list of data in the trusted part and the relevant
conditions to be fulfilled in order to access the data. In this way, we are able to reduce
the interactions between the trusted part and the untrusted part. Guaranteeing

non-sensitive data immediately ready to be accessed. Applications submit in the

4.3. TRUSTED APPLICATION 22

data request both their public key with which the data will be encrypted (as seen
in Section 4.3.2) and their current location. In this way, the untrusted part will start
by checking whether the application has received authorisation to access resources,
and thus whether it is on the list. Next, if it has authorisation, the purpose of the
application is checked. Finally, the current geographical location is checked and
compared with the location limitation provided by the data owner. Should one
of these checks fail, access to the resource is not permitted. Once it has checked
that the application complies with all the criteria set by the owner of the data, the
untrusted part goes on to check that the maximum number of accesses has not yet
been exceeded and also checks that the data has not expired. If the resource has not
yet reached the maximum number of accesses and has not expired, it is sent to the

application.

23

Chapter 5
Implementation

For the implementation, I resort to Intel SGX [1] and Web3.js [4]. Intel SGX
is used to develop the TEE. Intel offers this software to create trusted applications.
Intel allows the enclave to be programmed in both native C and C++, while the
interaction between the enclave and the untrusted part must be in C. As Fig. 5.1
shows, there are two possibilities for developing an application on a TEE. These
solutions differ in the choice of framework for the user interface. Using a C#-based
framework, since it is only possible to interact with the enclave via the C programming
language, involves the use of two additional layers in order to build bridge functions
to utilise the enclave. Instead, choosing a native C or C++ application allows the
application to be programmed close to the enclave. For the work performed in this
thesis, I have chosen to develop the trusted application by developing it entirely in
native C. As already mentioned in Section 4.3.2, Intel SGX does not allow the use
of classic C libraries in the trusted part, but wrappers created by Intel are used
for security reasons. In this way, the system does not rely on third-party libraries,
which could be dangerous for such a system. Communication between the untrusted
part of the application and the blockchain is allowed through the use of Web3.js.
which is a collection of libraries allowing interaction with Ethereum via HT'TP, IPC
or WebSocket. The blockchain used during the thesis work is provided by Ganache
and is an Ethereum blokchain. Web3.js therefore allows communication between the
untrusted part of the application and the Ethereum blockchain. This section will
focus on the implementation of the trusted application as the thesis work is focused
on this part of the market. The next subsections will explain the basic steps of the
code. For more information, the code can be found on the Github repository at the
link https://github.com/ValerioGoretti/TEE.

https://github.com/ValerioGoretti/TEE

5.1. TRUSTED PART 24

Mixed-mode Intel® SGX
Native Intel® SGX Application Application (C# with C++/CLI)

C/C++ (native)

C#
C/C++ native) ; ' C++/CLI

Enclave bridge functions Shokdn C/C++ (native)

Figure 5.1. Minimum component structures for native and C# Intel SGX applications.

Source: https://www.intel.com/content/www/us/en/developer/articles/training/
intel-software-guard-extensions-tutorial-part-2-app-design.html

Intel SGX Application

@ ECALLs @
Untrusted Component | & 5 Trusted Component
3 | OCALLs | g (Enclave)

Figure 5.2. Interaction structure between the trusted and untrusted component of an Intel
SGX Application

5.1 Trusted Part

5.1.1 Enclave.edl file

Enclave development begins with the creation of the Enclave.edl file where edl
stands for "Enclave Definition Language’ The edl files define the bridging functions
between the trusted part and the untrusted part. The file is divided into three parts.
In the first part, other edl files relating to the Intel SGX libraries that will be used are
imported. In the case of our application, the package for the Protected File System
Library [2] was imported on line 3 of Listing 5.1. The second part is used to define
the ECALLSs, the functions contained within the enclave, in prototype form. In the
third part we define the prototypes of the OCALLSs functions, these are the functions
within the untrusted part that are called during the execution of some function in
the trusted part. It is easy to see that our enclave has no OCALLs and the ECALLs

https://www.intel.com/content/www/us/en/developer/articles/training/intel-software-guard-extensions-tutorial-part-2-app-design.html
https://www.intel.com/content/www/us/en/developer/articles/training/intel-software-guard-extensions-tutorial-part-2-app-design.html

5.1. TRUSTED PART 25

Direction ECALL OCALL
The buffer is copied from the The buffer is copied from the
i application into the enclave. enclave to the application.
Changes will only affect the Changes will only affect the
buffer inside the enclave. buffer outside the enclave.

A buffer will be allocated inside the A buffer will b.e jal'loc.ated O.UtSIde the e
. . nclave and initialized with zeros.
enclave and initialized with zeros. . . .
out . . . This untrusted buffer will be copied to
It will be copied to the original .. .
buffer when the ECALL exits the original buffer in the enclave when
h > the OCALL exits.
in, out Data is copied back and forth. Same as ECALLs.
With user__check attribute the raw pointer address will be passed
and the programmer should do the bounds checking on the address if needed.

Table 5.1. Pointer direction parameters and their meanings in ECALL and OCALL

user__check

are defined from line 5 to line 16 of Listing 5.1. The term “Ecall” stands for Enclave
Call and means a call made by a function to the enclave. The term “OCALL” (Out
Call) refers to a call from inside the enclave to the untrusted component. As shown
in Fig. 5.2, Ecall and Ocall are used for the interaction between the trusted and
untrusted part of the application. In edl, parameters are handled differently. If it
is a variable, no specification is necessary as it is copied into the memory stack of
the enclave. In the case of pointers, on the other hand, since one is working on a
memory cell, it is necessary to indicate the size of the buffer and in which direction
the data is to be saved. The possible choices regarding directions are: ’'in’, 'out’, ’in,

out’ and 'user _ check’. Descriptions of these attributes can be found in Table 5.1.

1

V)

5.1. TRUSTED PART 26

enclave {
from "sgx_tstdc.edl" import *;

from "sgx_tprotected_fs.edl" import *;

trusted {
/* define ECALLs here. */
public void getSecret([out,size=len] char* buf,size_t len);

public void setSecret([in, string] char* setString);

/* function of IPFS - Intel Protected File System*/
public void ecall_enclaveString([out, size=len] char *s, size_t
len);
public SGX_FILEx ecall_file_open([in,string]const char*
filename, [in,string]const char* mode);
public size_t ecall_file_write([user_check]SGX_FILE* fp, [in] char
data[100]);
public size_t ecall_file_read([user_check] SGX_FILE*
fp, [in,out,string] char* readData) ;
public int32_t ecall_file_close([user_check]SGX_FILEx fp);
public int32_t ecall_file_delete([in, string]char* filename);
};

untrusted {
/* define OCALLs here. */

Listing 5.1. Contents of the Enclave Definition Language file

5.1.2 Enclave.cpp file

Enclave.cpp file concerns the programming of the enclave and thus the trusted
part of the application. The file contains the functions declared in the prototypes of
the Enclave.edl file. In the following lines, the main functions within the enclave.cpp
file will be described. In the context of the data market, the main use of the enclave
is to manage data from the market. In fact, we see that most of the functions in
the enclave are used for file management. In Listing 5.2, the code for the functions
ecall_file_ open and ecall__file_ write is shown. The first function is used to
open files in the enclave. In fact, it takes as parameters the name of the stored
file and the mode in which it is to be opened, and returns an element of type
SGX_ FILE, which is a data type defined within the Protected File System Library.

V)

5.1. TRUSTED PART 27

The ecall_file_ write function is used to create a copy of the file from outside the
trusted application. It takes an object of type SGX__FILE and the data to be written
within the file and proceeds with the writing using functions from the Protected File
System Library such as sgx_ fwrite. The function returns the number of elements
written within the file, which is useful as the char array pointed to by the ’data’

pointer may have a very large size.

SGX_FILE* ecall_file_open(const char* filename, const char* mode)

{
SGX_FILE* a;
a = sgx_fopen_auto_key(filename, mode);

return a;

size_t ecall_file_write(SGX_FILEx fp, char *data)
{

size_t sizeofWrite;

size_t len = strlen(data);

sizeofWrite = sgx_fwrite(data, sizeof(char), len, fp);

for (int 1 = 0; i < 5; i++)
{
char buffer[] = { ’x’ , ’c’ };

sizeofWrite += sgx_fwrite(buffer, sizeof(char), sizeof(buffer), fp);

return sizeofWrite;

Listing 5.2. ECALL functions for opening and writing a file in the enclave

In Listing 5.3, we can see the last functions of the enclave needed to manage
the protected file system. Among these functions, we have: ecall_ file_ read,
ecall_file close and ecall file delete. The first function is used to read the
contents of a file within the enclave. The content read remains inside the enclave,
returning the size of the file read. The second function is used to close open files.
Function ecall file delete is used to delete files stored within the enclave. This
function in the context of the data market is essential to remove files that have

expired or have the maximum number of uses.

5.2. UNTRUSTED PART 28

size_t ecall_file_read(SGX_FILE* fp, charx readData)
{

char* data;

uint64_t startN = 1;

sgx_fseek(fp, 0, SEEK_END);

uint64_t finalN = sgx_ftell(fp);

sgx_fseek(fp, 0, SEEK_SET);

data = (char*)malloc(sizeof(char) * finallN);

memset (data, 0, sizeof(char) * finallN);

size_t sizeofRead = sgx_fread(data, startN, finalN, fp);
int len = strlen(data);
memcpy (readData, data, sizeofRead);

return sizeofRead;

int32_t ecall_file_close(SGX_FILE* fp)
{

int32_t a;

a = sgx_fclose(fp);

return a;

int32_t ecall_file_delete(char* filename)
{

int32_t a;

a = sgx_remove(filename);

return a;

Listing 5.3. ECALL functions for reading, closing and deleting files in the enclave

5.2 Untrusted Part

The untrusted part is based on a Windows Console Application through which the
user can interact via a menu and choose the operations to be performed. In Fig. 5.3
we see the application’s menu, and by typing in one of the numbers indicated in the
menu, the application will perform the request. Then, by pressing button 1, the
user can see the list of files stored within the trusted part. By pressing key 2, he

can request a data item and this will be stored in the trusted part. By pressing key

5.2. UNTRUSTED PART 29

TEE MENU
in the trusted part
resource from the data market

tion

What do you do?:

Figure 5.3. Console application execution

3, the user will exit the application by destroying the enclave for security reasons,
which will be recreated when the application is launched again.

Having seen the user-side functioning of the trusted application, the next few
lines will describe some of the functions in the untrusted part. The functions that
will be described are used for interaction with the outside world (blockchain and
pod) and the management of the trusted application’s data. The first functionality
of the untrusted part to be illustrated is that of resource access. The function is
called resourceAccess and is visible in Listing 5.4. In the context of the data market,
this function is called by applications that want to access a resource contained in
the trusted part. The function takes as input the identifier of the resource the
application wishes to access, the application’s identifier and its current location.
Once this information has been defined, the function checks whether the requested
resource is present within the trusted memory. If it is not present, the request
will produce no file and return an error. Otherwise, the function will proceed to
determine whether the application respects the usage criteria such as the domain
and the location from which it is requesting access. Only if the application meets
both of these criteria the function will go on to check the other rules set by the data
owner. Among the criteria strictly related to the file, the function first proceeds to
check whether the file has expired or not. If the file has not expired, the function
proceeds to check whether the maximum number of accesses has been reached or
can be accessed. If all checks are successful, the maximum access counter of the file
is decreased and the data is returned to the application that requested it. Otherwise,

an error is generated.

5.2. UNTRUSTED PART

30

FILE resourceAccess(sgx_enclave_id_t eid, char* id, char* idApp, char*
location) {
FILE* file, file2;
char err[256];
errno_t e = fopen_s(&file, "FILEPATH1", "r");
errno_t e2 = fopen_s(&file2, "FILEPATH2", "w+");
if (file == NULL || file2 == NULL) {
strerror_s(err, 100, e);
printf ("Unable to open file, the error is: ¥s", err);
}
else {
char buf[1000];
while (fgets(buf, 1000, file) != NULL) {
char*x p = split(buf, 0);
if (strcmp(id, p) == 0) {
char* fname = split(buf, 1);
char domain[MAX_BUF_LEN];
strcpy_s(domain, MAX_BUF_LEN, split(buf, 2));
if (checkApplication(domain, location, idApp)) {
int day = atoi(split(buf, 5)), month = atoi(split(buf, 6)),
year = atoi(split(buf, 7));
if (checkDate(day, month, year) == 0) {
printf ("Expired File");
removeFile(eid, fname);
¥
else {
int newA = atoi(split(buf, 3));
if (newA <= 0) {
printf ("Maximum number of accesses reached");
removeFile(eid, fname);
}
else {
newA--;
char mA[100], d[5], m[5], y[10];
sprintf_s(mA, 100, "%d", newA);
sprintf_s(d, 5, "%d", day);
sprintf_s(m, 5, "%d", month);
sprintf_s(y, 10, "%d", year);
putsOnFile(file2,id,split(buf,1),
split(buf, 2),mA,split(buf, 4),d,m,y);

} else {

5.2. UNTRUSTED PART 31

fputs(buf, file2);
}
} else {
fputs(buf, file2);

}
fclose(file);
fclose(file2);
if (remove("FILEPATH") == 0)
printf ("\nFile removed\n");
else
printf ("Unable to delete the file");
rename ("FILEPATH2", "FILEPATH1");
}

return retriveFile(id);

3

Listing 5.4. Code of the resourceAccess function, which allows access to a resource in the

enclave

The second functionality illustrated in this subsection concerning the untrusted
part of the application is the one called following a request by the consumer user
for a file on the market. The functions used for this task are those illustrated
in Listing 5.5, addFile function and the createNewFileInEnclave function. Starting
with the addFile function, which after a request for a file from the marketplace,
the pod forwards the contents of the file and all the rules to be respected from the
outside world. The function stores these rules set by the owner in the untrusted part.
More specifically, an id is stored for the file, the name of the file, the usage domain
to be respected, the location where the resource is available and the expiry date of
the file. The addFile function prepares to include this newly received file in the list
of files contained within the trusted part. To store the contents of the file within
the enclave, the function createNewFileInEnclave is called, which takes as input the
contents of the file (encrypted as described in the design phase, see Section 4.3.2)
and the name of the file within which it will be stored, and interacts with the
enclave to proceed with the creation of the file. This function involves 3 calls to the
enclave with the aim of writing a new file to it. The function creates a pointer to
an SGX_FILE and instantiates the mode in which to open this file, in write mode
and in the case where it is not present, we create it. This data is passed to the
ECALL ecall_file _open. We then pass to the ECALL ecall_file write the content
to be placed inside the file and other information needed to write the file we have

just opened. Once the execution of this ECALL is complete, the file is created and

5.2. UNTRUSTED PART 32

stored within the enclave. The contents of the file are passed unencrypted and stored
in the enclave since, after creation, the file is automatically re-encoded by another
Intel SGX automatic encoding procedure by which only the enclave can access that
resource. Finally, the file is closed via the ECALL ecall_file_ close.

5.2. UNTRUSTED PART 33

void createNewFileInEnclave(sgx_enclave_id_t eid, char* buffer, charx

filename) {
SGX_FILE* fp;

sgx_status_t ret

SGX_SUCCESS;

const char* mode = "w+";

//File opening

ret = ecall_file_open(eid, &fp, filename, mode);
//Write buffer value into the file

size_t sizeOfWrite = O;

ret = ecall_file_write(eid, &sizeOfWrite, fp, buffer);
//file Closure

int32_t fileHandle;

ret = ecall_file_close(eid, &fileHandle, fp);

void addFile(sgx_enclave_id_t eid, char* buffer, char* id, char* filename,

char* purpose, int maxAccess, char* location, int day, int month, int
year) {

FILEx file;

char err[256];

errno_t e = fopen_s(&file, "FILEPATH", "a");

if (file == NULL) {
strerror_s(err, 100, e);
printf("Unable to open file, the error is: ¥s", err);
}
else {
char mA[100], y[10], d[5], m[5];
sprintf_s(mA, 100, "%d", maxAccess);
sprintf_s(y, 10, "%d", year);
sprintf_s(m, 5, "%d", month);
sprintf_s(d, 5, "%d", day);
putsOnFile(file,id,filename,purpose, mA, location,d,m,y);
fclose(file);
}

createNewFileInEnclave(eid, buffer, filename);

Listing 5.5. Code for the functions addFile and createNewFileInEnclave, which are used

to store the copy of the file from the market in the enclave

In conclusion, code that enables an application to request permission from a

trusted application is shown. The code is presented by Listing 5.6 and is called by an

5.2. UNTRUSTED PART 34

application the first time it makes a call to the trusted application. The application
inserts the necessary data into the addApplication function within the call. The
function takes as input the name and domain of the application and stores them in
the untrusted part. In this way, following a second call, the trusted application can
check whether the application requesting the data has been authorised and in which
domain it is working. The location of the application is required when requesting
access to the file (required in the resourceAccess function, see Listing 5.4) as it may

change over time.

void addApplication(char* name, char* domain) {
FILE* file;
char err[256];
errno_t e = fopen_s(&file, "FILEPATH");

if (file == NULL) {
strerror_s(err, 100, e);

printf ("Unable to open file, the error is: Ys", err);

}
else {
char newline[3] = "\n";
AllowApplication(file,name,domain) ;
fclose(file);
}

Listing 5.6. Code of the addApplication function which authorises the request of resources

to applications

35

Chapter 6

Evaluation

In order to evaluate the solution produced, I chose to perform a verification
by design. This evaluation is approached by proof the strength through objective
evidence that specified requirements have been fulfilled. The requirements chosen
to be proven are essential for the realisation of a good trusted application. The
requirements chosen are: only the enclave can decrypt the data (R1), nobody except
the enclave can access the data (R2) and at the time of its expiration, the data no
longer exists for anyone (R3).

R1 was chosen because it is essential that the data encoded within the TEE
be readable only by the enclave in order to guarantee the confidentiality of the
information and to allow use in only controlled scenarios. Requirement R2 is a nuance
of Requirement R1 but it is necessary to distinguish them. In fact, R2 requires that
the system allow access to the data, both encrypted and unencrypted, only to the
enclave, therefore, that external components cannot access it. Requirement 3 is the
one most related to the use case and requires that after an expiration or exhaustion
of possible accesses, the data is no longer present in the trusted application.

The R1 requirement is demonstrable since within the trusted application, only
the enclave stores the private key to decrypt the data. When the enclave is created,
the untrusted part of the application only know and store the public key, unlike the
enclave will store both. Only the untrusted part of the application can communicate
with the trusted part. No other application, even if it has full privileges, can do this
(even another enclave in the same trusted application) and if within the untrusted
part the data is encrypted with the application’s public key and the private key is
only stored within the enclave, only the enclave can decrypt the data. In addition,
the private key, like all data in the enclave, is encrypted with Intel SGX’s automatic
encryption. Therefore, the enclave memory is encrypted using industry-standard
encryption algorithms with replay protection. The key with which data is encrypted
by Intel SGX is stored inside the CPU and is unreadable. This key is randomly

36

generated each time the enclave is recreated. This additional encryption also makes
a direct attack on the memory or DRAM modules impossible since the attacker will
access encrypted data.

In order to prove the R2 requirement, we must remember the features explained
in the R1 demonstration regarding encryption performed by Intel SGX. In fact, to
make its data available, since only it can decrypt it, the enclave provides APIs to
call its functionality (ECALLs). Thanks to ECALLSs, the programmer of the enclave
can trace its boundaries; without them, the enclave and the data it contains could
not be accessed. So this shows us that untrusted elements cannot access the data
stored in the trusted part except through the enclave. So only the enclave can access
its own data.

Finally, to prove requirement R3, as already explained in the design and imple-
mentation chapters. When one of the data invalidating conditions occurs, which are
the maximum number of accesses reached or the date of the data has passed, the
data is automatically removed from the enclave. This means that both the enclave
and the untrusted part cannot access or retrieve the data in any way. The memory

used for storing that data is freed.

37

Chapter 7

Conclusion and Future Work

The work carried out for this thesis allowed us to study and enter the world of
TEEs, evaluating their potential and essentiality in certain types of contexts, such
as the data market. Although an initial version of the TEE was developed, with
this one we had control of the entire application, ensuring correct use of the data
while maintaining the grantie given by the usage control. Thus, a data owner user
knows for sure that once the rules of use have been set, those rules will be observed
thanks to a trusted application that continuously monitors them. In addition to the
monitoring work provided by the trusted application, the use of blockchain provides
the system with decentralisation and traceability of data and requests within the
market. The project is open to future developments that will improve some of the
limitations present in the thesis work.

One of the most important future implementations for the project is the addition
of the enclave attestation, more precisely the remote attestation provided by Intel.
Attestation is the process of proving that an enclave has been established on a
trusted platform so that it is recognisable and trusted during interactions. It is
possible to establish local attestation to identify two enclaves on the same platform
but we are interested in remote attestation that uses a remote provider to attest
trust. Since the trusted application has to communicate with many external parties,
we can effectively attest that the parties are trusted by establishing a session and,
during the establishment, both parties attest and then a secure data exchange can
begin.

Then the approach to the development of the trusted application could be
changed by incorporating a mixed approach using C#, which would allow us to
implement a more user-friendly GUI, which would guarantee a better interaction
with the consumer user who wants to request data in the market. Changing the
approach increases the distance between the application code and the native C

enclave code. The current enclave code can be maintained, but we would need to

38

create the bridge layers in order to develop the C# application.

Finally, I plan to expand the evaluation of the system by adding a quantitative
evaluation to the qualitative evaluation of the system.

In order to do this, I intend to evaluate the system using the measurement tools
studied by Bailleu et al. in their work [9]. These researchers have developed a model
called TEE-Perf which is an application and platform independent performance
measurement tool for TEE. The tool consists of four parts: compiler, recorder,
analyser and visualiser. The compiler injects the profiling code into the application.
The recorder is used to set components to track the execution of the code. Through
the data tracked by the recorder, the tool supports the measurement of “Call Stack”,
“Queries” and “Selective code profiling”. The “Call Stack” measurement is used for
call reconstruction, thanks to which we can check the call time of even the most
complex queries. “Queries” allows us to search for contention in the code or call
dependencies that lead to high overhead. “Selective code profiling” allows us to
analyse the code only in certain parts and not in its entirety.

A second evaluation will be carried out following the work performed by Weich-
brodt et al. [38]. From this work, Sgx-perf was designed, a set of tools for analysing
TEE performance and behaviour, indeed, SGX-Perf is composed of several tools
working together. The tools are: an event logger, a working set estimator and an
analyser. These tools make it possible to monitor the behaviour of the TEE via logs
without modifying the sgx SDK code. Using sgx-Perf tools, we can track incoming
calls to the enclave and outgoing calls through an incoming and an outgoing wrapper
code that monitor the movements of function calls. Thanks to these wrappers, it
is also possible to evaluate call execution times. It is also possible to trace the
dependencies between threads within the enclave. Another tool will allow us to
calculate the enclave’s performance by considering Asynchronous Enclave Exits
(AEX). This aims to calculate the actual execution time of the enclave, leaving
out what happens outside. If there is a problem outside, a metric that classically
calculates performance is to the detriment of the enclave, whereas this one manages
to separate the two and give enclave-related judgement. Through a final tool, it is
also possible to check the amount of memory used. Enclaves use a memory space
called Enclave page cache (EPC). EPCs are limited between 64MB and 128MB of
memory. When the memory space exceeds this, the EPC is moved to the unsafe
area of the application. This tool then monitors the movement between the safe
and unsafe zones of the pages. Being able to determine which parts of the enclave
are less used. Enclaves should be designed in such a way that pages are not moved
to the non-secure zone. In this regard, it is possible through one of the Sgx-Perf

tools to monitor the performance of pages in the TEE. Once these behaviours have

39

been monitored, Sgx-Perf provides an analysis of the data obtained and gives the
developer advice on how to improve the application’s performance.

In conclusion, in a world like ours that relies on data and structures it in every
possible way, the use of a trusted execution environment coupled with a blockchain
can curb data abuse. The case study of the data market is a clear example of how

these problems, through the correct use of technology, can be managed.

40

Bibliography

[1] Intel® Software Guard Extensions. https://www.intel.co.uk/content/www/

uk/en/architecture-and-technology/software-guard-extensions.html,
accessed: November 18, 2022

[2] Overview of Intel Protected File System Library Us-
ing Software Guard Extensions. https://www.intel.
com/content/www/us/en/developer/articles/technical/
overview-of-intel-protected-file-system-library-using-software-guard-extensions.
html#:~:text=IntelAd%20Protected’20File,20System’20Library
20provides%20protected’%20files’20API, API%,27s%20provided’,20by%
20Intel’,20SGX., accessed: November 18, 2022

[3] Solid. https://solidproject.org/about, accessed: November 18, 2022

[4] web3.js - Ethereum JavaScript APIL. https://web3js.readthedocs.io/en/v1.
7.5/, accessed: November 18, 2022

[5] What is digi.me? https://digi.me/what-is-digime/, accessed: November
18, 2022

n

[6] Antonopoulos, A.M.: Mastering Bitcoin: unlocking digital cryptocurrencies.
O’Reilly Media, Inc." (2014)

[7] Ayoade, G., Karande, V., Khan, L., Hamlen, K.: Decentralized iot data man-
agement using blockchain and trusted execution environment. In: 2018 IEEE

International Conference on Information Reuse and Integration (IRI). pp. 15-22
(2018)

[8] Azzi, R., Chamoun, R.K., Sokhn, M.: The power of a blockchain-based supply
chain. Computers & industrial engineering 135, 582-592 (2019)

[9] Bailleu, M., Dragoti, D., Bhatotia, P., Fetzer, C.: Tee-perf: A profiler for
trusted execution environments. In: 2019 49th Annual IEEE/IFIP International

https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.co.uk/content/www/uk/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html#:~:text=Intel®%20Protected%20File%20System%20Library%20provides%20protected%20files%20API,API%27s%20provided%20by%20Intel%20SGX.
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html#:~:text=Intel®%20Protected%20File%20System%20Library%20provides%20protected%20files%20API,API%27s%20provided%20by%20Intel%20SGX.
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html#:~:text=Intel®%20Protected%20File%20System%20Library%20provides%20protected%20files%20API,API%27s%20provided%20by%20Intel%20SGX.
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html#:~:text=Intel®%20Protected%20File%20System%20Library%20provides%20protected%20files%20API,API%27s%20provided%20by%20Intel%20SGX.
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html#:~:text=Intel®%20Protected%20File%20System%20Library%20provides%20protected%20files%20API,API%27s%20provided%20by%20Intel%20SGX.
https://www.intel.com/content/www/us/en/developer/articles/technical/overview-of-intel-protected-file-system-library-using-software-guard-extensions.html#:~:text=Intel®%20Protected%20File%20System%20Library%20provides%20protected%20files%20API,API%27s%20provided%20by%20Intel%20SGX.
https://solidproject.org/about
https://web3js.readthedocs.io/en/v1.7.5/
https://web3js.readthedocs.io/en/v1.7.5/
https://digi.me/what-is-digime/

BIBLIOGRAPHY 41

[10]

[11]

[14]

[15]

[17]

[18]

[19]

[20]

Conference on Dependable Systems and Networks (DSN). pp. 414-421 (2019).
https://doi.org/10.1109/DSN.2019.00050

Bashir, I.: Mastering blockchain. Packt Publishing Ltd (2017)

Becker, H., Vu, H., Katzenbach, A., Braun, C.H., Kéfer, T.: Monetising
resources on a solid pod using blockchain transactions. In: The Semantic Web:
ESWC 2021 Satellite Events. pp. 49-53 (2021)

Cai, T., Yang, Z., Chen, W., Zheng, Z., Yu, Y.: A blockchain-assisted trust
access authentication system for solid. IEEE Access (2020)

Chang, S.E., Chen, Y.: When blockchain meets supply chain: A systematic
literature review on current development and potential applications. IEEE
Access 8, 62478-62494 (2020)

Dai, W., Dai, C., Choo, K.K.R., Cui, C., Zou, D., Jin, H.: Sdte: A secure
blockchain-based data trading ecosystem. IEEE Transactions on Information
Forensics and Security 15, 725-737 (2019)

El Toini, N., Pahl, C.: A review of distributed ledger technologies. In: OTM
Confederated International Conferences" On the Move to Meaningful Internet
Systems". pp. 277-288. Springer (2018)

Francisco, K., Swanson, D.: The supply chain has no clothes: Tech-
nology adoption of blockchain for supply chain transparency. Logistics
2(1) (2018). https://doi.org/10.3390/logistics2010002, https://www.mdpi.com/
2305-6290/2/1/2

Hellwig, D., Karlic, G., Huchzermeier, A., et al.: Build your own blockchain.
Springer (2020)

Khan, M.Y., Zuhairi, M.F., Syed, T.A., Alghamdi, T.G., Marmolejo-Saucedo,
J.A.: An extended access control model for permissioned blockchain frameworks.
Wirel. Networks 26(7), 4943-4954 (2020)

Lashkari, B., Musilek, P.: A comprehensive review of blockchain consensus
mechanisms. IEEE Access 9, 43620-43652 (2021)

Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A
survey. Computer Science Review 4(2), 81-99 (2010)

https://www.mdpi.com/2305-6290/2/1/2
https://www.mdpi.com/2305-6290/2/1/2

BIBLIOGRAPHY 42

[21]

[24]

[25]

[26]

[27]

Li, Z., Wu, H., King, B., Miled, Z.B., Wassick, J., Tazelaar, J.: A hybrid
blockchain ledger for supply chain visibility. In: 2018 17th International Sym-
posium on Parallel and Distributed Computing (ISPDC). pp. 118-125. IEEE
(2018)

Longo, F., Nicoletti, L., Padovano, A., d’Atri, G., Forte, M.: Blockchain-enabled
supply chain: An experimental study. Computers & Industrial Engineering 136,
57-69 (2019)

Mansour, E., Sambra, A.V., Hawke, S., Zereba, M., Capadisli, S., Ghanem,
A., Aboulnaga, A., Berners-Lee, T.: A demonstration of the solid platform for
social web applications. In: Proceedings of the 25th international conference

companion on world wide web. pp. 223-226 (2016)

Marangone, E., Di Ciccio, C., Weber, I.: Fine-grained data access control for
collaborative process execution on blockchain. arXiv preprint arXiv:2207.08484
(2022)

McGillion, B., Dettenborn, T., Nyman, T., Asokan, N.: Open-tee—an open vir-
tual trusted execution environment. In: 2015 IEEE Trustcom/BigDataSE/ISPA.
vol. 1, pp. 400-407. IEEE (2015)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized
Business Review p. 21260 (2008)

Park, J., Sandhu, R.: A unified framework for next generation access control.
George Mason University 100 (2006)

Park, J., Sandhu, R.: A position paper: a usage control (ucon) model for social

networks privacy (2000)

Park, J., Sandhu, R.: Towards usage control models: beyond traditional access
control. In: Proceedings of the seventh ACM symposium on Access control
models and technologies. pp. 57-64 (2002)

Park, J., Sandhu, R.: The uconabc usage control model. ACM transactions on
information and system security (TISSEC) 7(1), 128-174 (2004)

Pretschner, A., Hilty, M., Basin, D.: Distributed usage control. Communications
of the ACM 49(9), 39-44 (2006)

Ramachandran, M., Chowdhury, N., Third, A., Domingue, J., Quick, K., Bach-
ler, M.: Towards complete decentralised verification of data with confidentiality:
Different ways to connect solid pods and blockchain. In: Companion Proceedings
of the Web Conference 2020. p. 645-649 (2020)

BIBLIOGRAPHY 43

33]

[36]

[41]

[42]

[43]

[44]

Rushby, J.M.: Design and verification of secure systems. ACM SIGOPS Oper-
ating Systems Review 15(5), 12-21 (1981)

Sabt, M., Achemlal, M., Bouabdallah, A.: Trusted execution environment: what
it is, and what it is not. In: 2015 IEEE Trustcom/BigDataSE/ISPA. vol. 1, pp.
57-64. IEEE (2015)

Sambra, A.V., Mansour, E., Hawke, S., Zereba, M., Greco, N., Ghanem,
A., Zagidulin, D., Aboulnaga, A., Berners-Lee, T.: Solid : A platform for
decentralized social applications based on linked data (2016)

Sandhu, R., Park, J.: Usage control: A vision for next generation access
control. In: International Workshop on Mathematical Methods, Models, and
Architectures for Computer Network Security. pp. 17-31. Springer (2003)

Szabo, N.: Formalizing and securing relationships on public networks. First
monday (1997)

Weichbrodt, N., Aublin, P.L., Kapitza, R.: sgx-perf: A performance analysis
tool for intel sgx enclaves. In: Proceedings of the 19th International Middleware
Conference. pp. 201-213 (2018)

Wiist, K., Gervais, A.: Do you need a blockchain? In: 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT). pp. 45-54. IEEE (2018)

Xiao, Y., Zhang, N., Li, J., Lou, W., Hou, Y.T.: Privacyguard: Enforcing private
data usage control with blockchain and attested off-chain contract execution. In:
Chen, L., Li, N., Liang, K., Schneider, S. (eds.) Computer Security — ESORICS
2020. pp. 610-629 (2020)

Xu, X., Weber, 1., Staples, M.: Architecture for Blockchain Applications (2019)

Xu, X., Weber, 1., Staples, M., Zhu, L., Bosch, J., Bass, L., Pautasso, C., Rimba,
P.: A taxonomy of blockchain-based systems for architecture design. In: 2017
IEEE international conference on software architecture (ICSA). pp. 243-252.
IEEE (2017)

Zhaofeng, M., Lingyun, W., Xiaochang, W., Zhen, W., Weizhe, Z.: Blockchain-
enabled decentralized trust management and secure usage control of iot big
data. IEEE Internet of Things Journal 7(5), 4000-4015 (2020)

Zou, W., Lo, D., Kochhar, P.S., Le, X.B.D., Xia, X., Feng, Y., Chen, Z., Xu, B.:
Smart contract development: Challenges and opportunities. IEEE Transactions
on Software Engineering 47(10), 2084-2106 (2019)

	Introduction
	Contribution
	Structure of the thesis

	Background
	Distributed Ledger Technology - Blockchain
	Trusted Execution Environment
	Usage Control
	Solid Web

	Motivating Use Case Scenario
	Design
	Pod
	Blockchain
	Trusted Application
	Structure of the Trusted Application
	Encryption in the Trusted Application
	Checks performed by the untrusted part

	Implementation
	Trusted Part
	Enclave.edl file
	Enclave.cpp file

	Untrusted Part

	Evaluation
	Conclusion and Future Work
	Bibliography

